1
|
Rodriguez G, Martinez GS, Negrete OD, Sun S, Guo W, Xie Y, Li L, Xiao C, Ross JA, Kirken RA. JAK3 Y841 Autophosphorylation Is Critical for STAT5B Activation, Kinase Domain Stability and Dimer Formation. Int J Mol Sci 2023; 24:11928. [PMID: 37569303 PMCID: PMC10418363 DOI: 10.3390/ijms241511928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
Janus tyrosine kinase 3 (JAK3) is primarily expressed in immune cells and is needed for signaling by the common gamma chain (γc) family of cytokines. Abnormal JAK3 signal transduction can manifest as hematological disorders, e.g., leukemia, severe combined immunodeficiency (SCID) and autoimmune disease states. While regulatory JAK3 phosphosites have been well studied, here a functional proteomics approach coupling a JAK3 autokinase assay to mass spectrometry revealed ten previously unreported autophosphorylation sites (Y105, Y190, Y238, Y399, Y633, Y637, Y738, Y762, Y824, and Y841). Of interest, Y841 was determined to be evolutionarily conserved across multiple species and JAK family members, suggesting a broader role for this residue. Phospho-substitution mutants confirmed that Y841 is also required for STAT5 tyrosine phosphorylation. The homologous JAK1 residue Y894 elicited a similar response to mutagenesis, indicating the shared importance for this site in JAK family members. Phospho-specific Y841-JAK3 antibodies recognized activated kinase from various T-cell lines and transforming JAK3 mutants. Computational biophysics analysis linked Y841 phosphorylation to enhanced JAK3 JH1 domain stability across pH environments, as well as to facilitated complementary electrostatic JH1 dimer formation. Interestingly, Y841 is not limited to tyrosine kinases, suggesting it represents a conserved ubiquitous enzymatic function that may hold therapeutic potential across multiple kinase families.
Collapse
Affiliation(s)
- Georgialina Rodriguez
- Department of Biological Sciences, The University of Texas at El Paso, 500 W University Ave., El Paso, TX 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, 500 W University Ave., El Paso, TX 79968, USA
| | - George Steven Martinez
- Department of Biological Sciences, The University of Texas at El Paso, 500 W University Ave., El Paso, TX 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, 500 W University Ave., El Paso, TX 79968, USA
| | - Omar Daniel Negrete
- Department of Biological Sciences, The University of Texas at El Paso, 500 W University Ave., El Paso, TX 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, 500 W University Ave., El Paso, TX 79968, USA
| | - Shengjie Sun
- Department of Physics, The University of Texas at El Paso, 500 W University Ave., El Paso, TX 79968, USA
- Computational Science Program, The University of Texas at El Paso, 500 W University Ave., El Paso, TX 79968, USA
| | - Wenhan Guo
- Department of Physics, The University of Texas at El Paso, 500 W University Ave., El Paso, TX 79968, USA
- Computational Science Program, The University of Texas at El Paso, 500 W University Ave., El Paso, TX 79968, USA
| | - Yixin Xie
- Department of Physics, The University of Texas at El Paso, 500 W University Ave., El Paso, TX 79968, USA
- Computational Science Program, The University of Texas at El Paso, 500 W University Ave., El Paso, TX 79968, USA
| | - Lin Li
- Department of Physics, The University of Texas at El Paso, 500 W University Ave., El Paso, TX 79968, USA
- Computational Science Program, The University of Texas at El Paso, 500 W University Ave., El Paso, TX 79968, USA
| | - Chuan Xiao
- Computational Science Program, The University of Texas at El Paso, 500 W University Ave., El Paso, TX 79968, USA
- Department of Biochemistry, The University of Texas at El Paso, 500 W University Ave., El Paso, TX 79968, USA
| | - Jeremy Aaron Ross
- Department of Biological Sciences, The University of Texas at El Paso, 500 W University Ave., El Paso, TX 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, 500 W University Ave., El Paso, TX 79968, USA
| | - Robert Arthur Kirken
- Department of Biological Sciences, The University of Texas at El Paso, 500 W University Ave., El Paso, TX 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, 500 W University Ave., El Paso, TX 79968, USA
| |
Collapse
|
2
|
Grant AH, Rodriguez AC, Rodriguez Moncivais OJ, Sun S, Li L, Mohl JE, Leung MY, Kirken RA, Rodriguez G. JAK1 Pseudokinase V666G Mutant Dominantly Impairs JAK3 Phosphorylation and IL-2 Signaling. Int J Mol Sci 2023; 24:ijms24076805. [PMID: 37047778 PMCID: PMC10095075 DOI: 10.3390/ijms24076805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
Overactive Janus kinases (JAKs) are known to drive leukemia, making them well-suited targets for treatment. We sought to identify new JAK-activating mutations and instead found a JAK1-inactivating pseudokinase mutation, V666G. In contrast to other pseudokinase mutations that canonically lead to an active kinase, the JAK1 V666G mutation led to under-activation seen by reduced phosphorylation. To understand the functional role of JAK1 V666G in modifying kinase activity we investigated its influence on other JAK kinases and within the Interleukin-2 pathway. JAK1 V666G not only inhibited its own activity, but its presence could inhibit other JAK kinases. These findings provide new insights into the potential of JAK1 pseudokinase to modulate its own activity, as well as of other JAK kinases. Thus, the features of the JAK1 V666 region in modifying JAK kinases can be exploited to allosterically inhibit overactive JAKs.
