1
|
de Araújo Silva-Cardoso IM, Medeiros MO, Gomes ACMM, de Souza ALX, Scherwinski-Pereira JE. Use of Electron Microscopy for the Detection of Contaminant Endophytic Bacteria In Vitro. Methods Mol Biol 2024; 2827:71-84. [PMID: 38985263 DOI: 10.1007/978-1-0716-3954-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
The success of in vitro cultivation, particularly for micropropagation purposes, depends on the efficient control of contaminants. In this context, the sterilization of plant material constitutes a fundamental step in initiating cultures. Microbial contaminants can be found either on the surface (epiphyte) or inside plant explants (endophyte). However, the latter is generally challenging to detect and may not always be eradicated through surface sterilization alone. Endophyte contaminants, such as bacteria, can persist within plant material over several cultivation cycles, potentially interfering with or inhibiting in vitro establishment, growth, or recovery of cryopreserved materials. Therefore, microscopy techniques, such as electron microscopy, can yield valuable insights into bacterial endophytes' localization, tissue colonization patterns, and functions in in vitro plant culture. This information is essential for adopting effective strategies for eliminating, preventing, or harmonious coexistence with contaminants.
Collapse
Affiliation(s)
| | - Mariana Oliveira Medeiros
- Department of Botany, University of Brasília, Campus Universitário Darcy Ribeiro, Brasília, DF, Brazil
| | | | | | | |
Collapse
|
2
|
Sharma V, Ankita, Karnwal A, Sharma S, Kamal B, Jadon VS, Gupta S, Sivanasen I. A Comprehensive Review Uncovering the Challenges and Advancements in the In Vitro Propagation of Eucalyptus Plantations. PLANTS (BASEL, SWITZERLAND) 2023; 12:3018. [PMID: 37687265 PMCID: PMC10490407 DOI: 10.3390/plants12173018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/03/2023] [Accepted: 08/14/2023] [Indexed: 09/10/2023]
Abstract
The genus Eucalyptus is a globally captivated source of hardwood and is well known for its medicinal uses. The hybrid and wild species of Eucalyptus are widely used as exotic plantations due to their renowned potential of adapting to various systems and sites, and rapid large-scale propagation of genetically similar plantlets, which further leads to the extensive propagation of this species. Tissue culture plays a crucial role in the preservation, propagation, and genetic improvement of Eucalyptus species. Despite unquestionable progression in biotechnological and tissue culture approaches, the productivity of plantations is still limited, often due to the low efficiency of clonal propagation from cuttings. The obtained F1 hybrids yield high biomass and high-quality low-cost raw material for large-scale production; however, the development of hybrid, clonal multiplication, proliferation, and post-developmental studies are still major concerns. This riveting review describes the problems concerning the in vitro and clonal propagation of Eucalyptus plantation and recent advances in biotechnological and tissue culture practices for massive and rapid micropropagation of Eucalyptus, and it highlights the Eucalyptus germplasm preservation techniques.
Collapse
Affiliation(s)
- Vikas Sharma
- School of Bioengineering and Bioscience, Lovely Professional University, Phagwara 144411, Punjab, India; (V.S.); (A.); (A.K.); (S.S.)
| | - Ankita
- School of Bioengineering and Bioscience, Lovely Professional University, Phagwara 144411, Punjab, India; (V.S.); (A.); (A.K.); (S.S.)
| | - Arun Karnwal
- School of Bioengineering and Bioscience, Lovely Professional University, Phagwara 144411, Punjab, India; (V.S.); (A.); (A.K.); (S.S.)
| | - Shivika Sharma
- School of Bioengineering and Bioscience, Lovely Professional University, Phagwara 144411, Punjab, India; (V.S.); (A.); (A.K.); (S.S.)
| | - Barkha Kamal
- DBS (PG) College, Dehradun 248001, Uttarakhand, India;
| | - Vikash S. Jadon
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant Dehradun 248016, Uttarakhand, India; (V.S.J.); (S.G.)
| | - Sanjay Gupta
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant Dehradun 248016, Uttarakhand, India; (V.S.J.); (S.G.)
