1
|
Gonzalez JJI, Hossain MF, Neef J, Zwack EE, Tsai CM, Raafat D, Fechtner K, Herzog L, Kohler TP, Schlüter R, Reder A, Holtfreter S, Liu GY, Hammerschmidt S, Völker U, Torres VJ, van Dijl JM, Lillig CH, Bröker BM, Darisipudi MN. TLR4 sensing of IsdB of Staphylococcus aureus induces a proinflammatory cytokine response via the NLRP3-caspase-1 inflammasome cascade. mBio 2024; 15:e0022523. [PMID: 38112465 PMCID: PMC10790753 DOI: 10.1128/mbio.00225-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 11/07/2023] [Indexed: 12/21/2023] Open
Abstract
IMPORTANCE The prevalence of multidrug-resistant Staphylococcus aureus is of global concern, and vaccines are urgently needed. The iron-regulated surface determinant protein B (IsdB) of S. aureus was investigated as a vaccine candidate because of its essential role in bacterial iron acquisition but failed in clinical trials despite strong immunogenicity. Here, we reveal an unexpected second function for IsdB in pathogen-host interaction: the bacterial fitness factor IsdB triggers a strong inflammatory response in innate immune cells via Toll-like receptor 4 and the inflammasome, thus acting as a novel pathogen-associated molecular pattern of S. aureus. Our discovery contributes to a better understanding of how S. aureus modulates the immune response, which is necessary for vaccine development against the sophisticated pathogen.
Collapse
Affiliation(s)
| | - Md Faruq Hossain
- Institute for Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Jolanda Neef
- Department of Medical Microbiology, University of Groningen, University Medical Center, Groningen, the Netherlands
| | - Erin E. Zwack
- Department of Microbiology, New York University Grossman School of Medicine, New York, USA
| | - Chih-Ming Tsai
- Department of Pediatrics, Division of Infectious Diseases, University of California San Diego, La Jolla, California, USA
| | - Dina Raafat
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Kevin Fechtner
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Luise Herzog
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Thomas P. Kohler
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Rabea Schlüter
- Imaging Center of the Department of Biology, University of Greifswald, Greifswald, Germany
| | - Alexander Reder
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Silva Holtfreter
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - George Y. Liu
- Department of Pediatrics, Division of Infectious Diseases, University of California San Diego, La Jolla, California, USA
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Uwe Völker
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Victor J. Torres
- Department of Microbiology, New York University Grossman School of Medicine, New York, USA
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center, Groningen, the Netherlands
| | - Christopher H. Lillig
- Institute for Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Barbara M. Bröker
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Murty N. Darisipudi
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
2
|
Watson QD, Carias LL, Malachin A, Redinger KR, Bosch J, Bardelli M, Baldor L, Feufack-Donfack LB, Popovici J, Moon RW, Draper SJ, Zimmerman PA, King CL. Human monoclonal antibodies inhibit invasion of transgenic Plasmodium knowlesi expressing Plasmodium vivax Duffy binding protein. Malar J 2023; 22:369. [PMID: 38049801 PMCID: PMC10696754 DOI: 10.1186/s12936-023-04766-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/24/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Plasmodium vivax has been more resistant to various control measures than Plasmodium falciparum malaria because of its greater transmissibility and ability to produce latent parasite forms. Therefore, developing P. vivax vaccines and therapeutic monoclonal antibodies (humAbs) remains a high priority. The Duffy antigen receptor for chemokines (DARC) expressed on erythrocytes is central to P. vivax invasion of reticulocytes. P. vivax expresses a Duffy binding protein (PvDBP) on merozoites, a DARC ligand, and the DARC: PvDBP interaction is critical for P. vivax blood stage malaria. Therefore, PvDBP is a leading vaccine candidate for P. vivax and a target for therapeutic human monoclonal antibodies (humAbs). METHODS Here, the functional activity of humAbs derived from naturally exposed and vaccinated individuals are compared for the first time using easily cultured Plasmodium knowlesi (P. knowlesi) that had been genetically modified to replace its endogenous PkDBP orthologue with PvDBP to create a transgenic parasite, PkPvDBPOR. This transgenic parasite requires DARC to invade human erythrocytes but is not reticulocyte restricted. This model was used to evaluate the invasion inhibition potential of 12 humAbs (9 naturally acquired; 3 vaccine-induced) targeting PvDBP individually and in combinations using growth inhibition assays (GIAs). RESULTS The PvDBP-specific humAbs demonstrated 70-100% inhibition of PkPvDBPOR invasion with the IC50 values ranging from 51 to 338 µg/mL for the 9 naturally acquired (NA) humAbs and 33 to 99 µg/ml for the 3 vaccine-induced (VI) humAbs. To evaluate antagonistic, additive, or synergistic effects, six pairwise combinations were performed using select humAbs. Of these combinations tested, one NA/NA (099100/094083) combination demonstrated relatively strong additive inhibition between 10 and 100 µg/mL; all combinations of NA and VI humAbs showed additive inhibition at concentrations below 25 µg/mL and antagonism at higher concentrations. None of the humAb combinations showed synergy. Invasion inhibition efficacy by some mAbs shown with PkPvDBPOR was closely replicated using P. vivax clinical isolates. CONCLUSION The PkPvDBPOR transgenic model is a robust surrogate of P. vivax to assess invasion and growth inhibition of human monoclonal Abs recognizing PvDBP individually and in combination. There was no synergistic interaction for growth inhibition with the humAbs tested here that target different epitopes or subdomains of PvDBP, suggesting little benefit in clinical trials using combinations of these humAbs.
