1
|
Veiga A, Foster O, Kaplan DL, Oliveira AL. Expanding the boundaries of silk sericin biomaterials in biomedical applications. J Mater Chem B 2024; 12:7020-7040. [PMID: 38935038 DOI: 10.1039/d4tb00386a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Silk sericin (SS) has a long history as a by-product of the textile industry. SS has emerged as a sustainable material for biomedical engineering due to its material properties including water solubility, diverse impact on biological activities including antibacterial and antioxidant properties, and ability to promote cell adhesion and proliferation. This review addresses the origin, structure, properties, extraction, and underlying functions of this protein. An overview of the growing research studies and market evolution is presented, along with highlights of the most common fabrication matrices (hydrogels, bioinks, porous and fibrous scaffolds) and tissue engineering applications. Finally, the future trends with this protein as a multifaceted toolbox for bioengineering are explored, along with the challenges with SS. Overall, the present review can serve as a foundation for the creation of innovative biomaterials utilizing SS as a fundamental building block that hold market potential.
Collapse
Affiliation(s)
- Anabela Veiga
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology & Energy, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA 02155, USA
| | - Olivia Foster
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA 02155, USA
| | - Ana Leite Oliveira
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
2
|
Song Y, Hu C, Wang Z, Wang L. Silk-based wearable devices for health monitoring and medical treatment. iScience 2024; 27:109604. [PMID: 38628962 PMCID: PMC11019284 DOI: 10.1016/j.isci.2024.109604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
Previous works have focused on enhancing the tensile properties, mechanical flexibility, biocompatibility, and biodegradability of wearable devices for real-time and continuous health management. Silk proteins, including silk fibroin (SF) and sericin, show great advantages in wearable devices due to their natural biodegradability, excellent biocompatibility, and low fabrication cost. Moreover, these silk proteins possess great potential for functionalization and are being explored as promising candidates for multifunctional wearable devices with sensory capabilities and therapeutic purposes. This review introduces current advancements in silk-based constituents used in the assembly of wearable sensors and adhesives for detecting essential physiological indicators, including metabolites in body fluids, body temperature, electrocardiogram (ECG), electromyogram (EMG), pulse, and respiration. SF and sericin play vital roles in addressing issues related to discomfort reduction, signal fidelity improvement, as well as facilitating medical treatment. These developments signify a transition from hospital-centered healthcare toward individual-centered health monitoring and on-demand therapeutic interventions.
Collapse
Affiliation(s)
- Yu Song
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chuting Hu
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lin Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
3
|
Sajeev-Sheeja A, Smorodina E, Zhang S. Structural bioinformatics studies of bacterial outer membrane beta-barrel transporters and their AlphaFold2 predicted water-soluble QTY variants. PLoS One 2023; 18:e0290360. [PMID: 37607179 PMCID: PMC10443868 DOI: 10.1371/journal.pone.0290360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/04/2023] [Indexed: 08/24/2023] Open
Abstract
Beta-barrel outer membrane proteins (OMP) are integral components of Gram-negative bacteria, eukaryotic mitochondria, and chloroplasts. They play essential roles in various cellular processes including nutrient transport, membrane stability, host-pathogen interactions, antibiotic resistance and more. The advent of AlphaFold2 for accurate protein structure predictions transformed structural bioinformatic studies. We previously used a QTY code to convert hydrophobic alpha-helices to hydrophilic alpha-helices in over 50 membrane proteins with all alpha-helices. The QTY code systematically replaces hydrophobic leucine (L), isoleucine (I), valine (V), and phenylalanine (F) with hydrophilic glutamine (Q), threonine (T), and tyrosine (Y). We here present a structural bioinformatic analysis of five outer membrane beta-barrel proteins with known molecular structures, including a) BamA, b) Omp85 (also called Sam50), c) FecA, d) Tsx, and e) OmpC. We superposed the structures of five native beta-barrel outer membrane proteins and their AlphaFold2-predicted corresponding QTY variant structures. The superposed structures of OMPs and their QTY variants exhibit remarkable structural similarity, as evidenced by residue mean square distance (RMSD) values between 0.206Å to 0.414Å despite the replacement of at least 22% (Transmembrane variation) of the amino acids in the transmembrane regions. We also show that native outer membrane proteins and QTY variants have different hydrophobicity patches. Our study provides important insights into the differences between hydrophobic and hydrophilic beta-barrels and validates the QTY code for studying beta-barrel membrane proteins and perhaps other hydrophobic aggregated proteins. Our findings demonstrate that the QTY code can be used as a simple tool for designing hydrophobic proteins in various biological contexts.