Collapse
Affiliation(s)
- Alice H. Grant
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Alejandro C. Rodriguez
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Omar J. Rodriguez Moncivais
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Shengjie Sun
- Department of Physics, The University of Texas at El Paso, El Paso, TX 79968, USA
- Computational Science Program, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Lin Li
- Department of Physics, The University of Texas at El Paso, El Paso, TX 79968, USA
- Computational Science Program, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Jonathon E. Mohl
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
- Department of Mathematical Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Ming-Ying Leung
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
- Computational Science Program, The University of Texas at El Paso, El Paso, TX 79968, USA
- Department of Mathematical Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Robert A. Kirken
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Georgialina Rodriguez
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
3
|
Estrada A, Rodriguez AC, Rodriguez G, Grant AH, Ayala-Marin YM, Arrieta AJ, Kirken RA. Phosphorylation of CrkL S114 induced by common gamma chain cytokines and T-cell receptor signal transduction. Sci Rep 2021; 11:16951. [PMID: 34417497 PMCID: PMC8379229 DOI: 10.1038/s41598-021-96428-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 07/23/2021] [Indexed: 11/09/2022] Open
Abstract
T-cell activation and cellular expansion by common gamma chain cytokines such as Interleukin-2 is necessary for adaptive immunity. However, when unregulated these same pathways promote pathologies ranging from autoimmune disorders to cancer. While the functional role of Interleukin-2 and downstream effector molecules is relatively clear, the repertoire of phosphoregulatory proteins downstream of this pathway is incomplete. To identify phosphoproteins downstream of common gamma chain receptor, YT cells were radiolabeled with [32P]-orthophosphate and stimulated with Interleukin-2. Subsequently, tyrosine phosphorylated proteins were immunopurified and subjected to tandem mass spectrometry-leading to the identification of CrkL. Phosphoamino acid analysis revealed concurrent serine phosphorylation of CrkL and was later identified as S114 by mass spectrometry analysis. S114 was inducible through stimulation with Interleukin-2 or T-cell receptor stimulation. Polyclonal antibodies were generated against CrkL phospho-S114, and used to show its inducibility by multiple stimuli. These findings confirm CrkL as an Interleukin-2 responsive protein that becomes phosphorylated at S114 by a kinase/s downstream of PI3K and MEK/ERK signaling.
