1
|
Kafil V, Saei AA, Tohidkia MR, Barar J, Omidi Y. Immunotargeting and therapy of cancer by advanced multivalence antibody scaffolds. J Drug Target 2020; 28:1018-1033. [DOI: 10.1080/1061186x.2020.1772796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Vala Kafil
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ata Saei
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Mohammad Reza Tohidkia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Jain S, Aresu L, Comazzi S, Shi J, Worrall E, Clayton J, Humphries W, Hemmington S, Davis P, Murray E, Limeneh AA, Ball K, Ruckova E, Muller P, Vojtesek B, Fahraeus R, Argyle D, Hupp TR. The Development of a Recombinant scFv Monoclonal Antibody Targeting Canine CD20 for Use in Comparative Medicine. PLoS One 2016; 11:e0148366. [PMID: 26894679 PMCID: PMC4760772 DOI: 10.1371/journal.pone.0148366] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 01/19/2016] [Indexed: 01/08/2023] Open
Abstract
Monoclonal antibodies are leading agents for therapeutic treatment of human diseases, but are limited in use by the paucity of clinically relevant models for validation. Sporadic canine tumours mimic the features of some human equivalents. Developing canine immunotherapeutics can be an approach for modeling human disease responses. Rituximab is a pioneering agent used to treat human hematological malignancies. Biologic mimics that target canine CD20 are just being developed by the biotechnology industry. Towards a comparative canine-human model system, we have developed a novel anti-CD20 monoclonal antibody (NCD1.2) that binds both human and canine CD20. NCD1.2 has a sub-nanomolar Kd as defined by an octet red binding assay. Using FACS, NCD1.2 binds to clinically derived canine cells including B-cells in peripheral blood and in different histotypes of B-cell lymphoma. Immunohistochemical staining of canine tissues indicates that the NCD1.2 binds to membrane localized cells in Diffuse Large B-cell lymphoma, Marginal Zone Lymphoma, and other canine B-cell lymphomas. We cloned the heavy and light chains of NCD1.2 from hybridomas to determine whether active scaffolds can be acquired as future biologics tools. The VH and VL genes from the hybridomas were cloned using degenerate primers and packaged as single chains (scFv) into a phage-display library. Surprisingly, we identified two scFv (scFv-3 and scFv-7) isolated from the hybridoma with bioactivity towards CD20. The two scFv had identical VH genes but different VL genes and identical CDR3s, indicating that at least two light chain mRNAs are encoded by NCD1.2 hybridoma cells. Both scFv-3 and scFv-7 were cloned into mammalian vectors for secretion in CHO cells and the antibodies were bioactive towards recombinant CD20 protein or peptide. The scFv-3 and scFv-7 were cloned into an ADEPT-CPG2 bioconjugate vector where bioactivity was retained when expressed in bacterial systems. These data identify a recombinant anti-CD20 scFv that might form a useful tool for evaluation in bioconjugate-directed anti-CD20 immunotherapies in comparative medicine.
Collapse
Affiliation(s)
- Saurabh Jain
- University of Edinburgh, Institute of Genetic and Molecular Medicine and School of Veterinary Medicine, Edinburgh, EH4 2XR, United Kingdom
| | - Luca Aresu
- Dipartimento di Biomedicina Comparata e Alimentazione (BCA) Department of Comparative Biomedicine and Food Science, Università di Padova 35020 Legnaro (PD), Italy
| | - Stefano Comazzi
- Dipartimento di Scienze Veterinarie e Sanità Pubblica, Università degli Studi di Milano, via Celoria 10, 20133 Milano, Italy
| | - Jianguo Shi
- University of Edinburgh, Institute of Genetic and Molecular Medicine and School of Veterinary Medicine, Edinburgh, EH4 2XR, United Kingdom
| | - Erin Worrall
- University of Edinburgh, Institute of Genetic and Molecular Medicine and School of Veterinary Medicine, Edinburgh, EH4 2XR, United Kingdom
| | - John Clayton
- Mologic, Ltd, Bedford Technology Park, Thurleigh, Bedford, MK44 2YP, United Kingdom
| | - William Humphries
- Mologic, Ltd, Bedford Technology Park, Thurleigh, Bedford, MK44 2YP, United Kingdom
| | - Sandra Hemmington
- Mologic, Ltd, Bedford Technology Park, Thurleigh, Bedford, MK44 2YP, United Kingdom
| | - Paul Davis
- Mologic, Ltd, Bedford Technology Park, Thurleigh, Bedford, MK44 2YP, United Kingdom
| | - Euan Murray
- University of Edinburgh, Institute of Genetic and Molecular Medicine and School of Veterinary Medicine, Edinburgh, EH4 2XR, United Kingdom
- INSERM Unité 940, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St Louis, 27 rue Juliette Dodu, Paris, France
| | - Asmare A. Limeneh
- Bahit Dar University College of Medicine and Health Sciences Department of Medical Biochemistry and Molecular Biology, Bahir Dar, Ethiopia
| | - Kathryn Ball
- University of Edinburgh, Institute of Genetic and Molecular Medicine and School of Veterinary Medicine, Edinburgh, EH4 2XR, United Kingdom
| | - Eva Ruckova
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
| | - Petr Muller
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
| | - Borek Vojtesek
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
