1
|
Bustos C, Quezada J, Veas R, Altamirano C, Braun-Galleani S, Fickers P, Berrios J. Advances in Cell Engineering of the Komagataella phaffii Platform for Recombinant Protein Production. Metabolites 2022; 12:346. [PMID: 35448535 PMCID: PMC9027633 DOI: 10.3390/metabo12040346] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 12/11/2022] Open
Abstract
Komagataella phaffii (formerly known as Pichia pastoris) has become an increasingly important microorganism for recombinant protein production. This yeast species has gained high interest in an industrial setting for the production of a wide range of proteins, including enzymes and biopharmaceuticals. During the last decades, relevant bioprocess progress has been achieved in order to increase recombinant protein productivity and to reduce production costs. More recently, the improvement of cell features and performance has also been considered for this aim, and promising strategies with a direct and substantial impact on protein productivity have been reported. In this review, cell engineering approaches including metabolic engineering and energy supply, transcription factor modulation, and manipulation of routes involved in folding and secretion of recombinant protein are discussed. A lack of studies performed at the higher-scale bioreactor involving optimisation of cultivation parameters is also evidenced, which highlights new research aims to be considered.
Collapse
Affiliation(s)
- Cristina Bustos
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2362803, Chile; (C.B.); (J.Q.); (R.V.); (C.A.); (S.B.-G.)
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, Av. de la Faculté 2B, 5030 Gembloux, Belgium;
| | - Johan Quezada
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2362803, Chile; (C.B.); (J.Q.); (R.V.); (C.A.); (S.B.-G.)
| | - Rhonda Veas
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2362803, Chile; (C.B.); (J.Q.); (R.V.); (C.A.); (S.B.-G.)
| | - Claudia Altamirano
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2362803, Chile; (C.B.); (J.Q.); (R.V.); (C.A.); (S.B.-G.)
| | - Stephanie Braun-Galleani
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2362803, Chile; (C.B.); (J.Q.); (R.V.); (C.A.); (S.B.-G.)
| | - Patrick Fickers
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, Av. de la Faculté 2B, 5030 Gembloux, Belgium;
| | - Julio Berrios
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2362803, Chile; (C.B.); (J.Q.); (R.V.); (C.A.); (S.B.-G.)
| |
Collapse
|
2
|
Li S, Sun P, Gong X, Chang S, Li E, Xu Y, Wu J, Liu B. Engineering O-glycosylation in modified N-linked oligosaccharide (Man 12GlcNAc 2∼Man 16GlcNAc 2) Pichia pastoris strains. RSC Adv 2019; 9:8246-8252. [PMID: 35518704 PMCID: PMC9061240 DOI: 10.1039/c8ra08121b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/19/2019] [Indexed: 11/24/2022] Open
Abstract
Yeast have been engineered for the production of therapeutic glycoproteins with humanized N-linked oligosaccharides. Both N- and O-linked oligosaccharides engineered yeast have been attractive prospects, since yeast-specific O-mannosylated proteins were reported to induce an aberrant immune response and alter pharmacokinetics in vivo. In the present study, we genetically manipulated O-glycosylation by disrupting O-mannosyltransferase PMT1 and PMT5 in a low-mannose type N-linked oligosaccharide (Man12GlcNAc2∼Man16GlcNAc2) engineered Pichia pastoris strain to produce therapeutic glycoproteins. The O-mannosyltransferase PMT1 mutant produces anti-Her-2 antibodies with reduced O-linked oligosaccharides and protein degradation, but this strain exhibited growth defects. However, the deletion of O-mannosyltransferase PMT5 individually has a minimal effect on O-glycosylation, degradation of the anti-Her-2 antibody, and strain growth. Thus, by disrupting O-mannosyltransferase PMT1 in an N-glycosylation engineered Pichia pastoris strain, we generated an effective glycoengineered Pichia pastoris strain to effectively produce therapeutic glycoproteins with both engineered N- and O-linked oligosaccharides.