Collapse
Affiliation(s)
- Akash Sajeev-Sheeja
- Department of Chemistry, Indian Institute of Science Education and Research, Srinivasapuram, Yerpedu Mandal, Tirupati Dist, Tirupati, Andhra Pradesh, India
| | - Eva Smorodina
- Department of Immunology, Laboratory for Computational and Systems Immunology, University of Oslo, Oslo University Hospital, Oslo, Norway
| | - Shuguang Zhang
- Laboratory of Molecular Architecture, Media Lab, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| |
Collapse
|
4
|
Abbott A, Gravina ME, Vandadi M, Rahbar N, Coburn JM. Influence of lyophilization primary drying time and temperature on porous silk scaffold fabrication for biomedical applications. J Biomed Mater Res A 2023; 111:118-131. [PMID: 36205385 DOI: 10.1002/jbm.a.37451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 05/20/2022] [Accepted: 09/23/2022] [Indexed: 11/06/2022]
Abstract
Lyophilization of protein solutions, such as silk fibroin (silk), produces porous scaffolds useful for tissue engineering (TE). The impact of modifying lyophilization primary drying parameters on scaffold properties has not yet been explored previously. In this work, changes to primary drying duration and temperature were investigated using 3%, 6%, 9%, and 12% (w/v) silk solutions, via protocols labeled as Long Hold, Slow Ramp, and Standard. The 9% and 12% scaffolds were not successfully fabricated using the Standard protocol, while the Long Hold and Slow Ramp protocols resulted in scaffolds from all silk solution concentrations. Scaffolds fabricated using the Long Hold protocol had higher Young's moduli, smaller pore Feret diameters, and faster degradation. To investigate the utility of the different lyophilized scaffolds for in vitro cell culturing, the HepaRG liver cell line was cultured in the 3% to 12% scaffolds fabricated using the Long Hold protocol. The HepaRG cells grown in 3% scaffolds initially had greater lipid accumulation and metabolic activity than the other groups, although these differences were no longer apparent by Day 28. The deoxyribonucleic acid content of the HepaRG cells grown in 3% scaffold group was also initially significantly higher than the other groups. Significant differences in gene expression by 9% scaffolded HepaRG cells (CK19, HNFα) were seen on Day 14 while significant differences by 12% scaffolded HepaRG cells (ALB, APOA4) were seen on Day 28. Overall, modifying the primary drying parameters and silk concentration resulted in lyophilized scaffolds with tunable properties useful for TE applications.
Collapse
Affiliation(s)
- Alycia Abbott
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Mattea E Gravina
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Mobin Vandadi
- Department of Civil and Environmental Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Nima Rahbar
- Department of Civil and Environmental Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Jeannine M Coburn
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| |
Collapse
|
5
|
Ma R, Tang X, Wang M, Du Z, Chen S, Heng Y, Zhu L, Alifu N, Zhang X, Ma C. Clinical indocyanine green-based silk fibroin theranostic nanoprobes for in vivo NIR-I/II fluorescence imaging of cervical diseases. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 47:102615. [PMID: 36265558 DOI: 10.1016/j.nano.2022.102615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022]
Abstract
Cervical diseases such as lymph node disease and tubal obstruction have threatened women's health. However, the traditional diagnostic methods still have shortcomings. NIR-II fluorescence imaging with advantages of low scattering, negligible autofluorescence, and high spatial resolution could be an ideal option. To obtain high quality NIR-II fluorescence imaging, selecting appropriate nanoprobes becomes the important issue. As a small molecular photothermal agent, extensive applications of ICG are rather limited because of its drawbacks. Herein, natural silk fibroin (SF) was synthesized and encapsulated ICG molecules to form SF@ICG nanoparticles (NPs). After detailed analysis, SF@ICG NPs showed excellent stability and long circulation time, as well as strong NIR-II fluorescence emission, well photo-stability, biocompatibility and well photothermal property under 808 nm laser irradiation. Furthermore, SF@ICG NPs were utilized for NIR-II fluorescence imaging of lymph node/lymphangiography and angiography of fallopian tubes. The process of fallopian tubes could be detected with high resolution and high sensitivity.
Collapse
Affiliation(s)
- Rong Ma
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, People's Republic of China
| | - Xiaohui Tang
- School of Pharmacy, Xinjiang Medical University, Urumqi, People's Republic of China
| | - Mei Wang
- School of Pharmacy, Xinjiang Medical University, Urumqi, People's Republic of China
| | - Zhong Du
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, People's Republic of China
| | - Shuang Chen
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, People's Republic of China
| | - Youqiang Heng
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, People's Republic of China
| | - Lijun Zhu
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, People's Republic of China
| | - Nuernisha Alifu
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, People's Republic of China.
| | - Xueliang Zhang
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, People's Republic of China.
| | - Cailing Ma
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, People's Republic of China.
| |
Collapse
|
6
|
Materials Properties and Application Strategy for Ligament Tissue Engineering. J Med Biol Eng 2022. [DOI: 10.1007/s40846-022-00706-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Giannelli M, Guerrini A, Ballestri M, Aluigi A, Zamboni R, Sotgiu G, Posati T. Bioactive Keratin and Fibroin Nanoparticles: An Overview of Their Preparation Strategies. NANOMATERIALS 2022; 12:nano12091406. [PMID: 35564115 PMCID: PMC9104131 DOI: 10.3390/nano12091406] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 12/13/2022]
Abstract
In recent years, several studies have focused their attention on the preparation of biocompatible and biodegradable nanocarriers of potential interest in the biomedical field, ranging from drug delivery systems to imaging and diagnosis. In this regard, natural biomolecules—such as proteins—represent an attractive alternative to synthetic polymers or inorganic materials, thanks to their numerous advantages, such as biocompatibility, biodegradability, and low immunogenicity. Among the most interesting proteins, keratin extracted from wool and feathers, as well as fibroin extracted from Bombyx mori cocoons, possess all of the abovementioned features required for biomedical applications. In the present review, we therefore aim to give an overview of the most important and efficient methodologies for obtaining drug-loaded keratin and fibroin nanoparticles, and of their potential for biomedical applications.
