1
|
Manzanares-Guzmán A, Lugo-Fabres PH, Camacho-Villegas TA. vNARs as Neutralizing Intracellular Therapeutic Agents: Glioblastoma as a Target. Antibodies (Basel) 2024; 13:25. [PMID: 38534215 DOI: 10.3390/antib13010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
Glioblastoma is the most prevalent and fatal form of primary brain tumors. New targeted therapeutic strategies for this type of tumor are imperative given the dire prognosis for glioblastoma patients and the poor results of current multimodal therapy. Previously reported drawbacks of antibody-based therapeutics include the inability to translocate across the blood-brain barrier and reach intracellular targets due to their molecular weight. These disadvantages translate into poor target neutralization and cancer maintenance. Unlike conventional antibodies, vNARs can permeate tissues and recognize conformational or cryptic epitopes due to their stability, CDR3 amino acid sequence, and smaller molecular weight. Thus, vNARs represent a potential antibody format to use as intrabodies or soluble immunocarriers. This review comprehensively summarizes key intracellular pathways in glioblastoma cells that induce proliferation, progression, and cancer survival to determine a new potential targeted glioblastoma therapy based on previously reported vNARs. The results seek to support the next application of vNARs as single-domain antibody drug-conjugated therapies, which could overcome the disadvantages of conventional monoclonal antibodies and provide an innovative approach for glioblastoma treatment.
Collapse
Affiliation(s)
- Alejandro Manzanares-Guzmán
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Mexico
| | - Pavel H Lugo-Fabres
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT)-Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Mexico
| | - Tanya A Camacho-Villegas
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT)-Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Mexico
| |
Collapse
|
2
|
Jiang X, Sun L, Hu C, Zheng F, Lyu Z, Shao J. Shark IgNAR: The Next Broad Application Antibody in Clinical Diagnoses and Tumor Therapies? Mar Drugs 2023; 21:496. [PMID: 37755109 PMCID: PMC10532743 DOI: 10.3390/md21090496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
Antibodies represent a relatively mature detection means and serve as therapeutic drug carriers in the clinical diagnosis and treatment of cancer-among which monoclonal antibodies (mAbs) currently occupy a dominant position. However, the emergence and development of small-molecule monodomain antibodies are inevitable due to the many limitations of mAbs, such as their large size, complex structure, and sensitivity to extreme temperature, and tumor microenvironments. Thus, since first discovered in Chondroid fish in 1995, IgNAR has become an alternative therapeutic strategy through which to replace monoclonal antibodies, thus entailing that this novel type of immunoglobulin has received wide attention with respect to clinical diagnoses and tumor therapies. The variable new antigen receptor (VNAR) of IgNAR provides an advantage for the development of new antitumor drugs due to its small size, high stability, high affinity, as well as other structural and functional characteristics. In that respect, a better understanding of the unique characteristics and therapeutic potential of IgNAR/VNAR in clinical and anti-tumor treatment is needed. This article reviews the advantages of its unique biochemical conditions and molecular structure for clinical diagnoses and novel anti-tumor drugs. At the same time, the main advantages of the existing conjugated drugs, which are based on single-domain antibodies, are introduced here, thereby providing new ideas and methods for the development of clinical diagnoses and anti-tumor therapies in the future.
Collapse
Affiliation(s)
- Xiaofeng Jiang
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.S.); (C.H.); (Z.L.)
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Jiangsu Baiying Biotech Co., Ltd., Taizhou 225300, China;
| | - Ling Sun
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.S.); (C.H.); (Z.L.)
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Chengwu Hu
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.S.); (C.H.); (Z.L.)
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Feijian Zheng
- Jiangsu Baiying Biotech Co., Ltd., Taizhou 225300, China;
| | - Zhengbing Lyu
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.S.); (C.H.); (Z.L.)
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jianzhong Shao
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Manoutcharian K, Gevorkian G. Shark VNAR phage display libraries: An alternative source for therapeutic and diagnostic recombinant antibody fragments. FISH & SHELLFISH IMMUNOLOGY 2023; 138:108808. [PMID: 37169114 DOI: 10.1016/j.fsi.2023.108808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023]
Abstract
The development of recombinant antibody fragments as promising alternatives to full-length immunoglobulins offers vast opportunities for biomedicine. Antibody fragments have important advantages compared with conventional monoclonal antibodies that make them attractive for the biotech industry: superior stability and solubility, reduced immunogenicity, higher specificity and affinity, capacity to target the hidden epitope and cross the blood-brain barrier, the ability to refold after heat denaturation and inexpensive and easy large-scale production. Different antibody formats such as antigen-binding fragments (Fab), single-chain fragment variable (scFv) consisting of the antigen-binding domains of Ig heavy (VH) and light (VL) chain regions connected by a flexible peptide linker, single-domain antibody fragments (sdAbs) like camelid heavy-chain variable domains (VHHs) and shark variable new antigen receptor (VNARs), and bispecific antibodies (bsAbs) are currently being evaluated as diagnostics or therapeutics in preclinical studies and clinical trials. In the present review, we summarize and discuss studies on VNARs, the smallest recombinant antibody fragment, obtained after the screening of different types of phage display antibody libraries. Results published until March 2023 are discussed.