| | - Iyyakkannu Sivanasen
- Department of Bioresource and Food Science, Institute of Natural Science and Agriculture, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
3
|
Gammoudi N, Nagaz K, Ferchichi A. Establishment of optimized in vitro disinfection protocol of Pistacia vera L. explants mediated a computational approach: multilayer perceptron-multi-objective genetic algorithm. BMC PLANT BIOLOGY 2022; 22:324. [PMID: 35790933 PMCID: PMC9254583 DOI: 10.1186/s12870-022-03674-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/31/2022] [Indexed: 05/26/2023]
Abstract
BACKGROUND Contamination-free culture is a prerequisite for the success of in vitro - based plant biotechnology. Aseptic initiation is an extremely strenuous stride, particularly in woody species. Meanwhile, over-sterilization is potentially detrimental to plant tissue. The recent rise of machine learning algorithms in plant tissue culture proposes an advanced interpretive tool for the combinational effect of influential factors for such in vitro - based steps. RESULTS A multilayer perceptron (MLP) model of artificial neural network (ANN) was implemented with four inputs, three sterilizing chemicals at various concentrations and the immersion time, and two outputs, disinfection efficiency (DE) and negative disinfection effect (NDE), intending to assess twenty-seven disinfection procedures of Pistacia vera L. seeds. Mercury chloride (HgCl2; 0.05-0.2%; 5-15 min) appears the most effective with 100% DE, then hydrogen peroxide (H2O2; 5.25-12.25%; 10-30 min) with 66-100% DE, followed by 27-77% DE for sodium hypochlorite (NaOCl; 0.54-1.26% w/v; 10-30 min). Concurrently, NDE was detected, including chlorosis, hard embryo germination, embryo deformation, and browning tissue, namely, a low repercussion with NaOCl (0-14%), a moderate impact with H2O2 (6-46%), and pronounced damage with HgCl2 (22-100%). Developed ANN showed R values of 0.9658, 0.9653, 0.8937, and 0.9454 for training, validation, testing, and all sets, respectively, which revealed the uprightness of the model. Subsequently, the model was linked to multi-objective genetic algorithm (MOGA) which proposed an optimized combination of 0.56% NaOCl, 12.23% H2O2, and 0.068% HgCl2 for 5.022 min. The validation assay reflects the high utility and accuracy of the model with maximum DE (100%) and lower phytotoxicity (7.1%). CONCLUSION In one more case, machine learning algorithms emphasized their ability to resolve commonly encountered problems. The current successful implementation of MLP-MOGA inspires its application for more complicated plant tissue culture processes.
Collapse
Affiliation(s)
- Najet Gammoudi
- Arid and Oases Cropping Laboratory, Arid Lands Institute (IRA), 4119, Medenine, Tunisia.
| | - Kamel Nagaz
- Arid and Oases Cropping Laboratory, Arid Lands Institute (IRA), 4119, Medenine, Tunisia
| | - Ali Ferchichi
- National Institute of Agronomy of Tunis, 43 Charles Nicolle, 1082, Tunis, Tunisia
| |
Collapse
|
4
|
Cantabella D, Dolcet-Sanjuan R, Teixidó N. Using plant growth-promoting microorganisms (PGPMs) to improve plant development under in vitro culture conditions. PLANTA 2022; 255:117. [PMID: 35513731 DOI: 10.1007/s00425-022-03897-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
The use of beneficial microorganisms improves the performance of in vitro - cultured plants through the improvement of plant nutrition, the biological control of microbial pathogens or the production of phytohormones that promote plant growth and development. Plant in vitro culture techniques are highly useful to obtain significant amounts of true-to-type and disease-free plant materials. One of these techniques is clonal micropropagation which consists on the establishment of shoot tip cultures, shoot multiplication, in vitro rooting and acclimatization to ex vitro conditions. However, in some cases, the existence of recalcitrant genotypes, with a compromised multiplication and rooting ability, or the difficulties to overcome the overgrowth of endophytic contaminations might seriously limit its efficiency. In this sense, the establishment of beneficial interactions between plants and plant growth-promoting microorganisms (PGPMs) under in vitro culture conditions might represent a valuable approach to efficiently solve those restrictions. During the last years, significant evidence reporting the use of beneficial microorganisms to improve the yield of in vitro multiplication or rooting as well as their acclimatization to greenhouse or soil conditions have been provided. Most of these positive effects are strongly linked to the ability of these microorganisms to provide in vitro plants with nutrients such as nitrogen or phosphorous, to produce plant growth regulators, to control the growth of pathogens or to mitigate stress conditions. The culture of A. thaliana under aseptic conditions has provided high-quality knowledge on the root development signaling pathways, involving hormones, triggered in the presence of PGPMs. Overall, the present article offers a brief overview of the use of microorganisms to improve in vitro plant performance during the in vitro micropropagation stages, as well as the main mechanisms of plant growth promotion associated with these microorganisms.