Collapse
|
8
|
Lozano-Pérez AA, Pagán A, Zhurov V, Hudson SD, Hutter JL, Pruneri V, Pérez-Moreno I, Grbic' V, Cenis JL, Grbic' M, Aznar-Cervantes S. The silk of gorse spider mite Tetranychus lintearius represents a novel natural source of nanoparticles and biomaterials. Sci Rep 2020; 10:18471. [PMID: 33116211 PMCID: PMC7595037 DOI: 10.1038/s41598-020-74766-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/25/2020] [Indexed: 12/14/2022] Open
Abstract
Spider mites constitute an assemblage of well-known pests in agriculture, but are less known for their ability to spin silk of nanoscale diameters and high Young's moduli. Here, we characterize silk of the gorse spider mite Tetranychus lintearius, which produces copious amounts of silk with nano-dimensions. We determined biophysical characteristics of the silk fibres and manufactured nanoparticles and biofilm derived from native silk. We determined silk structure using attenuated total reflectance Fourier transform infrared spectroscopy, and characterized silk nanoparticles using field emission scanning electron microscopy. Comparative studies using T. lintearius and silkworm silk nanoparticles and biofilm demonstrated that spider mite silk supports mammalian cell growth in vitro and that fluorescently labelled nanoparticles can enter cell cytoplasm. The potential for cytocompatibility demonstrated by this study, together with the prospect of recombinant silk production, opens a new avenue for biomedical application of this little-known silk.
Collapse
Affiliation(s)
- Antonio Abel Lozano-Pérez
- Departmento de Biotecnología, Genómica y Mejora Vegetal, IMIDA, C/Mayor, s/n, 30150, La Alberca, Murcia, Spain.
| | - Ana Pagán
- Departmento de Biotecnología, Genómica y Mejora Vegetal, IMIDA, C/Mayor, s/n, 30150, La Alberca, Murcia, Spain
| | - Vladimir Zhurov
- Department of Biology, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Stephen D Hudson
- Department of Physics and Astronomy, The University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Jeffrey L Hutter
- Department of Physics and Astronomy, The University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Valerio Pruneri
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels, Barcelona, Spain
| | - Ignacio Pérez-Moreno
- Department of Agriculture and Food, University of La Rioja, C/Madre de Dios, 53, 26006, Logroño, La Rioja, Spain
| | - Vojislava Grbic'
- Department of Biology, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | - José Luis Cenis
- Departmento de Biotecnología, Genómica y Mejora Vegetal, IMIDA, C/Mayor, s/n, 30150, La Alberca, Murcia, Spain
| | - Miodrag Grbic'
- Department of Biology, The University of Western Ontario, London, ON, N6A 5B7, Canada.
- Department of Agriculture and Food, University of La Rioja, C/Madre de Dios, 53, 26006, Logroño, La Rioja, Spain.
- Department of Biology, University of Belgrade, Belgrade, Serbia.
| | - Salvador Aznar-Cervantes
- Departmento de Biotecnología, Genómica y Mejora Vegetal, IMIDA, C/Mayor, s/n, 30150, La Alberca, Murcia, Spain
| |
Collapse
|
9
|
Parrish J, Lim K, Zhang B, Radisic M, Woodfield TBF. New Frontiers for Biofabrication and Bioreactor Design in Microphysiological System Development. Trends Biotechnol 2019; 37:1327-1343. [PMID: 31202544 PMCID: PMC6874730 DOI: 10.1016/j.tibtech.2019.04.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 01/05/2023]
Abstract
Microphysiological systems (MPSs) have been proposed as an improved tool to recreate the complex biological features of the native niche with the goal of improving in vitro-in vivo extrapolation. In just over a decade, MPS technologies have progressed from single-tissue chips to multitissue plates with integrated pumps for perfusion. Concurrently, techniques for biofabrication of complex 3D constructs for regenerative medicine and 3D in vitro models have evolved into a diverse toolbox for micrometer-scale deposition of cells and cell-laden bioinks. However, as the complexity of biological models increases, experimental throughput is often compromised. This review discusses the existing disparity between MPS complexity and throughput, then examines an MPS-terminated biofabrication line to identify the hurdles and potential approaches to overcoming this disparity.
Collapse
Affiliation(s)
- Jonathon Parrish
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, New Zealand; New Zealand Medical Technologies Centre of Research Excellence (MedTech CoRE), Auckland, New Zealand
| | - Khoon Lim
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, New Zealand; New Zealand Medical Technologies Centre of Research Excellence (MedTech CoRE), Auckland, New Zealand
| | - Boyang Zhang
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
| | - Milica Radisic
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada; Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Toronto General Research Institute, University Health Network, Toronto, ON, Canada; The Heart and Stroke/Richard Lewar Centre of Excellence, Toronto, ON, Canada
| | - Tim B F Woodfield
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, New Zealand; New Zealand Medical Technologies Centre of Research Excellence (MedTech CoRE), Auckland, New Zealand.