Collapse
Affiliation(s)
- Quentin D Watson
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Lenore L Carias
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Alyssa Malachin
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Karli R Redinger
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Jürgen Bosch
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | | - Lea Baldor
- Malaria Research Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | | | - Jean Popovici
- Malaria Research Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Robert W Moon
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Simon J Draper
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Peter A Zimmerman
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| | - Christopher L King
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
- Veterans Affairs Medical Center, Cleveland, OH, USA.
| |
Collapse
|
3
|
Georg Magalhães C, Ploeger Mansueli C, Manieri TM, Quintilio W, Garbuio A, de Jesus Marinho J, de Moraes JZ, Tsuruta LR, Moro AM. Impaired proliferation and migration of HUVEC and melanoma cells by human anti-FGF2 mAbs derived from a murine hybridoma by guided selection. Bioengineered 2023; 14:2252667. [PMID: 37661761 PMCID: PMC10478743 DOI: 10.1080/21655979.2023.2252667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 09/05/2023] Open
Abstract
Disadvantages of using murine monoclonal antibodies (mAb) in human therapy, such as immunogenicity response, led to the development of technologies to transform murine antibodies into human antibodies. The murine anti-FGF2 3F12E7 mAb was proposed as a promising agent to treat metastatic melanoma tumors; once it blocks the FGF2, responsible for playing a role in tumor growth, angiogenesis, and metastasis. Considering the therapeutic potential of anti-FGF2 3F12E7 mAb and its limited use in humans due to its origin, we used this antibody as the template for a guided selection humanization technique to obtain human anti-FGF2 mAbs. Three Fab libraries (murine, hybrid, and human) were constructed for humanization. The libraries were phage-displayed, and the panning was performed against recombinant human FGF2 (rFGF2). The selected human variable light and heavy chains were cloned into AbVec vectors for full-length IgG expression into HEK293-F cells. Surface plasmon resonance analyses showed binding to rFGF2 of seven mAbs out of 20 expressed. Assays performed with these mAbs resulted in two that showed proliferation reduction and cell migration attenuation of HUVEC and SK-Mel-28 melanoma cells. In-silico analyses predicted that these two human anti-FGF2 mAbs interact with FGF2 at a similar patch of residues than the chimeric anti-FGF2 antibody, comprehending a region within the heparin-binding domains of FGF2, essential for its function. These results are comparable to those achieved by the murine anti-FGF2 3F12E7 mAb and showed success in the humanization process and selection of two human mAbs with the potential to inhibit undesirable FGF2 roles.
Collapse
Affiliation(s)
| | | | | | - Wagner Quintilio
- Laboratory of Biopharmaceuticals, Butantan Institute, São Paulo, Brazil
| | - Angélica Garbuio
- Laboratory of Biopharmaceuticals, Butantan Institute, São Paulo, Brazil
| | | | - Jane Zveiter de Moraes
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Ana Maria Moro
- Laboratory of Biopharmaceuticals, Butantan Institute, São Paulo, Brazil
- CeRDI, Center for Research and Development in Immunobiologicals, Butantan Institute, São Paulo, Brazil
| |
Collapse
|
4
|
Watson QD, Carias LL, Malachin A, Redinger KR, Bosch J, Bardelli M, Moon RW, Draper SJ, Zimmerman PA, King CL. Naturally-acquired and Vaccine-induced Human Monoclonal Antibodies to Plasmodium vivax Duffy Binding Protein Inhibit Invasion of Plasmodium knowlesi (PvDBPOR) Transgenic Parasites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.07.531647. [PMID: 36945444 PMCID: PMC10028882 DOI: 10.1101/2023.03.07.531647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
The Duffy antigen receptor for chemokines (DARC) expressed on erythrocytes is central to Plasmodium vivax (Pv) invasion of reticulocytes. Pv expresses a Duffy binding protein (PvDBP) on merozoites, a DARC ligand, and their protein-protein interaction is central to vivax blood stage malaria. Here we compared the functional activity of humAbs derived from naturally exposed and vaccinated individuals for the first time using easily cultured P. knowlesi (Pk) that had been genetically modified to replace its endogenous PkDBP orthologue with PvDBP to create a transgenic parasite, PkPvDBPOR. This transgenic parasite requires DARC to invade human erythrocytes but is not reticulocyte restricted. Using this model, we evaluated the invasion inhibition potential of 12 humAbs (9 naturally acquired; 3 vaccine-induced) targeting PvDBP individually and in combinations using growth inhibition assays (GIAs). The PvDBP-specific humAbs demonstrated 70-100% inhibition of PkPvDBPOR invasion with the IC50 values ranging from 51 to 338 μg/mL for the 9 naturally acquired (NA) humAbs and 33 to 99 μg/ml for the 3 vaccine-induced (VI) humAbs. To evaluate antagonistic, additive, or synergistic effects, six pairwise combinations were performed using select humAbs. Of these combinations tested, one NA/NA (099100/094083) combination demonstrated relatively strong additive inhibition between 10-100 μg/mL; all combinations of NA and VI humAbs showed additive inhibition at concentrations below 25 μg/mL and antagonism at higher concentrations. None of the humAb combinations showed synergy. This PkPvDBPOR model system enables efficient assessment of NA and VI humAbs individually and in combination.