Collapse
Affiliation(s)
- Karen Manoutcharian
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Mexico, DF, Mexico
| | - Goar Gevorkian
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Mexico, DF, Mexico.
| |
Collapse
|
4
|
Qiu H, Hosking C, Rothzerg E, Samantha A, Chen K, Kuek V, Jin H, Zhu S, Vrielink A, Lim K, Foley M, Xu J. ADR3, a next generation i-body to human RANKL, inhibits osteoclast formation and bone resorption. J Biol Chem 2023; 299:102889. [PMID: 36634847 PMCID: PMC9929471 DOI: 10.1016/j.jbc.2023.102889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
Osteoporosis is a chronic skeletal condition characterized by low bone mass and deteriorated microarchitecture of bone tissue and puts tens of millions of people at high risk of fractures. New therapeutic agents like i-bodies, a class of next-generation single-domain antibodies, are needed to overcome some limitations of conventional treatments. An i-body is a human immunoglobulin scaffold with two long binding loops that mimic the shape and position of those found in shark antibodies, the variable new antigen receptors of sharks. Its small size (∼12 kDa) and long binding loops provide access to drug targets, which are considered undruggable by traditional monoclonal antibodies. Here, we have successfully identified a human receptor activator of nuclear factor-κB ligand (RANKL) i-body, ADR3, which demonstrates a high binding affinity to human RANKL (hRANKL) with no adverse effect on the survival or proliferation of bone marrow-derived macrophages. Differential scanning fluorimetry suggested that ADR3 is stable and able to tolerate a wide range of physical environments (including both temperature and pH). In addition, in vitro studies showed a dose-dependent inhibitory effect of ADR3 on osteoclast differentiation, podosome belt formation, and bone resorption activity. Further investigation on the mechanism of action of ADR3 revealed that it can inhibit hRANKL-mediated signaling pathways, supporting the in vitro functional observations. These clues collectively indicate that hRANKL antagonist ADR3 attenuates osteoclast differentiation and bone resorption, with the potential to serve as a novel therapeutic to protect against bone loss.
Collapse
Affiliation(s)
- Heng Qiu
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Christopher Hosking
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Victoria, Australia,AdAlta Pty. Ltd, Bundoora, Victoria, Australia
| | - Emel Rothzerg
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Ariela Samantha
- School of Molecular Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Kai Chen
- School of Molecular Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Vincent Kuek
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia,Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, Western Australia, Australia
| | - Haiming Jin
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Sipin Zhu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Alice Vrielink
- School of Molecular Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Kevin Lim
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Victoria, Australia,AdAlta Pty. Ltd, Bundoora, Victoria, Australia
| | - Michael Foley
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Victoria, Australia,AdAlta Pty. Ltd, Bundoora, Victoria, Australia
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
5
|
Diagnosis of Glioblastoma by Immuno-Positron Emission Tomography. Cancers (Basel) 2021; 14:cancers14010074. [PMID: 35008238 PMCID: PMC8750680 DOI: 10.3390/cancers14010074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Neuroimaging has transformed the way brain tumors are diagnosed and treated. Although different non-invasive modalities provide very helpful information, in some situations, they present a limited value. By merging the specificity of antibodies with the resolution, sensitivity, and quantitative capabilities of positron emission tomography (PET), “Immuno-PET” allows us to conduct the non-invasive diagnosis and monitoring of patients over time using antibody-based probes as an in vivo, integrated, quantifiable, 3D, full-body “immunohistochemistry”, like a “virtual biopsy”. This review provides and focuses on immuno-PET applications and future perspectives of this promising imaging approach for glioblastoma. Abstract Neuroimaging has transformed neuro-oncology and the way that glioblastoma is diagnosed and treated. Magnetic Resonance Imaging (MRI) is the most widely used non-invasive technique in the primary diagnosis of glioblastoma. Although MRI provides very powerful anatomical information, it has proven to be of limited value for diagnosing glioblastomas in some situations. The final diagnosis requires a brain biopsy that may not depict the high intratumoral heterogeneity present in this tumor type. The revolution in “cancer-omics” is transforming the molecular classification of gliomas. However, many of the clinically relevant alterations revealed by these studies have not yet been integrated into the clinical management of patients, in part due to the lack of non-invasive biomarker-based imaging tools. An innovative option for biomarker identification in vivo is termed “immunotargeted imaging”. By merging the high target specificity of antibodies with the high spatial resolution, sensitivity, and quantitative capabilities of positron emission tomography (PET), “Immuno-PET” allows us to conduct the non-invasive diagnosis and monitoring of patients over time using antibody-based probes as an in vivo, integrated, quantifiable, 3D, full-body “immunohistochemistry” in patients. This review provides the state of the art of immuno-PET applications and future perspectives on this imaging approach for glioblastoma.