| |
Collapse
|
10
|
Medronho B, Filipe A, Napso S, Khalfin RL, Pereira RFP, de Zea Bermudez V, Romano A, Cohen Y. Silk Fibroin Dissolution in Tetrabutylammonium Hydroxide Aqueous Solution. Biomacromolecules 2019; 20:4107-4116. [DOI: 10.1021/acs.biomac.9b00946] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bruno Medronho
- Faculty of Sciences and Technology (MeditBio), Ed. 8, University of Algarve, Campus de Gambelas, Faro 8005-139, Portugal
- FSCN, Surface and Colloid Engineering, Mid Sweden University, Sundsvall SE-851 70, Sweden
| | - Alexandra Filipe
- Faculty of Sciences and Technology (MeditBio), Ed. 8, University of Algarve, Campus de Gambelas, Faro 8005-139, Portugal
| | - Sofia Napso
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| | - Rafail. L. Khalfin
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| | - Rui F. P. Pereira
- Center of Chemistry and Department of Chemistry, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - Verónica de Zea Bermudez
- Department of Chemistry/CQ-VR, University of Trás-os-Montes e Alto Douro, Vila Real 5001-801, Portugal
| | - Anabela Romano
- Faculty of Sciences and Technology (MeditBio), Ed. 8, University of Algarve, Campus de Gambelas, Faro 8005-139, Portugal
| | - Yachin Cohen
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| |
Collapse
|
11
|
Banagozar Mohammadi A, Sadigh-Eteghad S, Torbati M, Bagher Fazljou SM, Vatandoust SM, Ej Golzari S, Farajdokht F, Mahmoudi J. Identification and applications of neuroactive silk proteins: a narrative review. J Appl Biomed 2019; 17:147-156. [PMID: 34907702 DOI: 10.32725/jab.2019.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 03/20/2019] [Indexed: 01/24/2023] Open
Abstract
In traditional medicine, natural silk is regarded as a cognitive enhancer and a cure for ameliorating the symptoms of heart disease, atherosclerosis, and metabolic disorders. In this review, general characteristics of both silk proteins, fibroin and sericin, extracted from silkworm Bombyx mori and their potential use in the neuronal disorders was discussed. Evidence shows that silk proteins exhibit neuroprotective effects in models of neurotoxicity. The antioxidant, neuroprotective, and acetylcholinesterase inhibitory mechanisms of silk proteins could prove promising in the treatment of neurodegenerative diseases. Owing to their excellent neurocompatibility and physicochemical properties, silk proteins have been used as scaffolds and drug delivery materials in the neuronal tissue engineering. These data support the potential of silk proteins as an effective complementary agent for central and peripheral neurological disorders.
Collapse
Affiliation(s)
- Ahad Banagozar Mohammadi
- Tabriz University of Medical Sciences, Faculty of Traditional Medicine, Department of Traditional Medicine, Tabriz, Iran.,Tabriz University of Medical Sciences, Neurosciences Research Center (NSRC), Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Tabriz University of Medical Sciences, Neurosciences Research Center (NSRC), Tabriz, Iran
| | - Mohammadali Torbati
- Tabriz University of Medical Sciences, Faculty of Nutrition, Department of Food Science and Technology, Tabriz, Iran
| | - Seyyed Mohammad Bagher Fazljou
- Tabriz University of Medical Sciences, Faculty of Traditional Medicine, Department of Traditional Medicine, Tabriz, Iran
| | - Seyed Mehdi Vatandoust
- Tabriz University of Medical Sciences, Neurosciences Research Center (NSRC), Tabriz, Iran
| | - Samad Ej Golzari
- Tabriz University of Medical Sciences, Research Center for Evidence Based Medicine, Tabriz, Iran.,Tabriz University of Medical Sciences, Health Management and Safety Promotion Research Institute, Road Traffic Injury Research Center, Tabriz, Iran
| | - Fereshteh Farajdokht
- Tabriz University of Medical Sciences, Neurosciences Research Center (NSRC), Tabriz, Iran
| | - Javad Mahmoudi
- Tabriz University of Medical Sciences, Neurosciences Research Center (NSRC), Tabriz, Iran
| |
Collapse
|
12
|
Ageitos JM, Pulgar A, Csaba N, Garcia-Fuentes M. Study of nanostructured fibroin/dextran matrixes for controlled protein release. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.02.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
13
|
Abbott A, Oxburgh L, Kaplan DL, Coburn JM. Avidin Adsorption to Silk Fibroin Films as a Facile Method for Functionalization. Biomacromolecules 2018; 19:3705-3713. [PMID: 30041518 DOI: 10.1021/acs.biomac.8b00824] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Silk fibroin biomaterials are highly versatile in terms of materials formation and functionalization, with applications in tissue engineering and drug delivery, but necessitate modifications for optimized biological activity. Herein, a facile, avidin-based technique is developed to noncovalently functionalize silk materials with bioactive molecules. The ability to adsorb avidin to silk surfaces and subsequently couple biotinylated macromolecules via avidin-biotin interaction is described. This method better preserved functionality than standard covalent coupling techniques using carbodiimide cross-linking chemistry. The controlled release of avidin from the silk surface was demonstrated by altering the adsorption parameters. Application of this technique to culturing human foreskin fibroblasts (hFFs) and human mesenchymal stem cells (hMSCs) on arginine-glycine-aspartic-acid-modified (RGD-modified) silk showed increased cell growth over a seven-day period. This technique provides a facile method for the versatile functionalization of silk materials for biomedical applications including tissue engineering, drug delivery, and biological sensing.