Collapse
Affiliation(s)
- Quentin D. Watson
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Lenore L. Carias
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Alyssa Malachin
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Karli R. Redinger
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Jürgen Bosch
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | | - Robert W. Moon
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Simon J. Draper
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Peter A. Zimmerman
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Christopher L. King
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Veterans Affairs Medical Center, Cleveland, OH
| |
Collapse
|
5
|
Lorin V, Fernández I, Masse-Ranson G, Bouvin-Pley M, Molinos-Albert LM, Planchais C, Hieu T, Péhau-Arnaudet G, Hrebík D, Girelli-Zubani G, Fiquet O, Guivel-Benhassine F, Sanders RW, Walker BD, Schwartz O, Scheid JF, Dimitrov JD, Plevka P, Braibant M, Seaman MS, Bontems F, Di Santo JP, Rey FA, Mouquet H. Epitope convergence of broadly HIV-1 neutralizing IgA and IgG antibody lineages in a viremic controller. J Exp Med 2022; 219:213042. [PMID: 35230385 PMCID: PMC8932546 DOI: 10.1084/jem.20212045] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/03/2022] [Accepted: 01/12/2022] [Indexed: 12/11/2022] Open
Abstract
Decrypting the B cell ontogeny of HIV-1 broadly neutralizing antibodies (bNAbs) is paramount for vaccine design. Here, we characterized IgA and IgG bNAbs of three distinct B cell lineages in a viremic controller, two of which comprised only IgG+ or IgA+ blood memory B cells; the third combined both IgG and IgA clonal variants. 7-269 bNAb in the IgA-only lineage displayed the highest neutralizing capacity despite limited somatic mutation, and delayed viral rebound in humanized mice. bNAbs in all three lineages targeted the N332 glycan supersite. The 2.8-Å resolution cryo-EM structure of 7-269-BG505 SOSIP.664 complex showed a similar pose as 2G12, on an epitope mainly composed of sugar residues comprising the N332 and N295 glycans. Binding and cryo-EM structural analyses showed that antibodies from the two other lineages interact mostly with glycans N332 and N386. Hence, multiple B cell lineages of IgG and IgA bNAbs focused on a unique HIV-1 site of vulnerability can codevelop in HIV-1 viremic controllers.
Collapse
Affiliation(s)
- Valérie Lorin
- Laboratory of Humoral Immunology, Department of Immunology, Institut Pasteur, Paris, France.,Institut national de la santé et de la recherche médicale U1222, Paris, France.,Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Ignacio Fernández
- Structural Virology Unit, Department of Virology, Institut Pasteur, Paris, France.,Centre national de la recherche scientifique URA3015, Paris, France
| | - Guillemette Masse-Ranson
- Innate Immunity Unit, Department of Immunology, Institut Pasteur, Paris, France.,Institut national de la santé et de la recherche médicale U1223, Paris, France
| | - Mélanie Bouvin-Pley
- Université de Tours, Institut national de la santé et de la recherche médicale U1259, Tours, France
| | - Luis M Molinos-Albert
- Laboratory of Humoral Immunology, Department of Immunology, Institut Pasteur, Paris, France.,Institut national de la santé et de la recherche médicale U1222, Paris, France
| | - Cyril Planchais
- Laboratory of Humoral Immunology, Department of Immunology, Institut Pasteur, Paris, France.,Institut national de la santé et de la recherche médicale U1222, Paris, France
| | - Thierry Hieu
- Laboratory of Humoral Immunology, Department of Immunology, Institut Pasteur, Paris, France.,Institut national de la santé et de la recherche médicale U1222, Paris, France
| | - Gérard Péhau-Arnaudet
- Imagopole, Plate-Forme de Microscopie Ultrastructurale and UMR 3528, Institut Pasteur, Paris, France
| | - Dominik Hrebík
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Giulia Girelli-Zubani
- Innate Immunity Unit, Department of Immunology, Institut Pasteur, Paris, France.,Institut national de la santé et de la recherche médicale U1223, Paris, France
| | - Oriane Fiquet
- Innate Immunity Unit, Department of Immunology, Institut Pasteur, Paris, France.,Institut national de la santé et de la recherche médicale U1223, Paris, France
| | - Florence Guivel-Benhassine
- Centre national de la recherche scientifique URA3015, Paris, France.,Virus and Immunity Unit, Department of Virology, Institut Pasteur, Paris, France
| | - Rogier W Sanders
- Department of Medical Microbiology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.,Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY
| | - Bruce D Walker
- Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, MA.,Partners AIDS Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Olivier Schwartz