Collapse
Affiliation(s)
- Daniel Cantabella
- IRTA Plant In Vitro Culture Laboratory, Fruticulture Programme, Lleida, Catalonia, Spain
- Postharvest Programme, IRTA Edifici Fruitcentre, Parc Científic I Tecnològic Agroalimentari de Lleida, 25003, Lleida, Catalonia, Spain
| | - Ramon Dolcet-Sanjuan
- IRTA Plant In Vitro Culture Laboratory, Fruticulture Programme, Lleida, Catalonia, Spain
| | - Neus Teixidó
- Postharvest Programme, IRTA Edifici Fruitcentre, Parc Científic I Tecnològic Agroalimentari de Lleida, 25003, Lleida, Catalonia, Spain.
| |
Collapse
|
5
|
Ochieno DMW. Soil Microbes Determine Outcomes of Pathogenic Interactions Between Radopholus similis and Fusarium oxysporum V5w2 in Tissue Culture Banana Rhizospheres Starved of Nitrogen, Phosphorus, and Potassium. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.706072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The contributions of soil biota toward outcomes of pathogenic interactions between Radopholus similis and Fusarium oxysporum V5w2 in tissue culture banana plants starved of nitrogen (N), phosphorus (P), and potassium (K) were investigated. The study was based on three screenhouse factorial experiments (2 × 2 × 2) comprising of potted banana plants with or without R. similis, with or without F. oxysporum V5w2, and either grown in sterile or non-sterile soil. All plants in each of the three experiments received nutrient solutions that were deficient in N, P, or K, respectively. In all the three nutritional regimes, plants inoculated with R. similis were heavily colonized by the nematode with high percentage dead roots and necrosis, while their root biomasses were low. N-starved plants co-inoculated with R. similis and F. oxysporum V5w2 had lower percentage dead roots and tended to have numerically lower nematode density compared to those treated with R. similis only, especially in non-sterile soil. N-starved plants inoculated with R. similis had higher shoot dry weight, were taller with more leaves that were larger, compared to those not inoculated with the nematode. Plants grown in non-sterile soil had lower percentage dead roots, necrosis and R. similis density than those from sterile soil, regardless of the nutrient regime. N-starved plants from non-sterile soil were shorter with smaller leaves having decreased chlorophyll content and lower biomass, compared to those from sterile soil. By contrast, P and K starved plants from non-sterile soil were taller with larger leaves and more biomass, compared to those from sterile soil. Roots inoculated with R. similis had higher endophytic colonization by Fusarium spp., especially when co-inoculated with F. oxysporum V5w2 and grown in sterile soil among the N and K-starved plants. In conclusion, pathogenic interactions between R. similis and F. oxysporum V5w2 are predominantly suppressed by a complex of soil microbes that exert plant growth promoting effects in tissue culture banana plants through N, P, and K dependent processes. Nitrogen is the most important limiting factor in rhizosphere interactions between banana roots, beneficial microbes and the pathogens. Soil sterilization and the stringent aseptic tissue culture techniques still require the development of alternative innovative ways of conserving microbial services for sustainable agriculture.