Collapse
|
6
|
Soleimanizadeh A, Dinter H, Schindowski K. Central Nervous System Delivery of Antibodies and Their Single-Domain Antibodies and Variable Fragment Derivatives with Focus on Intranasal Nose to Brain Administration. Antibodies (Basel) 2021; 10:antib10040047. [PMID: 34939999 PMCID: PMC8699001 DOI: 10.3390/antib10040047] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/10/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023] Open
Abstract
IgG antibodies are some of the most important biopharmaceutical molecules with a high market volume. In spite of the fact that clinical therapies with antibodies are broadly utilized in oncology, immunology and hematology, their delivery strategies and biodistribution need improvement, their limitations being due to their size and poor ability to penetrate into tissues. In view of their small size, there is a rising interest in derivatives, such as single-domain antibodies and single-chain variable fragments, for clinical diagnostic but also therapeutic applications. Smaller antibody formats combine several benefits for clinical applications and can be manufactured at reduced production costs compared with full-length IgGs. Moreover, such formats have a relevant potential for targeted drug delivery that directs drug cargo to a specific tissue or across the blood–brain barrier. In this review, we give an overview of the challenges for antibody drug delivery in general and focus on intranasal delivery to the central nervous system with antibody formats of different sizes.
Collapse
Affiliation(s)
- Arghavan Soleimanizadeh
- Institute of Applied Biotechnology, Biberach University of Applied Science, 88400 Biberach, Germany; (A.S.); (H.D.)
- Faculty of Medicine, University of Ulm, 89081 Ulm, Germany
| | - Heiko Dinter
- Institute of Applied Biotechnology, Biberach University of Applied Science, 88400 Biberach, Germany; (A.S.); (H.D.)
- Department of Pharmacy and Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Katharina Schindowski
- Institute of Applied Biotechnology, Biberach University of Applied Science, 88400 Biberach, Germany; (A.S.); (H.D.)
- Correspondence:
| |
Collapse
|
7
|
Ruiz-López E, Schuhmacher AJ. Transportation of Single-Domain Antibodies through the Blood-Brain Barrier. Biomolecules 2021; 11:biom11081131. [PMID: 34439797 PMCID: PMC8394617 DOI: 10.3390/biom11081131] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 02/06/2023] Open
Abstract
Single-domain antibodies derive from the heavy-chain-only antibodies of Camelidae (camel, dromedary, llama, alpaca, vicuñas, and guananos; i.e., nanobodies) and cartilaginous fishes (i.e., VNARs). Their small size, antigen specificity, plasticity, and potential to recognize unique conformational epitopes represent a diagnostic and therapeutic opportunity for many central nervous system (CNS) pathologies. However, the blood–brain barrier (BBB) poses a challenge for their delivery into the brain parenchyma. Nevertheless, numerous neurological diseases and brain pathologies, including cancer, result in BBB leakiness favoring single-domain antibodies uptake into the CNS. Some single-domain antibodies have been reported to naturally cross the BBB. In addition, different strategies and methods to deliver both nanobodies and VNARs into the brain parenchyma can be exploited when the BBB is intact. These include device-based and physicochemical disruption of the BBB, receptor and adsorptive-mediated transcytosis, somatic gene transfer, and the use of carriers/shuttles such as cell-penetrating peptides, liposomes, extracellular vesicles, and nanoparticles. Approaches based on single-domain antibodies are reaching the clinic for other diseases. Several tailoring methods can be followed to favor the transport of nanobodies and VNARs to the CNS, avoiding the limitations imposed by the BBB to fulfill their therapeutic, diagnostic, and theragnostic promises for the benefit of patients suffering from CNS pathologies.
Collapse
Affiliation(s)
- Eduardo Ruiz-López
- Molecular Oncology Group, Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain;
| | - Alberto J. Schuhmacher
- Molecular Oncology Group, Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain;
- Fundación Aragonesa para la Investigación y el Desarrollo (ARAID), 500018 Zaragoza, Spain
- Correspondence:
| |
Collapse
|
8
|
Chiu ML, Goulet DR, Teplyakov A, Gilliland GL. Antibody Structure and Function: The Basis for Engineering Therapeutics. Antibodies (Basel) 2019; 8:antib8040055. [PMID: 31816964 PMCID: PMC6963682 DOI: 10.3390/antib8040055] [Citation(s) in RCA: 258] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 12/11/2022] Open
Abstract
Antibodies and antibody-derived macromolecules have established themselves as the mainstay in protein-based therapeutic molecules (biologics). Our knowledge of the structure–function relationships of antibodies provides a platform for protein engineering that has been exploited to generate a wide range of biologics for a host of therapeutic indications. In this review, our basic understanding of the antibody structure is described along with how that knowledge has leveraged the engineering of antibody and antibody-related therapeutics having the appropriate antigen affinity, effector function, and biophysical properties. The platforms examined include the development of antibodies, antibody fragments, bispecific antibody, and antibody fusion products, whose efficacy and manufacturability can be improved via humanization, affinity modulation, and stability enhancement. We also review the design and selection of binding arms, and avidity modulation. Different strategies of preparing bispecific and multispecific molecules for an array of therapeutic applications are included.