- Centre national de la recherche scientifique URA3015, Paris, France.,Virus and Immunity Unit, Department of Virology, Institut Pasteur, Paris, France
| | - Johannes F Scheid
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Jordan D Dimitrov
- Centre de Recherche des Cordeliers, Institut national de la santé et de la recherche médicale, Sorbonne Université, Université de Paris, Paris, France
| | - Pavel Plevka
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Martine Braibant
- Université de Tours, Institut national de la santé et de la recherche médicale U1259, Tours, France
| | | | - François Bontems
- Structural Virology Unit, Department of Virology, Institut Pasteur, Paris, France.,Institut de Chimie des Substances Naturelles, Centre national de la recherche scientifique, Université Paris Saclay, Gif-sur-Yvette, France
| | - James P Di Santo
- Innate Immunity Unit, Department of Immunology, Institut Pasteur, Paris, France.,Institut national de la santé et de la recherche médicale U1223, Paris, France
| | - Félix A Rey
- Structural Virology Unit, Department of Virology, Institut Pasteur, Paris, France.,Centre national de la recherche scientifique URA3015, Paris, France
| | - Hugo Mouquet
- Laboratory of Humoral Immunology, Department of Immunology, Institut Pasteur, Paris, France.,Institut national de la santé et de la recherche médicale U1222, Paris, France
| |
Collapse
|
6
|
Ulcerative colitis is characterized by a plasmablast-skewed humoral response associated with disease activity. Nat Med 2022; 28:766-779. [PMID: 35190725 PMCID: PMC9107072 DOI: 10.1038/s41591-022-01680-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 01/04/2022] [Indexed: 02/06/2023]
Abstract
B cells, which are critical for intestinal homeostasis, remain understudied in ulcerative colitis (UC). In this study, we recruited three cohorts of patients with UC (primary cohort, n = 145; validation cohort 1, n = 664; and validation cohort 2, n = 143) to comprehensively define the landscape of B cells during UC-associated intestinal inflammation. Using single-cell RNA sequencing, single-cell IgH gene sequencing and protein-level validation, we mapped the compositional, transcriptional and clonotypic landscape of mucosal and circulating B cells. We found major perturbations within the mucosal B cell compartment, including an expansion of naive B cells and IgG+ plasma cells with curtailed diversity and maturation. Furthermore, we isolated an auto-reactive plasma cell clone targeting integrin αvβ6 from inflamed UC intestines. We also identified a subset of intestinal CXCL13-expressing TFH-like T peripheral helper cells that were associated with the pathogenic B cell response. Finally, across all three cohorts, we confirmed that changes in intestinal humoral immunity are reflected in circulation by the expansion of gut-homing plasmablasts that correlates with disease activity and predicts disease complications. Our data demonstrate a highly dysregulated B cell response in UC and highlight a potential role of B cells in disease pathogenesis.
Collapse
|
7
|
Matharu Z, Bee C, Schwarz F, Chen H, Tomlinson M, Wu G, Rakestraw G, Hornsby M, Drake A, Strop P, Rajpal A, Dollinger G. High-Throughput Surface Plasmon Resonance Biosensors for Identifying Diverse Therapeutic Monoclonal Antibodies. Anal Chem 2021; 93:16474-16480. [PMID: 34854675 DOI: 10.1021/acs.analchem.1c03548] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Identification of antibodies targeting diverse functional epitopes on an antigen is highly crucial for discovering effective therapeutic candidates. Employing a traditional stepwise antibody "screening funnel" as well as prioritizing affinity-based selections over epitope-based selections, result in lead antibody panels lacking epitope diversity. In the present study, we employed an array-based surface plasmon resonance (SPR) platform to perform high-throughput epitope binning analysis on a large number of monoclonal antibodies (mAbs) generated in the early drug discovery process. The mAb panel contained clones from different antibody generation techniques and diverse transgenic mouse strains. The epitope binning results were analyzed in unique ways using various visualizations in the form of dendrograms and network plots, which assisted in determining diversity and redundancy in the mAb sample set. The binning data were further integrated with affinity information to evaluate the performance of seven different transgenic mouse strains. The combination of epitope binning results with binding kinetics and sequence analysis provided an effective and efficient way of selecting high affinity antibodies representing a diverse set of sequence families and epitopes.