Collapse
|
6
|
Development of an Improved Micropropagation Protocol for Red-Fleshed Pitaya ‘Da Hong’ with and without Activated Charcoal and Plant Growth Regulator Combinations. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8020104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Micropropagation protocols for red-fleshed Hylocereus species (Cactaceae) have been developed; however, these methods prolong the sprout duration from areoles and produce irregular micro-propagules in ‘Da Hong’ pitaya. Thus, the present study aimed to establish an improved micropropagation protocol for this cultivar. Shoot regeneration and root induction of self-pollinating seedling segments were evaluated in response to combinations of activated charcoal (AC; 200 mg/L), α-naphthaleneacetic acid (NAA; 0.05, 0.10, and 0.20 mg/L), and 6-benzylaminopurine (BAP; 1.00, 2.00, and 4.00 mg/L). The correlations among plantlet growth characteristics and plantlet survival rate after transplantation under field conditions were calculated. Increasing the NAA concentration increased the number of roots but reduced root length. The addition of AC enhanced shoot length and prevented the regeneration of dried-out, clustered, and abnormal shoots. Plantlets treated with 200 mg/L AC and 0.10 mg/L NAA produced the highest number of shoots, i.e., 4.1 shoots, which however, were shorter and lighter than those cultured with AC alone. Plantlets grown on medium supplemented with BAP showed no advantage in shoot number, shoot weight, plantlet surface area, or plantlet volume. The weight and shoot surface area of plantlets were strongly correlated. All plantlets grew well at 4 weeks post-transplantation. Overall, these results support this improved micropropagation method to regenerate robust ex vitro plantlets.
Collapse
|
7
|
Long-Term Potato Virus X (PVX)-Based Transient Expression of Recombinant GFP Protein in Nicotiana benthamiana Culture In Vitro. PLANTS 2021; 10:plants10102187. [PMID: 34685995 PMCID: PMC8537016 DOI: 10.3390/plants10102187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 11/17/2022]
Abstract
Plant molecular farming has a great potential to produce valuable proteins. Transient expression technology provides high yields of recombinant proteins in greenhouse-grown plants, but every plant must be artificially agroinfiltrated, and open greenhouse systems are less controlled. Here, we propose to propagate agrobacteria-free plants with high-efficient long-term self-replicated transient gene expression in a well-controlled closed in vitro system. Nicotiana benthamiana plant tissue culture in vitro, with transient expression of recombinant GFP, was obtained through shoot induction from leaf explants infected by a PVX-based vector. The transient expression occurs in new tissues and regenerants due to the natural systemic distribution of viral RNA carrying the target gene. Gene silencing was delayed in plants grown in vitro, and GFP was detected in plants for five to six months. Agrobacteria-free, GFP-expressing plants can be micropropagated in vitro (avoiding an agroinfiltration step), "rejuvenated" through regeneration (maintaining culture for years), or transferred in soil. The mean GFP in the regenerants was 18% of the total soluble proteins (TSP) (0.52 mg/g of fresh leaf weight (FW). The highest value reached 47% TSP (2 mg/g FW). This study proposes a new method for recombinant protein production combining the advantages of transient expression technology and closed cultural systems.
Collapse
|
8
|
Grigoriadou K, Sarropoulou V, Krigas N, Maloupa E, Tsoktouridis G. GIS-Facilitated Effective Propagation Protocols of the Endangered Local Endemic of Crete Carlina diae (Rech. f.) Meusel and A. Kástner (Asteraceae): Serving Ex Situ Conservation Needs and Its Future Sustainable Utilization as an Ornamental. PLANTS 2020; 9:plants9111465. [PMID: 33138338 PMCID: PMC7692043 DOI: 10.3390/plants9111465] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 11/23/2022]
Abstract
Conservation and sustainable exploitation of threatened endemic plants with medicinal and/or horticultural/ornamental value can be achieved through the development of effective propagation protocols. After unveiling the bioclimatic preferences of Carlina diae (Asteraceae) with geographic information systems (GIS), four propagation trials were conducted using seeds of this endangered local Cretan endemic for in vivo and in vitro germination, as well as seasonal vegetative propagation trials (softwood cuttings) and micropropagation (nodal explants). Seed germination was accomplished at a level of 77–90% in vivo (30 days) and 96% in vitro (10 days) using an MS medium with 2.9 μM gibberellic acid (GA3). The optimum treatments for cuttings’ rooting were 1000 and 2000 ppm indole-3-butyric acid (IBA) (11–16 roots, 2–3 cm long, 100% rooting) within 40 days in mist. In vitro shoot propagation exhibited a 2.8 proliferation rate after six successive subcultures on an MS medium with 2.9 μM GA3. Both ex vitro rooting and acclimatization were successful in 40 days, with 96% microshoot rooting and an equal survival rate. The GIS-facilitated effective species-specific propagation protocols developed in this study can consolidate the perspective of successful re-introduction of ex situ-raised material of C. diae into wild habitats and may serve its sustainable exploitation for high-added value ornamental products.