Collapse
Affiliation(s)
- Alycia Abbott
- Worcester Polytechnic Institute , Worcester , Massachusetts 01605 , United States
| | - Leif Oxburgh
- Maine Medical Center Research Institute , Scarborough , Maine 04074 , United States
| | - David L Kaplan
- Tufts University , Medford , Massachusetts 02155 , United States
| | - Jeannine M Coburn
- Worcester Polytechnic Institute , Worcester , Massachusetts 01605 , United States.,Tufts University , Medford , Massachusetts 02155 , United States
| |
Collapse
|
14
|
Ashari N, Pang HW, Simon T, Xiong Y, Coburn JM, Bromberg JS, Kaplan DL, McLenithan J, Fontaine MJ. Silk fibroin preserves beta cell function under inflammatory stress while stimulating islet cell surface GLUT2 expression. Cell Immunol 2018; 329:10-16. [PMID: 29661473 DOI: 10.1016/j.cellimm.2018.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/08/2018] [Accepted: 04/08/2018] [Indexed: 12/16/2022]
Abstract
Silk fibroin is a novel biomaterial for enhancing transplanted islet cell function and survival. This study investigated whether silk fibroin may have unique properties that improve islet function in the face of inflammatory-mediated stress during transplantation. Murine islet function was tested in vitro with either silk fibroin or alginate and challenged with inflammatory cytokines. The glucose-stimulated insulin secretion index for all conditions decreased with inflammatory cytokines, but was better preserved for islets exposed to silk compared to those exposed to alginate or medium. GLUT2 transporter expression on the cell surface of islets exposed to silk was increased compared to alginate or medium alone. Upon cytokine stress, a greater percentage of islet cells exposed to silk expressed GLUT2 on their surface. We conclude that preconditioning islets with silk fibroin stimulates islet cell surface GLUT2 expression, an increase, which persists under inflammatory stress, and may improve islet engraftment and function after transplantation.
Collapse
Affiliation(s)
- N Ashari
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - H W Pang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - T Simon
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Y Xiong
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - J M Coburn
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - J S Bromberg
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - D L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - J McLenithan
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - M J Fontaine
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
15
|
Pereira RFP, Brito-Pereira R, Gonçalves R, Silva MP, Costa CM, Silva MM, de Zea Bermudez V, Lanceros-Méndez S. Silk Fibroin Separators: A Step Toward Lithium-Ion Batteries with Enhanced Sustainability. ACS APPLIED MATERIALS & INTERFACES 2018; 10:5385-5394. [PMID: 29369609 DOI: 10.1021/acsami.7b13802] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Battery separators based on silk fibroin (SF) have been prepared aiming at improving the environmental issues of lithium-ion batteries. SF materials with three different morphologies were produced: membrane films (SF-F), sponges prepared by lyophilization (SF-L), and electrospun membranes (SF-E). The latter materials presented a suitable porous three-dimensional microstructure and were soaked with a 1 M LiPF6 electrolyte. The ionic conductivities for SF-L and SF-E were 1.00 and 0.32 mS cm-1 at 20 °C, respectively. A correlation between the fraction of β-sheet conformations and the ionic conductivity was observed. The electrochemical performance of the SF-based materials was evaluated by incorporating them in cathodic half-cells with C-LiFePO4. The discharge capacities of SF-L and SF-E were 126 and 108 mA h g-1, respectively, at the C/2-rate and 99 and 54 mA h g-1, respectively, at the 2C-rate. Furthermore, the capacity retention and capacity fade of the SF-L membrane after 50 cycles at the 2C-rate were 72 and 5%, respectively. These electrochemical results show that a high percentage of β-sheet conformations were of prime importance to guarantee excellent cycling performance. This work demonstrates that SF-based membranes are appropriate separators for the production of environmentally friendlier lithium-ion batteries.
Collapse
Affiliation(s)
- Rui F P Pereira
- Departamento de Química, Universidade de Trás-os-Montes e Alto Douro , 5001-801 Vila Real, Portugal
| | | | | | - Marco P Silva
- C-MAST-Centre for Mechanical and Aerospace Science and Technologies, Universidade da Beira Interior , 6200-001 Covilhã, Portugal
| | | | | | - Verónica de Zea Bermudez
- Departamento de Química, Universidade de Trás-os-Montes e Alto Douro , 5001-801 Vila Real, Portugal
- CQ-VR Universidade de Trás-os-Montes e Alto Douro , 5001-801 Vila Real, Portugal
| | - Senentxu Lanceros-Méndez
- BCMaterials, Parque Científico y Tecnológico de Bizkaia , 48160 Derio, Spain
- IKERBASQUE, Basque Foundation for Science , Bilbao 48013, Spain
| |
Collapse
|
16
|
Choi SM, Chaudhry P, Zo SM, Han SS. Advances in Protein-Based Materials: From Origin to Novel Biomaterials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1078:161-210. [PMID: 30357624 DOI: 10.1007/978-981-13-0950-2_10] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Biomaterials play a very important role in biomedicine and tissue engineering where they directly affect the cellular activities and their microenvironment . Myriad of techniques have been employed to fabricate a vast number natural, artificial and recombinant polymer s in order to harness these biomaterials in tissue regene ration , drug delivery and various other applications. Despite of tremendous efforts made in this field during last few decades, advanced and new generation biomaterials are still lacking. Protein based biomaterials have emerged as an attractive alternatives due to their intrinsic properties like cell to cell interaction , structural support and cellular communications. Several protein based biomaterials like, collagen , keratin , elastin , silk protein and more recently recombinant protein s are being utilized in a number of biomedical and biotechnological processes. These protein-based biomaterials have enormous capabilities, which can completely revolutionize the biomaterial world. In this review, we address an up-to date review on the novel, protein-based biomaterials used for biomedical field including tissue engineering, medical science, regenerative medicine as well as drug delivery. Further, we have also emphasized the novel fabrication techniques associated with protein-based materials and implication of these biomaterials in the domain of biomedical engineering .