Collapse
Affiliation(s)
- Siqiang Li
- Beijing Institute of Biotechnology Beijing 100071 China +861063833521
- School of Biological and Food Engineering, Huanghuai University Zhumadian 463000 China
| | - Peng Sun
- Beijing Institute of Biotechnology Beijing 100071 China +861063833521
| | - Xin Gong
- Beijing Institute of Biotechnology Beijing 100071 China +861063833521
| | - Shaohong Chang
- Beijing Institute of Biotechnology Beijing 100071 China +861063833521
| | - Enzhong Li
- School of Biological and Food Engineering, Huanghuai University Zhumadian 463000 China
| | - Yuanhong Xu
- School of Biological and Food Engineering, Huanghuai University Zhumadian 463000 China
| | - Jun Wu
- Beijing Institute of Biotechnology Beijing 100071 China +861063833521
| | - Bo Liu
- Beijing Institute of Biotechnology Beijing 100071 China +861063833521
| |
Collapse
|
3
|
Jiang H, Horwitz AA, Wright C, Tai A, Znameroski EA, Tsegaye Y, Warbington H, Bower BS, Alves C, Co C, Jonnalagadda K, Platt D, Walter JM, Natarajan V, Ubersax JA, Cherry JR, Love JC. Challenging the workhorse: Comparative analysis of eukaryotic micro-organisms for expressing monoclonal antibodies. Biotechnol Bioeng 2019; 116:1449-1462. [PMID: 30739333 PMCID: PMC6836876 DOI: 10.1002/bit.26951] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/31/2019] [Accepted: 02/06/2019] [Indexed: 01/09/2023]
Abstract
For commercial protein therapeutics, Chinese hamster ovary (CHO) cells have an established history of safety, proven capability to express a wide range of therapeutic proteins and high volumetric productivities. Expanding global markets for therapeutic proteins and increasing concerns for broadened access of these medicines has catalyzed consideration of alternative approaches to this platform. Reaching these objectives likely will require an order of magnitude increase in volumetric productivity and a corresponding reduction in the costs of manufacture. For CHO-based manufacturing, achieving this combination of targeted improvements presents challenges. Based on a holistic analysis, the choice of host cells was identified as the single most influential factor for both increasing productivity and decreasing costs. Here we evaluated eight wild-type eukaryotic micro-organisms with prior histories of recombinant protein expression. The evaluation focused on assessing the potential of each host, and their corresponding phyla, with respect to key attributes relevant for manufacturing, namely (a) growth rates in industry-relevant media, (b) adaptability to modern techniques for genome editing, and (c) initial characterization of product quality. These characterizations showed that multiple organisms may be suitable for production with appropriate engineering and development and highlighted that yeast in general present advantages for rapid genome engineering and development cycles.
Collapse
Affiliation(s)
- Hanxiao Jiang
- Research and Development, Amyris Inc., Emeryville, California
| | | | - Chapman Wright
- Engineering & Technology, Biogen, Cambridge, Massachusetts
| | - Anna Tai
- Research and Development, Amyris Inc., Emeryville, California
| | | | - Yoseph Tsegaye
- Research and Development, Amyris Inc., Emeryville, California
| | | | | | | | - Carl Co
- Engineering & Technology, Biogen, Cambridge, Massachusetts
| | | | - Darren Platt
- Research and Development, Amyris Inc., Emeryville, California
| | | | | | | | - Joel R Cherry
- Research and Development, Amyris Inc., Emeryville, California
| | | |
Collapse
|
4
|
Everest-Dass AV, Moh ESX, Ashwood C, Shathili AMM, Packer NH. Human disease glycomics: technology advances enabling protein glycosylation analysis - part 2. Expert Rev Proteomics 2018. [PMID: 29521143 DOI: 10.1080/14789450.2018.1448710] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The changes in glycan structures have been attributed to disease states for several decades. The surface glycosylation pattern is a signature of physiological state of a cell. In this review we provide a link between observed substructural glycan changes and a range of diseases. Areas covered: We highlight biologically relevant glycan substructure expression in cancer, inflammation, neuronal diseases and diabetes. Furthermore, the alterations in antibody glycosylation in a disease context are described. Expert commentary: Advances in technologies, as described in Part 1 of this review have now enabled the characterization of specific glycan structural markers of a range of disease states. The requirement of including glycomics in cross-disciplinary omics studies, such as genomics, proteomics, epigenomics, transcriptomics and metabolomics towards a systems glycobiology approach to understanding disease mechanisms and management are highlighted.