Collapse
|
9
|
Tekielska D, Peňázová E, Kovács T, Křižan B, Čechová J, Eichmeier A. Bacterial Contamination of Plant in vitro Cultures in Commercial Production Detected by High-Throughput Amplicon Sequencing. ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS 2019. [DOI: 10.11118/actaun201967041005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
10
|
The Ecology of Agrobacterium vitis and Management of Crown Gall Disease in Vineyards. Curr Top Microbiol Immunol 2019; 418:15-53. [PMID: 29556824 DOI: 10.1007/82_2018_85] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Agrobacterium vitis is the primary causal agent of grapevine crown gall worldwide. Symptoms of grapevine crown gall disease include tumor formation on the aerial plant parts, whereas both tumorigenic and nontumorigenic strains of A. vitis cause root necrosis. Genetic and genomic analyses indicated that A. vitis is distinguishable from the members of the Agrobacterium genus and its transfer to the genus Allorhizobium was suggested. A. vitis is genetically diverse, with respect to both chromosomal and plasmid DNA. Its pathogenicity is mainly determined by a large conjugal tumor-inducing (Ti) plasmid characterized by a mosaic structure with conserved and variable regions. Traditionally, A. vitis Ti plasmids and host strains were differentiated into octopine/cucumopine, nopaline, and vitopine groups, based on opine markers. However, tumorigenic and nontumorigenic strains of A. vitis may carry other ecologically important plasmids, such as tartrate- and opine-catabolic plasmids. A. vitis colonizes vines endophytically. It is also able to survive epiphytically on grapevine plants and is detected in soil exclusively in association with grapevine plants. Because A. vitis persists systemically in symptomless grapevine plants, it can be efficiently disseminated to distant geographical areas via international trade of propagation material. The use of healthy planting material in areas with no history of the crown gall represents the crucial measure of disease management. Moreover, biological control and production of resistant grape varieties are encouraging as future control measures.
Collapse
|
11
|
Johnson KL, Cronin H, Reid CL, Burr TJ. Distribution of Agrobacterium vitis in Grapevines and Its Relevance to Pathogen Elimination. PLANT DISEASE 2016; 100:791-796. [PMID: 30688607 DOI: 10.1094/pdis-08-15-0931-re] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Agrobacterium vitis, the cause of crown gall disease on grapevine, survives internally in vines and can be spread in cuttings for propagation. The possibility of generating pathogen-free vines through tissue culture makes it essential to understand the distribution of the pathogen in grapevines. A highly sensitive magnetic capture hybridization procedure along with real-time polymerase chain reaction were used to measure the distribution of tumorigenic A. vitis in dormant canes and green shoots of grapevines. Tumorigenic A. vitis was distributed from the basal to apical nodal and internodal tissues of canes as well as in nonlignified green shoots. In experiments conducted in 2013, A. vitis was detected in up to 17% of shoot tips and 52% of meristems of greenhouse-grown plants initiated from known A. vitis-contaminated cuttings. A lower frequency of detection was observed from surface-disinfected shoot tips (7%) as compared with nondisinfected tips (37%), suggesting epiphytic survival on green tissues. In 2014, vines propagated from cuttings collected from crown gall-infected vines from a different vineyard yielded lower incidences of A. vitis from shoot tips, and the bacterium was not detected in meristems. Tumorigenic A. vitis was also detected in cuttings of wild grapevines (Vitis riparia) that were collected both adjacent to and far removed from commercial vineyards.