Collapse
Affiliation(s)
- Armando Estrada
- Department of Biological Sciences, The University of Texas At El Paso, El Paso, TX, 79968, USA
- Border Biomedical Research Center, The University of Texas At El Paso, El Paso, TX, 79968, USA
| | - Alejandro C Rodriguez
- Department of Biological Sciences, The University of Texas At El Paso, El Paso, TX, 79968, USA
- Border Biomedical Research Center, The University of Texas At El Paso, El Paso, TX, 79968, USA
| | - Georgialina Rodriguez
- Department of Biological Sciences, The University of Texas At El Paso, El Paso, TX, 79968, USA
- Border Biomedical Research Center, The University of Texas At El Paso, El Paso, TX, 79968, USA
| | - Alice H Grant
- Department of Biological Sciences, The University of Texas At El Paso, El Paso, TX, 79968, USA
- Border Biomedical Research Center, The University of Texas At El Paso, El Paso, TX, 79968, USA
| | - Yoshira M Ayala-Marin
- Department of Biological Sciences, The University of Texas At El Paso, El Paso, TX, 79968, USA
- Border Biomedical Research Center, The University of Texas At El Paso, El Paso, TX, 79968, USA
| | - Amy J Arrieta
- Department of Biological Sciences, The University of Texas At El Paso, El Paso, TX, 79968, USA
| | - Robert A Kirken
- Department of Biological Sciences, The University of Texas At El Paso, El Paso, TX, 79968, USA.
- Border Biomedical Research Center, The University of Texas At El Paso, El Paso, TX, 79968, USA.
| |
Collapse
|
4
|
Oaxaca DM, Yang-Reid SA, Ross JA, Rodriguez G, Staniswalis JG, Kirken RA. Sensitivity of imatinib-resistant T315I BCR-ABL CML to a synergistic combination of ponatinib and forskolin treatment. Tumour Biol 2016; 37:12643-12654. [PMID: 27444277 PMCID: PMC5080333 DOI: 10.1007/s13277-016-5179-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/12/2016] [Indexed: 12/21/2022] Open
Abstract
Tyrosine kinase inhibitors (TKIs) have dramatically improved the life expectancy of patients suffering from chronic myeloid leukemia (CML); however, patients will eventually develop resistance to TKI therapy or adverse side effects due to secondary off-target mechanisms associated with TKIs. CML patients exhibiting TKI resistance are at greater risk of developing an aggressive and drug-insensitive disease. Drug-resistant CML typically arises in response to spontaneous mutations within the drug binding sites of the targeted oncoproteins. To better understand the mechanism of drug resistance in TKI-resistant CML patients, the BCR-ABL transformed cell line KCL22 was grown with increasing concentrations of imatinib for a period of 6 weeks. Subsequently, a drug-resistant derivative of the parental KCL22 cell line harboring the T315I gatekeeper mutation was isolated and investigated for TKI drug sensitivity via multi-agent drug screens. A synergistic combination of ponatinib- and forskolin-reduced cell viability was identified in this clinically relevant imatinib-resistant CML cell line, which also proved efficacious in other CML cell lines. In summary, this study provides new insight into the biological underpinnings of BCR-ABL-driven CML and potential rationale for investigating novel treatment strategies for patients with T315I CML.
Collapse
MESH Headings
- Apoptosis/drug effects
- Apoptosis/genetics
- Blotting, Western
- Cell Line, Tumor
- Cell Survival/drug effects
- Cell Survival/genetics
- Colforsin/pharmacology
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Drug Synergism
- Fusion Proteins, bcr-abl/genetics
- HEK293 Cells
- Hep G2 Cells
- Humans
- Imatinib Mesylate/pharmacology
- Imidazoles/pharmacology
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Mutation
- Protein Kinase Inhibitors/pharmacology
- Pyridazines/pharmacology
- src-Family Kinases/antagonists & inhibitors
- src-Family Kinases/metabolism
Collapse
Affiliation(s)
- Derrick M Oaxaca
- Department of Biological Sciences, The University of Texas at El Paso, 500 W. University Ave, El Paso, TX, 79968, USA
| | - Sun Ah Yang-Reid
- Department of Biological Sciences, The University of Texas at El Paso, 500 W. University Ave, El Paso, TX, 79968, USA
| | - Jeremy A Ross
- Department of Biological Sciences, The University of Texas at El Paso, 500 W. University Ave, El Paso, TX, 79968, USA
| | - Georgialina Rodriguez
- Department of Biological Sciences, The University of Texas at El Paso, 500 W. University Ave, El Paso, TX, 79968, USA
| | - Joan G Staniswalis
- Department of Mathematical Sciences and Border Biomedical Research Center, The University of Texas at El Paso, 500 W. University Ave, El Paso, TX, 79968, USA
| | - Robert A Kirken
- Department of Biological Sciences, The University of Texas at El Paso, 500 W. University Ave, El Paso, TX, 79968, USA.
| |
Collapse
|