Collapse
Affiliation(s)
- Mark L. Chiu
- Drug Product Development Science, Janssen Research & Development, LLC, Malvern, PA 19355, USA
- Correspondence:
| | - Dennis R. Goulet
- Department of Medicinal Chemistry, University of Washington, P.O. Box 357610, Seattle, WA 98195-7610, USA;
| | - Alexey Teplyakov
- Biologics Research, Janssen Research & Development, LLC, Spring House, PA 19477, USA; (A.T.); (G.L.G.)
| | - Gary L. Gilliland
- Biologics Research, Janssen Research & Development, LLC, Spring House, PA 19477, USA; (A.T.); (G.L.G.)
| |
Collapse
|
9
|
Ministro J, Manuel AM, Goncalves J. Therapeutic Antibody Engineering and Selection Strategies. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 171:55-86. [PMID: 31776591 DOI: 10.1007/10_2019_116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Antibody drugs became an increasingly important element of the therapeutic landscape. Their accomplishment has been driven by many unique properties, in particular by their very high specificity and selectivity, in contrast to the off-target liabilities of small molecules (SMs). Antibodies can bring additional functionality to the table with their ability to interact with the immune system, and this can be further manipulated with advances in antibody engineering.The expansion of strategies related to discovery technologies of monoclonal antibodies (mAbs) (phage display, yeast display, ribosome display, bacterial display, mammalian cell surface display, mRNA display, DNA display, transgenic animal, and human B cell derived) opened perspectives for the screening and the selection of therapeutic antibodies for, theoretically, any target from any kind of organism. Moreover, antibody engineering technologies were developed and explored to obtain chosen characteristics of selected leading candidates such as high affinity, low immunogenicity, improved functionality, improved protein production, improved stability, and others. This chapter contains an overview of discovery technologies, mainly display methods and antibody humanization methods for the selection of therapeutic humanized and human mAbs that appeared along the development of these technologies and thereafter. The increasing applications of these technologies will be highlighted in the antibody engineering area (affinity maturation, guided selection to obtain human antibodies) giving promising perspectives for the development of future therapeutics.
Collapse
Affiliation(s)
| | - Ana Margarida Manuel
- iMed - Research Institute for Medicines, Faculty of Pharmacy at University of Lisbon, Lisbon, Portugal
| | - Joao Goncalves
- iMed - Research Institute for Medicines, Faculty of Pharmacy at University of Lisbon, Lisbon, Portugal.
| |
Collapse
|
10
|
Thom G, Burrell M, Haqqani AS, Yogi A, Lessard E, Brunette E, Delaney C, Baumann E, Callaghan D, Rodrigo N, Webster CI, Stanimirovic DB. Enhanced Delivery of Galanin Conjugates to the Brain through Bioengineering of the Anti-Transferrin Receptor Antibody OX26. Mol Pharm 2018; 15:1420-1431. [PMID: 29485883 DOI: 10.1021/acs.molpharmaceut.7b00937] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The blood-brain barrier (BBB) is a formidable obstacle for brain delivery of therapeutic antibodies. However, antibodies against the transferrin receptor (TfR), enriched in brain endothelial cells, have been developed as delivery carriers of therapeutic cargoes into the brain via a receptor-mediated transcytosis pathway. In vitro and in vivo studies demonstrated that either a low-affinity or monovalent binding of these antibodies to the TfR improves their release on the abluminal side of the BBB and target engagement in brain parenchyma. However, these studies have been performed with mouse-selective TfR antibodies that recognize different TfR epitopes and have varied binding characteristics. In this study, we evaluated serum pharmacokinetics and brain and CSF exposure of the rat TfR-binding antibody OX26 affinity variants, having KDs of 5 nM, 76 nM, 108 nM, and 174 nM, all binding the same epitope in bivalent format. Pharmacodynamic responses were tested in the Hargreaves chronic pain model after conjugation of OX26 affinity variants with the analgesic and antiepileptic peptide, galanin. OX26 variants with affinities of 76 nM and 108 nM showed enhanced brain and cerebrospinal fluid (CSF) exposure and higher potency in the Hargreaves model, compared to a 5 nM affinity variant; lowering affinity to 174 nM resulted in prolonged serum pharmacokinetics, but reduced brain and CSF exposure. The study demonstrates that binding affinity optimization of TfR-binding antibodies could improve their brain and CSF exposure even in the absence of monovalent TfR engagement.