Collapse
Affiliation(s)
- Zimple Matharu
- Discovery Biotherapeutics, Bristol Myers Squibb, Redwood City, California 94063, United States
| | - Christine Bee
- Discovery Biotherapeutics, Bristol Myers Squibb, Redwood City, California 94063, United States.,Frontier Medicines, South San Francisco, California 94080, United States
| | - Flavio Schwarz
- Discovery Biotherapeutics, Bristol Myers Squibb, Redwood City, California 94063, United States
| | - Haibin Chen
- Discovery Biotherapeutics, Bristol Myers Squibb, Redwood City, California 94063, United States
| | - Matthew Tomlinson
- Discovery Biotherapeutics, Bristol Myers Squibb, Redwood City, California 94063, United States
| | - Gabriel Wu
- Discovery Biotherapeutics, Bristol Myers Squibb, Redwood City, California 94063, United States
| | - Ginger Rakestraw
- Bristol Myers Squibb, Cambridge, Massachusetts 02142, United States
| | - Michael Hornsby
- Discovery Biotherapeutics, Bristol Myers Squibb, Redwood City, California 94063, United States
| | - Andrew Drake
- Discovery Biotherapeutics, Bristol Myers Squibb, Redwood City, California 94063, United States
| | - Pavel Strop
- Discovery Biotherapeutics, Bristol Myers Squibb, Redwood City, California 94063, United States.,Biologics Discovery, Tallac Therapeutics, Burlingame, California 94010, United States
| | - Arvind Rajpal
- Discovery Biotherapeutics, Bristol Myers Squibb, Redwood City, California 94063, United States.,Large Molecule Drug Discovery, Genentech, Inc., South San Francisco, California 94080, United States
| | - Gavin Dollinger
- Discovery Biotherapeutics, Bristol Myers Squibb, Redwood City, California 94063, United States
| |
Collapse
|
8
|
Giles AR, Calcedo R, Tretiakova AP, Wilson JM. Isolating Human Monoclonal Antibodies Against Adeno-Associated Virus From Donors With Pre-existing Immunity. Front Immunol 2020; 11:1135. [PMID: 32733434 PMCID: PMC7358261 DOI: 10.3389/fimmu.2020.01135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/11/2020] [Indexed: 11/27/2022] Open
Abstract
With the advent of single B-cell cloning technology, we can isolate antibodies against virtually any antigen to study the interaction of a given pathogen with the immune system and develop novel therapeutic strategies. Antibodies directed against the capsid of adeno-associated viruses (AAV) are a significant obstacle to effectively leveraging AAV as a gene-delivery vector in seropositive individuals. In order to design next-generation vectors that can evade neutralization by these antibodies, studies have mapped the epitopes of mouse monoclonal antibodies generated by immunization with AAV. Although these studies provide critical information regarding capsid immunogenicity, they cannot address (1) differences in the antibody repertoire generated in humans following AAV natural infection; or (2) how reactions can vary when generated in response to vector administration. Here, we isolated and evaluated a panel of novel, fully human anti-AAV antibodies by cloning single memory B cells from a seropositive normal donor. We have validated the utility of this approach to study AAV immunology. Our goal is to leverage this knowledge to design novel AAV variants that can effectively transduce target tissues in individuals with AAV-neutralizing antibodies.
Collapse
Affiliation(s)
| | | | | | - James M. Wilson
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
9
|
Urusova D, Carias L, Huang Y, Nicolete VC, Popovici J, Roesch C, Salinas ND, Dechavanne S, Witkowski B, Ferreira MU, Adams JH, Gross ML, King CL, Tolia NH. Structural basis for neutralization of Plasmodium vivax by naturally acquired human antibodies that target DBP. Nat Microbiol 2019; 4:1486-1496. [PMID: 31133752 PMCID: PMC6707876 DOI: 10.1038/s41564-019-0461-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 04/16/2019] [Indexed: 12/21/2022]
Abstract
The Plasmodium vivax Duffy-binding protein (DBP) is a prime target of the protective immune response and a promising vaccine candidate for P. vivax malaria. Naturally acquired immunity (NAI) protects against malaria in adults residing in infection-endemic regions, and the passive transfer of malarial immunity confers protection. A vaccine that replicates NAI will effectively prevent disease. Here, we report the structures of DBP region II in complex with human-derived, neutralizing monoclonal antibodies obtained from an individual in a malaria-endemic area with NAI. We identified protective epitopes using X-ray crystallography, hydrogen-deuterium exchange mass spectrometry, mutational mapping and P. vivax invasion studies. These approaches reveal that naturally acquired human antibodies neutralize P. vivax by targeting the binding site for Duffy antigen receptor for chemokines (DARC) and the dimer interface of P. vivax DBP. Antibody binding is unaffected by polymorphisms in the vicinity of epitopes, suggesting that the antibodies have evolved to engage multiple polymorphic variants of DBP. The human antibody epitopes are broadly conserved and are distinct from previously defined epitopes for broadly conserved murine monoclonal antibodies. A library of globally conserved epitopes of neutralizing human antibodies offers possibilities for rational design of strain-transcending DBP-based vaccines and therapeutics against P. vivax.
Collapse
MESH Headings
- Amino Acid Sequence
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/immunology
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/immunology
- Antigens, Protozoan/chemistry
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- Antigens, Protozoan/metabolism
- Binding Sites
- Crystallography, X-Ray
- Duffy Blood-Group System/metabolism
- Epitopes, B-Lymphocyte
- Erythrocytes/metabolism
- Erythrocytes/parasitology
- Genetic Variation
- Humans
- Malaria Vaccines/immunology
- Malaria, Vivax/parasitology
- Malaria, Vivax/prevention & control
- Plasmodium vivax/genetics
- Plasmodium vivax/immunology
- Protein Binding
- Protozoan Proteins/chemistry
- Protozoan Proteins/genetics
- Protozoan Proteins/immunology
- Protozoan Proteins/metabolism
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/immunology
- Receptors, Cell Surface/metabolism
Collapse
Affiliation(s)
- Darya Urusova
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Lenore Carias
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA
| | - Yining Huang
- Department of Chemistry, Washington University in St Louis, St Louis, MO, USA
- Bioproduct Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | | | - Jean Popovici
- Malaria Molecular Epidemiology Unit, Pasteur Institute in Cambodia, Phnom Penh, Cambodia
| | - Camille Roesch
- Malaria Molecular Epidemiology Unit, Pasteur Institute in Cambodia, Phnom Penh, Cambodia
| | - Nichole D Salinas
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sebastien Dechavanne
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA
| | - Benoit Witkowski
- Malaria Molecular Epidemiology Unit, Pasteur Institute in Cambodia, Phnom Penh, Cambodia
| | | | - John H Adams
- Department of Global Health, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St Louis, St Louis, MO, USA
| | - Christopher L King
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA
| | - Niraj H Tolia
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, USA.