Collapse
Affiliation(s)
- Soon Mo Choi
- Regional Research Institute for Fiber&Fashion Materials, Yeungnam University, Gyeongsan, South Korea
| | - Prerna Chaudhry
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Sun Mi Zo
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea.
| |
Collapse
|
17
|
Wei G, Wang L, Dong D, Teng Z, Shi Z, Wang K, An G, Guan Y, Han B, Yao M, Xian CJ. Promotion of cell growth and adhesion of a peptide hydrogel scaffold via mTOR/cadherin signaling. J Cell Physiol 2017; 233:822-829. [PMID: 28213972 DOI: 10.1002/jcp.25864] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 02/16/2017] [Indexed: 01/03/2023]
Abstract
Understanding neurite outgrowth, orientation, and migration is important for the design of biomaterials that interface with the neural tissue. However, the molecular signaling alternations have not been well elucidated to explain the impact of hydrogels on cell morphology. In our previous studies, a silk fibroin peptide (SF16) hydrogel was found to be an effective matrix for the viability, morphology, and proliferation of PC12 rat pheocrhomocytoma cells. We found that PC12 cells in the peptide hydrogel exhibited adhesive morphology compared to those cultured in agarose or collagen. Moreover, we identified that cell adhesion molecules (E- and N-cadherin) controlled by mTOR signaling were highly induced in PC12 cells cultured in the SF16 peptide hydrogel. Our findings suggest that the SF16 peptide might be suitable to be a cell-adhesion material in cell culture or tissue engineering, and mTOR/cadherin signaling is required for the cell adhesion in the SF16-peptide hydrogel.
Collapse
Affiliation(s)
- Guojun Wei
- Department of Orthopaedics, The 1st Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Liping Wang
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Austrslia, Australia
| | - Daming Dong
- Department of Orthopaedics, The 1st Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhaowei Teng
- Department of Orthopedics, The People's Hospital of Yuxi City, The 6th Affiliated Hospital of Kunming Medical University, Yuxi, Yunan, China
| | - Zuowei Shi
- Department of Orthopaedics, The 1st Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kaifu Wang
- Department of Orthopaedics, The 1st Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Gang An
- Department of Orthopaedics, The 1st Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ying Guan
- Department of Orthopaedics, The 1st Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bo Han
- Department of Orthopaedics, The 1st Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Meng Yao
- Department of Orthopaedics, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Cory J Xian
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Austrslia, Australia
| |
Collapse
|
18
|
Font Tellado S, Bonani W, Balmayor ER, Foehr P, Motta A, Migliaresi C, van Griensven M. * Fabrication and Characterization of Biphasic Silk Fibroin Scaffolds for Tendon/Ligament-to-Bone Tissue Engineering. Tissue Eng Part A 2017; 23:859-872. [PMID: 28330431 DOI: 10.1089/ten.tea.2016.0460] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Tissue engineering is an attractive strategy for tendon/ligament-to-bone interface repair. The structure and extracellular matrix composition of the interface are complex and allow for a gradual mechanical stress transfer between tendons/ligaments and bone. Thus, scaffolds mimicking the structural features of the native interface may be able to better support functional tissue regeneration. In this study, we fabricated biphasic silk fibroin scaffolds designed to mimic the gradient in collagen molecule alignment present at the interface. The scaffolds had two different pore alignments: anisotropic at the tendon/ligament side and isotropic at the bone side. Total porosity ranged from 50% to 80% and the majority of pores (80-90%) were <100-300 μm. Young's modulus varied from 689 to 1322 kPa depending on the type of construct. In addition, human adipose-derived mesenchymal stem cells were cultured on the scaffolds to evaluate the effect of pore morphology on cell proliferation and gene expression. Biphasic scaffolds supported cell attachment and influenced cytoskeleton organization depending on pore alignment. In addition, the gene expression of tendon/ligament, enthesis, and cartilage markers significantly changed depending on pore alignment in each region of the scaffolds. In conclusion, the biphasic scaffolds fabricated in this study show promising features for tendon/ligament-to-bone tissue engineering.
Collapse
Affiliation(s)
- Sònia Font Tellado
- 1 Department of Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich , Munich, Germany
| | - Walter Bonani
- 2 Department of Industrial Engineering, BIOtech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Trento , Trento, Italy .,3 Trento Research Unit, INSTM-National Interuniversity Consortium of Materials Science and Technology , Trento, Italy
| | - Elizabeth R Balmayor
- 1 Department of Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich , Munich, Germany
| | - Peter Foehr
- 4 Department of Orthopaedics and Sports Orthopaedics, Klinikum rechts der Isar, Technical University of Munich , Munich, Germany
| | - Antonella Motta
- 2 Department of Industrial Engineering, BIOtech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Trento , Trento, Italy
| | - Claudio Migliaresi
- 2 Department of Industrial Engineering, BIOtech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Trento , Trento, Italy .,3 Trento Research Unit, INSTM-National Interuniversity Consortium of Materials Science and Technology , Trento, Italy
| | - Martijn van Griensven
- 1 Department of Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich , Munich, Germany
| |
Collapse
|
19
|
Mitropoulos AN, Marelli B, Perotto G, Amsden J, Kaplan DL, Omenetto FG. Towards the fabrication of biohybrid silk fibroin materials: entrapment and preservation of chloroplast organelles in silk fibroin films. RSC Adv 2016. [DOI: 10.1039/c6ra13228f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chloroplasts extracted from spinach leaves were entrapped in B. mori silk fibroin films to investigate the maintenance of their photosynthetic activity in a dry environment.