Collapse
Affiliation(s)
- George Thom
- Antibody Discovery and Protein Engineering , MedImmune , Milstein Building, Granta Park, Cambridge CB21 6GH , U.K
| | - Matthew Burrell
- Antibody Discovery and Protein Engineering , MedImmune , Milstein Building, Granta Park, Cambridge CB21 6GH , U.K
| | - Arsalan S Haqqani
- Human Health Therapeutics Portfolio , National Research Council of Canada , Ottawa , Ontario K1A0R6 , Canada
| | - Alvaro Yogi
- Human Health Therapeutics Portfolio , National Research Council of Canada , Ottawa , Ontario K1A0R6 , Canada
| | - Etienne Lessard
- Human Health Therapeutics Portfolio , National Research Council of Canada , Ottawa , Ontario K1A0R6 , Canada
| | - Eric Brunette
- Human Health Therapeutics Portfolio , National Research Council of Canada , Ottawa , Ontario K1A0R6 , Canada
| | - Christie Delaney
- Human Health Therapeutics Portfolio , National Research Council of Canada , Ottawa , Ontario K1A0R6 , Canada
| | - Ewa Baumann
- Human Health Therapeutics Portfolio , National Research Council of Canada , Ottawa , Ontario K1A0R6 , Canada
| | - Deborah Callaghan
- Human Health Therapeutics Portfolio , National Research Council of Canada , Ottawa , Ontario K1A0R6 , Canada
| | - Natalia Rodrigo
- Antibody Discovery and Protein Engineering , MedImmune , Milstein Building, Granta Park, Cambridge CB21 6GH , U.K
| | - Carl I Webster
- Antibody Discovery and Protein Engineering , MedImmune , Milstein Building, Granta Park, Cambridge CB21 6GH , U.K
| | - Danica B Stanimirovic
- Human Health Therapeutics Portfolio , National Research Council of Canada , Ottawa , Ontario K1A0R6 , Canada
| |
Collapse
|
11
|
Mashoof S, Criscitiello MF. Fish Immunoglobulins. BIOLOGY 2016; 5:E45. [PMID: 27879632 PMCID: PMC5192425 DOI: 10.3390/biology5040045] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/03/2016] [Accepted: 11/09/2016] [Indexed: 01/19/2023]
Abstract
The B cell receptor and secreted antibody are at the nexus of humoral adaptive immunity. In this review, we summarize what is known of the immunoglobulin genes of jawed cartilaginous and bony fishes. We focus on what has been learned from genomic or cDNA sequence data, but where appropriate draw upon protein, immunization, affinity and structural studies. Work from major aquatic model organisms and less studied comparative species are both included to define what is the rule for an immunoglobulin isotype or taxonomic group and what exemplifies an exception.
Collapse
Affiliation(s)
- Sara Mashoof
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| | - Michael F Criscitiello
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, College Station, TX 77807, USA.
| |
Collapse
|
12
|
Bazin I, Tria SA, Hayat A, Marty JL. New biorecognition molecules in biosensors for the detection of toxins. Biosens Bioelectron 2016; 87:285-298. [PMID: 27568847 DOI: 10.1016/j.bios.2016.06.083] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/17/2016] [Accepted: 06/28/2016] [Indexed: 12/24/2022]
Abstract
Biological and synthetic recognition elements are at the heart of the majority of modern bioreceptor assays. Traditionally, enzymes and antibodies have been integrated in the biosensor designs as a popular choice for the detection of toxin molecules. But since 1970s, alternative biological and synthetic binders have been emerged as a promising alternative to conventional biorecognition elements in detection systems for laboratory and field-based applications. Recent research has witnessed immense interest in the use of recombinant enzymatic methodologies and nanozymes to circumvent the drawbacks associated with natural enzymes. In the area of antibody production, technologies based on the modification of in vivo synthesized materials and in vitro approaches with development of "display "systems have been introduced in the recent years. Subsequently, molecularly-imprinted polymers and Peptide nucleic acid (PNAs) were developed as an attractive receptor with applications in the area of sample preparation and detection systems. In this article, we discuss all alternatives to conventional biomolecules employed in the detection of various toxin molecules We review recent developments in modified enzymes, nanozymes, nanobodies, aptamers, peptides, protein scaffolds and DNazymes. With the advent of nanostructures and new interface materials, these recognition elements will be major players in future biosensor development.
Collapse
Affiliation(s)
- Ingrid Bazin
- École des Mines d'Alès, 6 Avenuede Clavières, 30100 Alès Cedex, France.
| | - Scherrine A Tria
- École des Mines d'Alès, 6 Avenuede Clavières, 30100 Alès Cedex, France
| | - Akhtar Hayat
- BAE (Biocapteurs-Analyses-Environnement), Universite de Perpignan Via Domitia, 52 Avenue Paul Alduy, Perpignan Cedex 66860, France; Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology (CIIT), Lahore, Pakistan
| | - Jean-Louis Marty
- BAE (Biocapteurs-Analyses-Environnement), Universite de Perpignan Via Domitia, 52 Avenue Paul Alduy, Perpignan Cedex 66860, France
| |
Collapse
|
13
|
Griffiths K, Dolezal O, Cao B, Nilsson SK, See HB, Pfleger KDG, Roche M, Gorry PR, Pow A, Viduka K, Lim K, Lu BGC, Chang DHC, Murray-Rust T, Kvansakul M, Perugini MA, Dogovski C, Doerflinger M, Zhang Y, Parisi K, Casey JL, Nuttall SD, Foley M. i-bodies, Human Single Domain Antibodies That Antagonize Chemokine Receptor CXCR4. J Biol Chem 2016; 291:12641-12657. [PMID: 27036939 DOI: 10.1074/jbc.m116.721050] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Indexed: 01/20/2023] Open
Abstract
CXCR4 is a G protein-coupled receptor with excellent potential as a therapeutic target for a range of clinical conditions, including stem cell mobilization, cancer prognosis and treatment, fibrosis therapy, and HIV infection. We report here the development of a fully human single-domain antibody-like scaffold termed an "i-body," the engineering of which produces an i-body library possessing a long complementarity determining region binding loop, and the isolation and characterization of a panel of i-bodies with activity against human CXCR4. The CXCR4-specific i-bodies show antagonistic activity in a range of in vitro and in vivo assays, including inhibition of HIV infection, cell migration, and leukocyte recruitment but, importantly, not the mobilization of hematopoietic stem cells. Epitope mapping of the three CXCR4 i-bodies AM3-114, AM4-272, and AM3-523 revealed binding deep in the binding pocket of the receptor.