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
10
|
Carias LL, Dechavanne S, Nicolete VC, Sreng S, Suon S, Amaratunga C, Fairhurst RM, Dechavanne C, Barnes S, Witkowski B, Popovici J, Roesch C, Chen E, Ferreira MU, Tolia NH, Adams JH, King CL. Identification and Characterization of Functional Human Monoclonal Antibodies to Plasmodium vivax Duffy-Binding Protein. THE JOURNAL OF IMMUNOLOGY 2019; 202:2648-2660. [PMID: 30944159 DOI: 10.4049/jimmunol.1801631] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/22/2019] [Indexed: 01/25/2023]
Abstract
Plasmodium vivax invasion of reticulocytes relies on distinct receptor-ligand interactions between the parasite and host erythrocytes. Engagement of the highly polymorphic domain II of the P. vivax Duffy-binding protein (DBPII) with the erythrocyte's Duffy Ag receptor for chemokines (DARC) is essential. Some P. vivax-exposed individuals acquired Abs to DBPII that block DBPII-DARC interaction and inhibit P. vivax reticulocyte invasion, and Ab levels correlate with protection against P. vivax malaria. To better understand the functional characteristics and fine specificity of protective human Abs to DBPII, we sorted single DBPII-specific IgG+ memory B cells from three individuals with high blocking activity to DBPII. We identified 12 DBPII-specific human mAbs from distinct lineages that blocked DBPII-DARC binding. All mAbs were P. vivax strain transcending and targeted known binding motifs of DBPII with DARC. Eleven mAbs competed with each other for binding, indicating recognition of the same or overlapping epitopes. Naturally acquired blocking Abs to DBPII from individuals with high levels residing in different P. vivax-endemic areas worldwide competed with mAbs, suggesting broadly shared recognition sites. We also found that mAbs inhibited P. vivax entry into reticulocytes in vitro. These findings suggest that IgG+ memory B cell activity in individuals with P. vivax strain-transcending Abs to DBPII display a limited clonal response with inhibitory blocking directed against a distinct region of the molecule.
Collapse
Affiliation(s)
- Lenore L Carias
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Sebastien Dechavanne
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Vanessa C Nicolete
- Department of Parasitology, University of Sao Paulo, 05508-000 Sao Paulo, Brazil
| | - Sokunthea Sreng
- National Center for Parasitology, Entomology and Malaria Control, 12101 Phnom Penh, Cambodia
| | - Seila Suon
- National Center for Parasitology, Entomology and Malaria Control, 12101 Phnom Penh, Cambodia
| | - Chanaki Amaratunga
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Rick M Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Celia Dechavanne
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, OH 44106.,UMR 261-Mother and Child Facing Tropical Infections, French National Research Institute for Development, Paris Descartes University, 75006 Paris, France
| | - Samantha Barnes
- Center for Global Health and Infectious Diseases Research, Department of Global Health, University of South Florida, Tampa, FL 33612
| | - Benoit Witkowski
- Malaria Unit, Pasteur Institute in Cambodia, 12201 Phnom Penh, Cambodia
| | - Jean Popovici
- Malaria Unit, Pasteur Institute in Cambodia, 12201 Phnom Penh, Cambodia
| | - Camille Roesch
- Malaria Unit, Pasteur Institute in Cambodia, 12201 Phnom Penh, Cambodia
| | - Edwin Chen
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110.,Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110
| | - Marcelo U Ferreira
- Department of Parasitology, University of Sao Paulo, 05508-000 Sao Paulo, Brazil
| | - Niraj H Tolia
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110.,Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - John H Adams
- Center for Global Health and Infectious Diseases Research, Department of Global Health, University of South Florida, Tampa, FL 33612
| | - Christopher L King
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, OH 44106; .,Cleveland VA Medical Center, Cleveland, OH 44106
| |
Collapse
|
11
|
Aliprandini E, Takata DY, Lepique A, Kalil J, Boscardin SB, Moro AM. An oligoclonal combination of human monoclonal antibodies able to neutralize tetanus toxin in vivo. Toxicon X 2019; 2:100006. [PMID: 32550563 PMCID: PMC7285915 DOI: 10.1016/j.toxcx.2019.100006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/27/2018] [Accepted: 01/10/2019] [Indexed: 12/01/2022] Open
Abstract
The use of antibody-based therapy to treat a variety of diseases and conditions is well documented. The use of antibodies as an antidote to treat tetanus infections was one of the first examples of immunotherapy and remains the standard of care for cases involving potential infections. Plasma-derived immunoglobulins obtained from human or horse pose risks of infection from undetectable emergent viruses or may cause anaphylaxis. Further, there is a lack of consistency between lots. In the search for new formulations, we obtained a series of clonally related human monoclonal antibodies (mAbs) derived from B cells sorted from donors that presented anti-tetanus neutralizing titers. Donors were revaccinated prior to blood collection. Different strategies were used for single-cell sorting, since it was challenging to identify cells at a very low frequency: memory B cell sorting using fluorescent-labeled tetanus toxoid and toxin as baits, and plasmablast sorting done shortly after revaccination. Screening of the recombinant mAbs with the whole tetanus toxin allowed us to select candidates with therapeutic potential, since mAbs to different domains can contribute additively to the neutralizing effect. Because of selective binding to different domains, we tested mAbs individually, or in mixtures of two or three, in the neutralizing in vivo assay specified by Pharmacopeia for the determination of polyclonal hyperimmune sera potency. An oligoclonal mixture of three human mAbs completely neutralized the toxin injected in the animals, signaling an important step for clinical mAb development.