| | - Robin Fahraeus
- INSERM Unité 940, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St Louis, 27 rue Juliette Dodu, Paris, France
| | - David Argyle
- University of Edinburgh, Institute of Genetic and Molecular Medicine and School of Veterinary Medicine, Edinburgh, EH4 2XR, United Kingdom
| | - Ted R. Hupp
- University of Edinburgh, Institute of Genetic and Molecular Medicine and School of Veterinary Medicine, Edinburgh, EH4 2XR, United Kingdom
- * E-mail:
| |
Collapse
|
3
|
Blanco-Toribio A, Álvarez-Cienfuegos A, Sainz-Pastor N, Merino N, Compte M, Sanz L, Blanco FJ, Álvarez-Vallina L. Bacterial secretion of soluble and functional trivalent scFv-based N-terminal trimerbodies. AMB Express 2015; 5:137. [PMID: 26239030 PMCID: PMC4523561 DOI: 10.1186/s13568-015-0137-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 07/27/2015] [Indexed: 11/10/2022] Open
Abstract
Recombinant antibodies are used with great success in many different diagnostic and therapeutic applications. A variety of protein expression systems are available, but nowadays almost all therapeutic antibodies are produced in mammalian cell lines due to their complex structure and glycosylation requirements. However, production of clinical-grade antibodies in mammalian cells is very expensive and time-consuming. On the other hand, Escherichia coli (E. coli) is known to be the simplest, fastest and most cost-effective recombinant expression system, which usually achieves higher protein yields than mammalian cells. Indeed, it is one of the most popular host in the industry for the expression of recombinant proteins. In this work, a trivalent single-chain fragment variable (scFv)-based N-terminal trimerbody, specific for native laminin-111, was expressed in human embryonic kidney 293 cells and in E. coli. Mammalian and bacterially produced anti-laminin trimerbody molecules display comparable functional and structural properties, although importantly the yield of trimerbody expressed in E. coli was considerably higher than in human cells. These results demonstrated that E. coli is a versatile and efficient expression system for multivalent trimerbody-based molecules that is suitable for their industrial production.
Collapse
|
4
|
van Duijnhoven SMJ, Rossin R, van den Bosch SM, Wheatcroft MP, Hudson PJ, Robillard MS. Diabody Pretargeting with Click Chemistry In Vivo. J Nucl Med 2015; 56:1422-8. [PMID: 26159589 DOI: 10.2967/jnumed.115.159145] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 06/29/2015] [Indexed: 01/02/2023] Open
Abstract
UNLABELLED Radioimmunotherapy and nuclear imaging (immuno-PET/SPECT) of cancer with radiometal-labeled antibody fragments or peptides is hampered by low tumor-to-kidney ratios because of high renal radiometal retention. Therefore, we developed and evaluated a pretargeting strategy using click chemistry in vivo to reduce kidney uptake and avoid unwanted radiation toxicity. We focused on the bioorthogonal reaction between a trans-cyclooctene (TCO)-functionalized TAG72 targeting diabody, AVP04-07, and a low-molecular-weight radiolabeled tetrazine probe that was previously shown to have low kidney retention and relatively fast renal clearance. METHODS AVP04-07 diabodies were functionalized with TCO tags, and in vitro immunoreactivity toward bovine submaxillary mucin and tetrazine reactivity were assessed. Next, pretargeting biodistribution studies were performed in LS174T tumor-bearing mice with AVP04-07-TCO(n) (where n indicates the number of TCO groups per diabody) and radiolabeled tetrazine to optimize the TCO modification grade (0, 1.8, or 4.7 TCO groups per diabody) and the (177)Lu-tetrazine dose (0.1, 1.0, or 10 Eq with respect to the diabody). Radiolabeled tetrazine was injected at 47 h after diabody injection, and mice were euthanized 3 h later. A pretargeting SPECT/CT study with (111)In-tetrazine was performed with the optimized conditions. RESULTS Immunoreactivity for native AVP04-07 was similar to that for TCO-functionalized AVP04-07, and the latter reacted efficiently with radiolabeled tetrazine in vitro. The combination of the pretargeting component AVP04-07 functionalized with 4.7 TCO groups and 1 Eq of (177)Lu-tetrazine with respect to the diabody showed the most promising biodistribution. Specifically, high (177)Lu-tetrazine tumor uptake (6.9 percentage injected dose/g) was observed with low renal retention, yielding a tumor-to-kidney ratio of 5.7. SPECT/CT imaging confirmed the predominant accumulation of radiolabeled tetrazine in the tumor and low nontumor retention. CONCLUSION Pretargeting provides an alternative radioimmunotherapy and nuclear imaging strategy by overcoming the high renal retention of low-molecular-weight radiometal tumor-homing agents through the separate administration of a tumor-homing agent and a radioactive probe with fast clearance.
Collapse
Affiliation(s)
| | - Raffaella Rossin
- Tagworks Pharmaceuticals, Eindhoven, The Netherlands Oncology Solutions, Philips Research, Eindhoven, The Netherlands
| | - Sandra M van den Bosch
- Precision and Decentralized Diagnostics, Philips Research, Eindhoven, The Netherlands; and
| | | | | | | |
Collapse
|