Collapse
Affiliation(s)
| | - Olan Dolezal
- Biomedical Manufacturing, CSIRO Manufacturing, 343 Royal Parade, Parkville, Victoria 3052
| | - Benjamin Cao
- the Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, Victoria 3800,; Biomedical Manufacturing, CSIRO Manufacturing, Bayview Avenue, Clayton, Victoria 3168
| | - Susan K Nilsson
- the Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, Victoria 3800,; Biomedical Manufacturing, CSIRO Manufacturing, Bayview Avenue, Clayton, Victoria 3168
| | - Heng B See
- the Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009,; the Centre for Medical Research, University of Western Australia, Crawley, Western Australia 6009
| | - Kevin D G Pfleger
- the Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009,; the Centre for Medical Research, University of Western Australia, Crawley, Western Australia 6009,; Dimerix Bioscience Ltd., Nedlands, Western Australia 6009
| | - Michael Roche
- the Doherty Institute for Infection and Immunity, University of Melbourne, 792 Elizabeth Street, Melbourne, Victoria 3000,; the Burnet Institute, 85 Commercial Road, Melbourne, Victoria 3004
| | - Paul R Gorry
- the School of Health and Biomedical Sciences, College of Science, Engineering and Health, RMIT University, Melbourne, Victoria 3001
| | - Andrew Pow
- From AdAlta Pty. Ltd., 15/2 Park Dr., Bundoora, Victoria 3083
| | - Katerina Viduka
- From AdAlta Pty. Ltd., 15/2 Park Dr., Bundoora, Victoria 3083
| | - Kevin Lim
- From AdAlta Pty. Ltd., 15/2 Park Dr., Bundoora, Victoria 3083
| | | | | | | | - Marc Kvansakul
- the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, and
| | - Matthew A Perugini
- the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, and
| | - Con Dogovski
- the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, and
| | | | - Yuan Zhang
- the Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria 3065, Australia
| | - Kathy Parisi
- From AdAlta Pty. Ltd., 15/2 Park Dr., Bundoora, Victoria 3083,; the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, and
| | - Joanne L Casey
- From AdAlta Pty. Ltd., 15/2 Park Dr., Bundoora, Victoria 3083
| | - Stewart D Nuttall
- Biomedical Manufacturing, CSIRO Manufacturing, 343 Royal Parade, Parkville, Victoria 3052
| | - Michael Foley
- From AdAlta Pty. Ltd., 15/2 Park Dr., Bundoora, Victoria 3083,; the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, and.
| |
Collapse
|
14
|
Abstract
A brief outline of antibody structure is followed by highlights from several recently determined crystal structures of human, antiviral Fabs. These Fabs all have novel structural features that allow them to potently and broadly neutralize their targets.
Collapse
|
15
|
Zielonka S, Weber N, Becker S, Doerner A, Christmann A, Christmann C, Uth C, Fritz J, Schäfer E, Steinmann B, Empting M, Ockelmann P, Lierz M, Kolmar H. Shark Attack: high affinity binding proteins derived from shark vNAR domains by stepwise in vitro affinity maturation. J Biotechnol 2014; 191:236-45. [PMID: 24862193 DOI: 10.1016/j.jbiotec.2014.04.023] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/08/2014] [Accepted: 04/28/2014] [Indexed: 11/17/2022]
Abstract
A novel method for stepwise in vitro affinity maturation of antigen-specific shark vNAR domains is described that exclusively relies on semi-synthetic repertoires derived from non-immunized sharks. Target-specific molecules were selected from a CDR3-randomized bamboo shark (Chiloscyllium plagiosum) vNAR library using yeast surface display as platform technology. Various antigen-binding vNAR domains were easily isolated by screening against several therapeutically relevant antigens, including the epithelial cell adhesion molecule (EpCAM), the Ephrin type-A receptor 2 (EphA2), and the human serine protease HTRA1. Affinity maturation was demonstrated for EpCAM and HTRA1 by diversifying CDR1 of target-enriched populations which allowed for the rapid selection of nanomolar binders. EpCAM-specific vNAR molecules were produced as soluble proteins and more extensively characterized via thermal shift assays and biolayer interferometry. Essentially, we demonstrate that high-affinity binders can be generated in vitro without largely compromising the desirable high thermostability of the vNAR scaffold.