Collapse
Affiliation(s)
- Eduardo Aliprandini
- Laboratory of Biopharmaceuticals in Animal Cells, Instituto Butantan, São Paulo, Brazil.,Interunits Graduate Program in Biotechnology, University of São Paulo, Brazil
| | - Daniela Yumi Takata
- Laboratory of Biopharmaceuticals in Animal Cells, Instituto Butantan, São Paulo, Brazil.,Interunits Graduate Program in Biotechnology, University of São Paulo, Brazil
| | - Ana Lepique
- Dept of Immunology, Biomedical Sciences Institute, University of São Paulo, Brazil
| | - Jorge Kalil
- Laboratory of Immunology, School of Medicine, University of São Paulo, São Paulo, Brazil.,Institute for Investigation in Immunology, iii - INCT (National Institute of Science and Technology), São Paulo, Brazil
| | - Silvia Beatriz Boscardin
- Dept of Parasitology, Biomedical Sciences Institute, University of São Paulo, Brazil.,Institute for Investigation in Immunology, iii - INCT (National Institute of Science and Technology), São Paulo, Brazil
| | - Ana Maria Moro
- Laboratory of Biopharmaceuticals in Animal Cells, Instituto Butantan, São Paulo, Brazil.,Institute for Investigation in Immunology, iii - INCT (National Institute of Science and Technology), São Paulo, Brazil
| |
Collapse
|
12
|
Devulapally PR, Bürger J, Mielke T, Konthur Z, Lehrach H, Yaspo ML, Glökler J, Warnatz HJ. Simple paired heavy- and light-chain antibody repertoire sequencing using endoplasmic reticulum microsomes. Genome Med 2018; 10:34. [PMID: 29703216 PMCID: PMC5921987 DOI: 10.1186/s13073-018-0542-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 04/12/2018] [Indexed: 12/21/2022] Open
Abstract
Existing methods for paired antibody heavy- and light-chain repertoire sequencing rely on specialized equipment and are limited by their commercial availability and high costs. Here, we report a novel simple and cost-effective emulsion-based single-cell paired antibody repertoire sequencing method that employs only basic laboratory equipment. We performed a proof-of-concept using mixed mouse hybridoma cells and we also showed that our method can be used for discovery of novel antigen-specific monoclonal antibodies by sequencing human CD19+ B cell IgM and IgG repertoires isolated from peripheral whole blood before and seven days after Td (Tetanus toxoid/Diphtheria toxoid) booster immunization. We anticipate broad applicability of our method for providing insights into adaptive immune responses associated with various diseases, vaccinations, and cancer immunotherapies.
Collapse
Affiliation(s)
- Praneeth Reddy Devulapally
- Otto Warburg Laboratory Gene Regulation and Systems Biology of Cancer, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Jörg Bürger
- Microscopy and Cryo-Electron Microscopy Service Group, Max Planck Institute for Molecular Genetics, Berlin, Germany.,Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin, Berlin, Germany
| | - Thorsten Mielke
- Microscopy and Cryo-Electron Microscopy Service Group, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Zoltán Konthur
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Hans Lehrach
- Alacris Theranostics GmbH, Berlin, Germany.,Dahlem Centre for Genome Research and Medical Systems Biology, Berlin, Germany
| | - Marie-Laure Yaspo
- Otto Warburg Laboratory Gene Regulation and Systems Biology of Cancer, Max Planck Institute for Molecular Genetics, Berlin, Germany.,Alacris Theranostics GmbH, Berlin, Germany
| | - Jörn Glökler
- Department of Molecular Biotechnology and Functional Genomics, Institute of Applied Biosciences, Technical University of Applied Sciences Wildau, Wildau, Brandenburg, Germany
| | - Hans-Jörg Warnatz
- Otto Warburg Laboratory Gene Regulation and Systems Biology of Cancer, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
13
|
Generation of Recombinant Monoclonal Antibodies from Single B Cells Isolated from Synovial Tissue of Rheumatoid Arthritis Patients. Methods Mol Biol 2018; 1845:159-187. [PMID: 30141013 DOI: 10.1007/978-1-4939-8709-2_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ectopic lymphoid structure (ELS) can form in the target tissues of patients with chronic inflammatory autoimmune diseases such as rheumatoid arthritis (RA) and Sjögren's syndrome (SS). Although it is still not clear why ELS form only in a subset of patients, it is well known that these structures can acquire features of ectopic germinal centers and contribute actively to the production of autoantibodies. Here, we describe a method to generate recombinant monoclonal antibodies from single ELS+ synovial tissue B cells obtained from RA patients. This chapter gives a detailed description of the method beginning from the mononuclear cell preparation from RA synovial tissue, single-cell sort of B cells by flow cytometry, amplification of the immunoglobulin (Ig) genes (both heavy- and light-chain genes) by PCR, and subsequent Ig gene expression vector cloning for full recombinant IgG1 monoclonal antibody (rmAb) production in vitro. The recombinant mAbs generated can be then characterized for (1) analysis of the Ig gene repertoires for clonal studies, (2) immunoreactivity profile, and (3) functional studies both in vitro and in vivo.