Collapse
Affiliation(s)
- Kameka Latoya Johnson
- School of Integrative Plant Sciences, Section of Pathology and Plant-Microbe Biology, Cornell University, Geneva NY 14456
| | - Heather Cronin
- Department of Biological Sciences, University of Delaware, Newark 19716
| | - Cheryl L Reid
- School of Integrative Plant Sciences, Section of Pathology and Plant-Microbe Biology, Cornell University
| | - Thomas J Burr
- School of Integrative Plant Sciences, Section of Pathology and Plant-Microbe Biology, Cornell University
| |
Collapse
|
12
|
Tsoktouridis G, Tsiamis G, Koutinas N, Mantell S. Molecular detection of bacteria in plant tissues, using universal 16S ribosomal DNA degenerated primers. BIOTECHNOL BIOTEC EQ 2014; 28:583-591. [PMID: 26019546 PMCID: PMC4434121 DOI: 10.1080/13102818.2014.937139] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/19/2013] [Indexed: 11/15/2022] Open
Abstract
Highly specific, sensitive and rapid tests are required for the detection and identification of covert bacterial contaminations in plant tissue cultures. Current methods available for this purpose are tedious, time consuming, highly error prone, expensive, require advanced technical expertise and are sometimes ineffective. We report here the development of a sensitive polymerase chain reaction (PCR) based method for the rapid detection and identification of bacteria occurring in plant tissue cultures. A total of 121 16S ribosomal DNA (rDNA) coding regions from 14 different groups of bacteria, algae and plants, available in the Gene Bank/European Molecular Biology Laboratory databases, were aligned and several conserved DNA sequences of bacterial origin were identified. From those, five degenerated primers were designed in order to amplify only the bacterial DNA present in mixed plant/bacteria genomic DNA extracts. A known amount of bacterial suspension of either covert Pseudomonas or covert Bacillus were added to in vitro plant leaves and total plant/bacterial DNA extracted using three different methods to determine the lowest number of bacteria required to be present in order to allow their detection. The highest sensitivity of the bacterial cell detection was 2.5 × 106 cells of both Bacillus and Pseudomonas inoculums, using template DNA prepared by the MiniPrep method. Generation of PCR amplification fragments was achieved only for the 16S rDNA bacterial gene by using four combinations of degenerated primers. Successive sequence analysis of these amplified fragments led to the rapid detection and molecular identification of bacteria covertly associated with plants.
Collapse
Affiliation(s)
- Georgios Tsoktouridis
- Department of Agricultural Sciences, Imperial College at Wye, University of London , Ashford , Kent , UK ; Department of Crop Production, School of Agriculture, Alexander Technological Educational Institute of Thessaloniki , Thessaloniki , Greece
| | - George Tsiamis
- Department of Agricultural Sciences, Imperial College at Wye, University of London , Ashford , Kent , UK ; Department of Environmental and Natural Resources Management, University of Western Greece , Agrinio , Greece
| | - Nikolaos Koutinas
- Department of Crop Production, School of Agriculture, Alexander Technological Educational Institute of Thessaloniki , Thessaloniki , Greece
| | - Sinclair Mantell
- Department of Agricultural Sciences, Imperial College at Wye, University of London , Ashford , Kent , UK ; Nakhlatec International Development Advisors , Gödelöv , Genarp , Sweden
| |
Collapse
|
13
|
Florschütz K, Schröter A, Schmieder S, Chen W, Schweizer P, Sonntag F, Danz N, Baronian K, Kunze G. 'Phytochip': on-chip detection of phytopathogenic RNA viruses by a new surface plasmon resonance platform. J Virol Methods 2013; 189:80-6. [PMID: 23391824 DOI: 10.1016/j.jviromet.2013.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 12/21/2012] [Accepted: 01/14/2013] [Indexed: 10/27/2022]
Abstract
The surface plasmon resonance (SPR) based 'Phytochip' was developed to distinguish virus-infected plants from non-infected plants. The system detects DNA-RNA hybridization to show the presence of phytopathogenic viruses such as the RNA virus barley stripe mosaic virus (BSMV) in wheat leaves. To achieve this BSMV and wheat specific oligonucleotides, and a negative control yeast oligonucleotide, were immobilized on a SPR gold surface chip. After optimization of the hybridization parameters with purified wheat samples, wheat infected with BSMV resulted in detectable signals with both the BSMV and the wheat probes. In contrast, a hybridization reaction was not be detected with the negative probe. The method is fast and sensitive with a detection time of 3000s (50min), a detection limit of 14.7pgμl(-1) BSMV RNA and a measuring range of 14.7-84pgμl(-1) BSMV RNA (1.323-7.56ng BSMV RNA per 90μl sample). These characteristics, combined with the high throughput design, make it suitable for application in plant breeding and virus control.
Collapse
Affiliation(s)
- Kristina Florschütz
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, D-06466 Gatersleben, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|