Collapse
Affiliation(s)
- Stefan Zielonka
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Niklas Weber
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Stefan Becker
- Protein Engineering and Antibody Technologies, Merck Serono, Merck KGaA, Frankfurter Straße 250, D-64293 Darmstadt, Germany
| | - Achim Doerner
- Protein Engineering and Antibody Technologies, Merck Serono, Merck KGaA, Frankfurter Straße 250, D-64293 Darmstadt, Germany
| | - Andreas Christmann
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Christine Christmann
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Christina Uth
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Janine Fritz
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Elena Schäfer
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Björn Steinmann
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Martin Empting
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Department Drug Design and Optimization, Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany
| | - Pia Ockelmann
- Goethe-University Frankfurt, Faculty of Biosciences, Max-von-Laue-Str. 13, D-60438 Frankfurt am Main, Germany; University Hospital Frankfurt, Department of Anesthesiology, Intensive-Care Medicine and Pain Therapy, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | - Michael Lierz
- Clinic for Birds, Reptiles, Amphibians and Fish, Justus-Liebig University, Gießen, Frankfurter Str. 91-93, D-35392 Giessen, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany.
| |
Collapse
|
16
|
Kim DY, Hussack G, Kandalaft H, Tanha J. Mutational approaches to improve the biophysical properties of human single-domain antibodies. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1983-2001. [DOI: 10.1016/j.bbapap.2014.07.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/05/2014] [Accepted: 07/11/2014] [Indexed: 01/06/2023]
|
17
|
Stanimirovic D, Kemmerich K, Haqqani AS, Farrington GK. Engineering and pharmacology of blood-brain barrier-permeable bispecific antibodies. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2014; 71:301-35. [PMID: 25307221 DOI: 10.1016/bs.apha.2014.06.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The development and approval of antibody-based therapeutics have progressed rapidly over the past decade. However, poor blood-brain barrier (BBB) permeability hinders the progress of antibody therapies for conditions in which the target is located in the central nervous system (CNS). Increased brain penetration of therapeutic antibodies can be achieved by engineering bispecific antibodies in which one antibody binding specificity recognizes a BBB receptor that undergoes receptor-mediated transcytosis (RMT) from the circulatory compartment into brain parenchyma, and the second binding specificity recognizes a therapeutic target within the CNS. These bispecific antibodies can be built using various antibody fragments as "building blocks," including monomeric single-domain antibodies, the smallest antigen-binding fragments of immunoglobulins. The development of BBB-crossing bispecific antibodies requires targeted antibody engineering to optimize multiple characteristics of "BBB carrier" and therapeutic arms, as well as other antibody properties impacting pharmacokinetics and effector function. Whereas several BBB-crossing bispecific antibodies have been developed using transferrin receptor antibodies as BBB carriers, the principal obstacle for capitalizing on the future promise of CNS-active antibodies remains the scarcity of known, characterized RMT receptors which could be exploited for the development of BBB carriers. This chapter reviews the recent advances and guiding principles for designing, engineering, and evaluating BBB-crossing bispecific antibodies and discusses approaches to identify and characterize novel BBB-crossing antibodies and RMT receptors.
Collapse
Affiliation(s)
- Danica Stanimirovic
- Human Health Therapeutics Portfolio, National Research Council of Canada, Ottawa, Ontario, Canada.
| | - Kristin Kemmerich
- Human Health Therapeutics Portfolio, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Arsalan S Haqqani
- Human Health Therapeutics Portfolio, National Research Council of Canada, Ottawa, Ontario, Canada
| | | |
Collapse
|
18
|
Engineering venom's toxin-neutralizing antibody fragments and its therapeutic potential. Toxins (Basel) 2014; 6:2541-67. [PMID: 25153256 PMCID: PMC4147596 DOI: 10.3390/toxins6082541] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/16/2014] [Accepted: 08/04/2014] [Indexed: 11/24/2022] Open
Abstract
Serum therapy remains the only specific treatment against envenoming, but anti-venoms are still prepared by fragmentation of polyclonal antibodies isolated from hyper-immunized horse serum. Most of these anti-venoms are considered to be efficient, but their production is tedious, and their use may be associated with adverse effects. Recombinant antibodies and smaller functional units are now emerging as credible alternatives and constitute a source of still unexploited biomolecules capable of neutralizing venoms. This review will be a walk through the technologies that have recently been applied leading to novel antibody formats with better properties in terms of homogeneity, specific activity and possible safety.