Collapse
|
14
|
Zinöcker S, Schindler CE, Skinner J, Rogosch T, Waisberg M, Schickel JN, Meffre E, Kayentao K, Ongoïba A, Traoré B, Pierce SK. The V gene repertoires of classical and atypical memory B cells in malaria-susceptible West African children. THE JOURNAL OF IMMUNOLOGY 2015; 194:929-39. [PMID: 25556245 DOI: 10.4049/jimmunol.1402168] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Immunity to Plasmodium falciparum malaria is naturally acquired in individuals living in malaria-endemic areas of Africa. Abs play a key role in mediating this immunity; however, the acquisition of the components of Ab immunity, long-lived plasma cells and memory B cells (MBCs), is remarkably inefficient, requiring years of malaria exposure. Although long-lived classical MBCs (CD19(+)/CD20(+)/CD21(+)/CD27(+)/CD10(-)) are gradually acquired in response to natural infection, exposure to P. falciparum also results in a large expansion of what we have termed atypical MBCs (CD19(+)/CD20(+)/CD21(-)/CD27(-)/CD10(-)). At present, the function of atypical MBCs in malaria is not known, nor are the factors that drive their differentiation. To gain insight into the relationship between classical and atypical IgG(+) MBCs, we compared the Ab H and L chain V gene repertoires of children living in a malaria-endemic region in Mali. We found that these repertoires were remarkably similar by a variety of criteria, including V gene usage, rate of somatic hypermutation, and CDR-H3 length and composition. The similarity in these repertoires suggests that classical MBCs and atypical MBCs differentiate in response to similar Ag-dependent selective pressures in malaria-exposed children and that atypical MBCs do not express a unique V gene repertoire.
Collapse
Affiliation(s)
- Severin Zinöcker
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852;
| | - Christine E Schindler
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Jeff Skinner
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Tobias Rogosch
- Laboratory for Neonatology and Pediatric Immunology, Department of Pediatrics, Philipps-University, D-35032 Marburg, Germany
| | - Michael Waisberg
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852; Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Jean-Nicolas Schickel
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510; and
| | - Eric Meffre
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510; and
| | - Kassoum Kayentao
- Mali International Center for Excellence in Research, University of Sciences, Technique and Technology of Bamako, Bamako, Mali
| | - Aïssata Ongoïba
- Mali International Center for Excellence in Research, University of Sciences, Technique and Technology of Bamako, Bamako, Mali
| | - Boubacar Traoré
- Mali International Center for Excellence in Research, University of Sciences, Technique and Technology of Bamako, Bamako, Mali
| | - Susan K Pierce
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852;
| |
Collapse
|
15
|
Jhaveri DT, Zheng L, Jaffee EM. Specificity delivers: therapeutic role of tumor antigen-specific antibodies in pancreatic cancer. Semin Oncol 2014; 41:559-75. [PMID: 25440603 DOI: 10.1053/j.seminoncol.2014.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is among the most deadly cancers with less than 5% of the patients living beyond 5 years post-diagnosis. Lack of early diagnostic biomarkers and resistance to current therapies help explain these disappointing numbers. Thus, more effective and better-targeted therapies are needed quickly. Monoclonal antibodies offer an attractive alternative targeted therapy option for PDA because they are highly specific and potent. However, currently available monoclonal antibody therapies for PDA are still in their infancy with a low success rate and low likelihood of being approved. The challenges faced by these therapies include the following: lack of predictive and response biomarkers, unfavorable safety profiles, expression of targets not restricted to the cancer cells, flawed preclinical model systems, drug resistance, and PDA's complex nature. Additionally, discovery of novel PDA-specific antigen targets, present on the cell surface or in the extracellular matrix, is needed. Predictive and response markers also need to be determined for PDA patient subgroups so that the most appropriate effective therapy can be delivered. Serologic approaches, recombinant antibody-producing technologies, and advances in antibody engineering techniques will help to identify these predictive biomarkers and aid in the development of new therapeutic antibodies. A combinatorial approach simultaneously targeting antigens on the PDA cell, stroma, and immunosuppressive cells should be employed.
Collapse
Affiliation(s)
- Darshil T Jhaveri
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD; Department of Oncology, the Sidney Kimmel Comprehensive Cancer Center and the Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Lei Zheng
- Department of Oncology, the Sidney Kimmel Comprehensive Cancer Center and the Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD.
| | - Elizabeth M Jaffee
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD; Department of Oncology, the Sidney Kimmel Comprehensive Cancer Center and the Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD.
| |
Collapse
|