Collapse
Affiliation(s)
| | | | | | - Jason Amsden
- Department
- of Biomedical Engineering
- Tufts University
- Medford
- USA
| | - David L. Kaplan
- Department
- of Biomedical Engineering
- Tufts University
- Medford
- USA
| | | |
Collapse
|
20
|
Mitropoulos AN, Marelli B, Ghezzi CE, Applegate MB, Partlow BP, Kaplan DL, Omenetto FG. Transparent, Nanostructured Silk Fibroin Hydrogels with Tunable Mechanical Properties. ACS Biomater Sci Eng 2015; 1:964-970. [PMID: 33429527 DOI: 10.1021/acsbiomaterials.5b00215] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Silk fibroin from the Bombyx mori caterpillar has been processed into many material forms, with potential applications in areas ranging from optoelectronics to tissue engineering. As a hydrogel, silk fibroin has been engineered as a substrate for the regeneration of soft tissues where hydration and mechanical compatibility are necessary. Current fabrication of silk fibroin hydrogels produces microstructured materials that lack transparency and limits the ability to fully exploit the hydrogel form. Transparency is the main characteristic of some human tissues (e.g., cornea) where silk fibroin in the film format has shown potential as scaffolding material, however, lacking the necessary hydration and successful attachment of cells without biochemical functionalization. Additionally, detection using light is an important method to translate information for instruction, sensing, and visualization of biological entities and light sensitive molecules. Here, we introduce a method for the fabrication of transparent silk hydrogels by driving the formation of nanostructures in the silk fibroin material. These nanostructures are formed by exposing silk solution (concentration below 15 mg/mL) to organic solvents that induce the amorphous to crystalline transition of the protein and indeed the sol-gel transition of the material. We have also explored a process to modulate the mechanical properties of silk fibroin hydrogel within the physiological range by controlling the amount of metal ions present in the protein structure. Nanostructured silk fibroin hydrogels are biocompatible and allow for attachment and proliferation of human dermal fibroblasts without any biochemical functionalization. In addition, seeding of human cornea epithelial cells (HCECs) on the hydrogel surface results in the formation of an epithelium, which does not alter the gels' transparency and shows biological properties that challenge the performances of HCECs seeded in collagen hydrogels, the current standard material for the engineering of corneal tissue.
Collapse
Affiliation(s)
- Alexander N Mitropoulos
- Department of Biomedical Engineering and §Department of Physics, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Benedetto Marelli
- Department of Biomedical Engineering and Department of Physics, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Chiara E Ghezzi
- Department of Biomedical Engineering and Department of Physics, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Matthew B Applegate
- Department of Biomedical Engineering and Department of Physics, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Benjamin P Partlow
- Department of Biomedical Engineering and Department of Physics, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - David L Kaplan
- Department of Biomedical Engineering and Department of Physics, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Fiorenzo G Omenetto
- Department of Biomedical Engineering and Department of Physics, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| |
Collapse
|
21
|
Supracolloidal Assemblies as Sacrificial Templates for Porous Silk-Based Biomaterials. Int J Mol Sci 2015; 16:20511-22. [PMID: 26343650 PMCID: PMC4613216 DOI: 10.3390/ijms160920511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 08/18/2015] [Accepted: 08/19/2015] [Indexed: 11/17/2022] Open
Abstract
Tissues in the body are hierarchically structured composite materials with tissue-specific properties. Urea self-assembles via hydrogen bonding interactions into crystalline supracolloidal assemblies that can be used to impart macroscopic pores to polymer-based tissue scaffolds. In this communication, we explain the solvent interactions governing the solubility of urea and thereby the scope of compatible polymers. We also highlight the role of solvent interactions on the morphology of the resulting supracolloidal crystals. We elucidate the role of polymer-urea interactions on the morphology of the pores in the resulting biomaterials. Finally, we demonstrate that it is possible to use our urea templating methodology to prepare Bombyx mori silk protein-based biomaterials with pores that human dermal fibroblasts respond to by aligning with the long axis of the pores. This methodology has potential for application in a variety of different tissue engineering niches in which cell alignment is observed, including skin, bone, muscle and nerve.
Collapse
|
22
|
Stoppel WL, Ghezzi CE, McNamara SL, Black LD, Kaplan DL. Clinical applications of naturally derived biopolymer-based scaffolds for regenerative medicine. Ann Biomed Eng 2015; 43:657-80. [PMID: 25537688 PMCID: PMC8196399 DOI: 10.1007/s10439-014-1206-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 11/26/2014] [Indexed: 01/05/2023]
Abstract
Naturally derived polymeric biomaterials, such as collagens, silks, elastins, alginates, and fibrins are utilized in tissue engineering due to their biocompatibility, bioactivity, and tunable mechanical and degradation kinetics. The use of these natural biopolymers in biomedical applications is advantageous because they do not release cytotoxic degradation products, are often processed using environmentally-friendly aqueous-based methods, and their degradation rates within biological systems can be manipulated by modifying the starting formulation or processing conditions. For these reasons, many recent in vivo investigations and FDA-approval of new biomaterials for clinical use have utilized natural biopolymers as matrices for cell delivery and as scaffolds for cell-free support of native tissues. This review highlights biopolymer-based scaffolds used in clinical applications for the regeneration and repair of native tissues, with a focus on bone, skeletal muscle, peripheral nerve, cardiac muscle, and cornea substitutes.