Collapse
|
19
|
Doerner A, Rhiel L, Zielonka S, Kolmar H. Therapeutic antibody engineering by high efficiency cell screening. FEBS Lett 2013; 588:278-87. [PMID: 24291259 DOI: 10.1016/j.febslet.2013.11.025] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 11/17/2013] [Accepted: 11/18/2013] [Indexed: 12/11/2022]
Abstract
In recent years, several cell-based screening technologies for the isolation of antibodies with prescribed properties emerged. They rely on the multi-copy display of antibodies or antibody fragments on a cell surface in functional form followed by high through put screening and isolation of cell clones that carry an antibody variant with the desired affinity, specificity, and stability. Particularly yeast surface display in combination with high-throughput fluorescence-activated cell sorting has proven successful in the last fifteen years as a very powerful technology that has some advantages over classical generation of monoclonals using the hybridoma technology or bacteriophage-based antibody display and screening. Cell-based screening harbours the benefit of single-cell online and real-time analysis and characterisation of individual library candidates. Moreover, when using eukaryotic expression hosts, intrinsic quality control machineries for proper protein folding and stability exist that allow for co-selection of high-level expression and stability simultaneously to the binding functionality. Recently, promising technologies emerged that directly rely on antibody display on higher eukaryotic cell lines using lentiviral transfection or direct screening on B-cells. The combination of immunisation, B-cell screening and next generation sequencing may open new avenues for the isolation of therapeutic antibodies with prescribed physicochemical and functional characteristics.
Collapse
Affiliation(s)
- Achim Doerner
- Protein Engineering and Antibody Technologies, Merck Serono, Merck KGaA, Frankfurter Straße 250, D-64293 Darmstadt, Germany
| | - Laura Rhiel
- Protein Engineering and Antibody Technologies, Merck Serono, Merck KGaA, Frankfurter Straße 250, D-64293 Darmstadt, Germany
| | - Stefan Zielonka
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany.
| |
Collapse
|
20
|
Baral TN, MacKenzie R, Arbabi Ghahroudi M. Single-domain antibodies and their utility. ACTA ACUST UNITED AC 2013; 103:2.17.1-2.17.57. [PMID: 24510545 DOI: 10.1002/0471142735.im0217s103] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Engineered monoclonal antibody fragments have gained market attention due to their versatility and tailor-made potential and are now considered to be an important part of future immunobiotherapeutics. Single-domain antibodies (sdAbs), also known as nanobodies, are derived from VHHs [variable domains (V) of heavy-chain-only antibodies (HCAb)] of camelid heavy-chain antibodies. These nature-made sdAbs are well suited for various applications due to their favorable characteristics such as small size, ease of genetic manipulation, high affinity and solubility, overall stability, resistance to harsh conditions (e.g., low pH, high temperature), and low immunogenicity. Most importantly, sdAbs have the feature of penetrating into cavities and recognizing hidden epitopes normally inaccessible to conventional antibodies, mainly due to their protruding CDR3/H3 loops. In this unit, we will present and discuss comprehensive and step-by-step protocols routinely practiced in our laboratory for isolating sdAbs from immunized llamas (or other members of the Camelidae family) against target antigens using phage-display technology. Expression, purification, and characterization of the isolated sdAbs will then be described, followed by presentation of several examples of applications of sdAbs previously characterized in our laboratory and elsewhere.
Collapse
Affiliation(s)
- Toya Nath Baral
- Human Health Therapeutics, Life Sciences Division, National Research Council Canada, Ottawa, Ontario, Canada
| | - Roger MacKenzie
- Human Health Therapeutics, Life Sciences Division, National Research Council Canada, Ottawa, Ontario, Canada.,University of Guelph, Guelph, Ontario, Canada
| | - Mehdi Arbabi Ghahroudi
- Human Health Therapeutics, Life Sciences Division, National Research Council Canada, Ottawa, Ontario, Canada.,University of Guelph, Guelph, Ontario, Canada.,Department of Biology, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
21
|
De Vos J, Devoogdt N, Lahoutte T, Muyldermans S. Camelid single-domain antibody-fragment engineering for (pre)clinical in vivo molecular imaging applications: adjusting the bullet to its target. Expert Opin Biol Ther 2013; 13:1149-60. [PMID: 23675652 DOI: 10.1517/14712598.2013.800478] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Molecular imaging is a fast developing field and there is a growing need for specific imaging tracers in the clinic. Camelid single-domain antibody-fragments (sdAbs) recently emerged as a new class of molecular imaging tracers. AREAS COVERED We review the importance of molecular imaging in the clinic and the use of camelid sdAbs as in vivo molecular imaging tracers. Interest in imaging tracers based on antibody fragments or man-made protein scaffolds expanded over the last years. Camelid sdAbs are small, monomeric binding fragments that are derived from unique heavy-chain-only antibodies. In vivo imaging studies with sdAbs targeting various cell membrane receptors in different disease models have been reported and more sdAb imaging tracers are under development. The first clinical trial with a camelid sdAb as a molecular imaging tracer targeting the breast cancer marker Human Epidermal growth factor Receptor 2 is currently ongoing. EXPERT OPINION We expect that the development and use of sdAbs as tracers for both preclinical and clinical molecular imaging applications will become widespread.
Collapse
Affiliation(s)
- Jens De Vos
- Laboratory of Cellular and Molecular Immunology (CMIM), Vrije Universiteit Brussel, Pleinlaan 2, Building E.8, 1050 Brussels, Belgium
| | | | | | | |
Collapse
|