Collapse
Affiliation(s)
- Arun V Everest-Dass
- a Faculty of Science and Engineering, Biomolecular Discovery and Design Research Centre , Macquarie University , Sydney , Australia.,b ARC Centre for Nanoscale BioPhotonics , Macquarie University , Sydney , Australia.,c Institute for Glycomics , Griffith University , Gold Coast , Australia
| | - Edward S X Moh
- a Faculty of Science and Engineering, Biomolecular Discovery and Design Research Centre , Macquarie University , Sydney , Australia.,b ARC Centre for Nanoscale BioPhotonics , Macquarie University , Sydney , Australia
| | - Christopher Ashwood
- a Faculty of Science and Engineering, Biomolecular Discovery and Design Research Centre , Macquarie University , Sydney , Australia.,b ARC Centre for Nanoscale BioPhotonics , Macquarie University , Sydney , Australia
| | - Abdulrahman M M Shathili
- a Faculty of Science and Engineering, Biomolecular Discovery and Design Research Centre , Macquarie University , Sydney , Australia.,b ARC Centre for Nanoscale BioPhotonics , Macquarie University , Sydney , Australia
| | - Nicolle H Packer
- a Faculty of Science and Engineering, Biomolecular Discovery and Design Research Centre , Macquarie University , Sydney , Australia.,b ARC Centre for Nanoscale BioPhotonics , Macquarie University , Sydney , Australia.,c Institute for Glycomics , Griffith University , Gold Coast , Australia
| |
Collapse
|
5
|
Shah KA, Clark JJ, Goods BA, Politano TJ, Mozdzierz NJ, Zimnisky RM, Leeson RL, Love JC, Love KR. Automated pipeline for rapid production and screening of HIV-specific monoclonal antibodies using pichia pastoris. Biotechnol Bioeng 2015; 112:2624-9. [PMID: 26032261 DOI: 10.1002/bit.25663] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 05/08/2015] [Accepted: 05/26/2015] [Indexed: 12/30/2022]
Abstract
Monoclonal antibodies (mAbs) that bind and neutralize human pathogens have great therapeutic potential. Advances in automated screening and liquid handling have resulted in the ability to discover antigen-specific antibodies either directly from human blood or from various combinatorial libraries (phage, bacteria, or yeast). There remain, however, bottlenecks in the cloning, expression and evaluation of such lead antibodies identified in primary screens that hinder high-throughput screening. As such, "hit-to-lead identification" remains both expensive and time-consuming. By combining the advantages of overlap extension PCR (OE-PCR) and a genetically stable yet easily manipulatable microbial expression host Pichia pastoris, we have developed an automated pipeline for the rapid production and screening of full-length antigen-specific mAbs. Here, we demonstrate the speed, feasibility and cost-effectiveness of our approach by generating several broadly neutralizing antibodies against human immunodeficiency virus (HIV).
Collapse
Affiliation(s)
- Kartik A Shah
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, 02139, Massachusetts
| | - John J Clark
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, 02139, Massachusetts
| | - Brittany A Goods
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, 02139, Massachusetts
| | - Timothy J Politano
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, 02139, Massachusetts
| | - Nicholas J Mozdzierz
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, 02139, Massachusetts
| | - Ross M Zimnisky
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, 02139, Massachusetts
| | - Rachel L Leeson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, 02139, Massachusetts
| | - J Christopher Love
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, 02139, Massachusetts. .,MIT Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, 02139, Massachusetts.
| | - Kerry R Love
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, 02139, Massachusetts. .,MIT Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, 02139, Massachusetts.
| |
Collapse
|
6
|
Abstract
While yeast are lower eukaryotic organisms, they share many common features and biological processes with higher eukaryotes. As such, yeasts have been used as model organisms to facilitate our understanding of such features and processes. To this end, a large number of powerful genetic tools have been developed to investigate and manipulate these organisms. Going hand-in-hand with these genetic tools is the ability to efficiently scale up the fermentation of these organisms, thus making them attractive hosts for the production of recombinant proteins. A key feature of producing recombinant proteins in yeast is that these proteins can be readily secreted into the culture supernatant, simplifying any downstream processing. A consequence of this secretion is that the proteins typically pass through the secretory pathway, during which they may be exposed to various posttranslational modifications. The addition of glycans is one such modification. Unfortunately, while certain aspects of glycosylation are shared between lower and higher eukaryotes, significant differences exist. Over the last two decades much research has focused on engineering the glycosylation pathways of yeast to more closely resemble those of higher eukaryotes, particularly those of humans for the production of therapeutic proteins. In the current review we shall highlight some of the key achievements in yeast glyco-engineering which have led to humanization of both the N- and O-linked glycosylation pathways.
Collapse
|
7
|
Meehl MA, Stadheim TA. Biopharmaceutical discovery and production in yeast. Curr Opin Biotechnol 2014; 30:120-7. [PMID: 25014890 DOI: 10.1016/j.copbio.2014.06.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/15/2014] [Accepted: 06/08/2014] [Indexed: 01/02/2023]
Abstract
The selection of an expression platform for recombinant biopharmaceuticals is often centered upon suitable product titers and critical quality attributes, including post-translational modifications. Although notable differences between microbial, yeast, plant, and mammalian host systems exist, recent advances have greatly mitigated any inherent liabilities of yeasts. Yeast expression platforms are important to both the supply of marketed biopharmaceuticals and the pipelines of novel therapeutics. In this review, recent advances in yeast-based expression of biopharmaceuticals will be discussed. The advantages of using glycoengineered yeast as a production host and in the discovery space will be illustrated. These advancements, in turn, are transforming yeast platforms from simple production systems to key technological assets in the discovery and selection of biopharmaceutical lead candidates.
Collapse
Affiliation(s)
- Michael A Meehl
- GlycoFi, Biologics Research, Merck & Co., Inc., 16 Cavendish Court, Lebanon, NH 03766, USA
| | - Terrance A Stadheim
- GlycoFi, Biologics Research, Merck & Co., Inc., 16 Cavendish Court, Lebanon, NH 03766, USA.
| |
Collapse
|