Collapse
Affiliation(s)
- Whitney L. Stoppel
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Chiara E. Ghezzi
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Stephanie L. McNamara
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
- Cellular, Molecular and Developmental Biology Program, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
- The Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, MA 02115, USA
| | - Lauren D. Black
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
- Cellular, Molecular and Developmental Biology Program, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
23
|
Pina S, Oliveira JM, Reis RL. Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:1143-1169. [PMID: 25580589 DOI: 10.1002/adma.201403354] [Citation(s) in RCA: 513] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 10/14/2014] [Indexed: 06/04/2023]
Abstract
Tissue engineering and regenerative medicine has been providing exciting technologies for the development of functional substitutes aimed to repair and regenerate damaged tissues and organs. Inspired by the hierarchical nature of bone, nanostructured biomaterials are gaining a singular attention for tissue engineering, owing their ability to promote cell adhesion and proliferation, and hence new bone growth, compared with conventional microsized materials. Of particular interest are nanocomposites involving biopolymeric matrices and bioactive nanosized fillers. Biodegradability, high mechanical strength, and osteointegration and formation of ligamentous tissue are properties required for such materials. Biopolymers are advantageous due to their similarities with extracellular matrices, specific degradation rates, and good biological performance. By its turn, calcium phosphates possess favorable osteoconductivity, resorbability, and biocompatibility. Herein, an overview on the available natural polymer/calcium phosphate nanocomposite materials, their design, and properties is presented. Scaffolds, hydrogels, and fibers as biomimetic strategies for tissue engineering, and processing methodologies are described. The specific biological properties of the nanocomposites, as well as their interaction with cells, including the use of bioactive molecules, are highlighted. Nanocomposites in vivo studies using animal models are also reviewed and discussed.
Collapse
Affiliation(s)
- Sandra Pina
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909, Caldas das Taipas, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | | | |
Collapse
|
24
|
Panda NN, Biswas A, Pramanik K, Jonnalagadda S. Enhanced osteogenic potential of human mesenchymal stem cells on electrospun nanofibrous scaffolds prepared from eri-tasar silk fibroin. J Biomed Mater Res B Appl Biomater 2014; 103:971-82. [DOI: 10.1002/jbm.b.33272] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 07/09/2014] [Accepted: 08/06/2014] [Indexed: 12/15/2022]
Affiliation(s)
- Niladri nath Panda
- Department of Biotechnology and Medical Engineering; National Institute of Technology; Rourkela-769008 Odisha India
| | - Amit Biswas
- Department of Biotechnology and Medical Engineering; National Institute of Technology; Rourkela-769008 Odisha India
| | - Krishna Pramanik
- Department of Biotechnology and Medical Engineering; National Institute of Technology; Rourkela-769008 Odisha India
| | - Sriramakamal Jonnalagadda
- Department of Pharmaceutical Sciences; Philadelphia College of Pharmacy; USciences Philadelphia Pennsylvania 19104
| |
Collapse
|
25
|
Wei GJ, Yao M, Wang YS, Zhou CW, Wan DY, Lei PZ, Wen J, Lei HW, Dong DM. Promotion of peripheral nerve regeneration of a peptide compound hydrogel scaffold. Int J Nanomedicine 2013; 8:3217-25. [PMID: 24009419 PMCID: PMC3758218 DOI: 10.2147/ijn.s43681] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Peripheral nerve injury is a common trauma, but presents a significant challenge to the clinic. Silk-based materials have recently become an important biomaterial for tissue engineering applications due to silk's biocompatibility and impressive mechanical and degradative properties. In the present study, a silk fibroin peptide (SF16) was designed and used as a component of the hydrogel scaffold for the repair of peripheral nerve injury. METHODS The SF16 peptide's structure was characterized using spectrophotometry and atomic force microscopy, and the SF16 hydrogel was analyzed using scanning electron microscopy. The effects of the SF16 hydrogel on the viability and growth of live cells was first assessed in vitro, on PC12 cells. The in vivo test model involved the repair of a nerve gap with tubular nerve guides, through which it was possible to identify if the SF16 hydrogel would have the potential to enhance nerve regeneration. In this model physiological saline was set as the negative control, and collagen as the positive control. Walking track analysis and electrophysiological methods were used to evaluate the functional recovery of the nerve at 4 and 8 weeks after surgery. RESULTS Analysis of the SF16 peptide's characteristics indicated that it consisted of a well-defined secondary structure and exhibited self-assembly. Results of scanning electron microscopy showed that the peptide based hydrogel may represent a porous scaffold that is viable for repair of peripheral nerve injury. Analysis of cell culture also supported that the hydrogel was an effective matrix to maintain the viability, morphology and proliferation of PC12 cells. Electrophysiology demonstrated that the use of the hydrogel scaffold (SF16 or collagen) resulted in a significant improvement in amplitude recovery in the in vivo model compared to physiological saline. Moreover, nerve cells in the SF16 hydrogel group displayed greater axon density, larger average axon diameter and thicker myelin compared to those of the group that received physiological saline. CONCLUSION The SF16 hydrogel scaffold may promote excellent axonal regeneration and functional recovery after peripheral nerve injury, and the SF16 peptide may be a candidate for nerve tissue engineering applications.
Collapse
Affiliation(s)
- Guo-Jun Wei
- Department of Orthopaedics, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|