1
|
Arakil N, Akhund SA, Elaasser B, Mohammad KS. Intersecting Paths: Unraveling the Complex Journey of Cancer to Bone Metastasis. Biomedicines 2024; 12:1075. [PMID: 38791037 PMCID: PMC11117796 DOI: 10.3390/biomedicines12051075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/27/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
The phenomenon of bone metastases presents a significant challenge within the context of advanced cancer treatments, particularly pertaining to breast, prostate, and lung cancers. These metastatic occurrences stem from the dissemination of cancerous cells into the bone, thereby interrupting the equilibrium between osteoblasts and osteoclasts. Such disruption results in skeletal complications, adversely affecting patient morbidity and quality of life. This review discusses the intricate interplay between cancer cells and the bone microenvironment, positing the bone not merely as a passive recipient of metastatic cells but as an active contributor to cancer progression through its distinctive biochemical and cellular makeup. A thorough examination of bone structure and the dynamics of bone remodeling is undertaken, elucidating how metastatic cancer cells exploit these processes. This review explores the genetic and molecular pathways that underpin the onset and development of bone metastases. Particular emphasis is placed on the roles of cytokines and growth factors in facilitating osteoclastogenesis and influencing osteoblast activity. Additionally, this paper offers a meticulous critique of current diagnostic methodologies, ranging from conventional radiography to advanced molecular imaging techniques, and discusses the implications of a nuanced understanding of bone metastasis biology for therapeutic intervention. This includes the development of targeted therapies and strategies for managing bone pain and other skeletal-related events. Moreover, this review underscores the imperative of ongoing research efforts aimed at identifying novel therapeutic targets and refining management approaches for bone metastases. It advocates for a multidisciplinary strategy that integrates advancements in medical oncology and radiology with insights derived from molecular biology and genetics, to enhance prognostic outcomes and the quality of life for patients afflicted by this debilitating condition. In summary, bone metastases constitute a complex issue that demands a comprehensive and informed approach to treatment. This article contributes to the ongoing discourse by consolidating existing knowledge and identifying avenues for future investigation, with the overarching objective of ameliorating patient care in the domain of oncology.
Collapse
Affiliation(s)
| | | | | | - Khalid S. Mohammad
- Department of Anatomy, College of Medicine, Alfaisal University, Riyadh 1153, Saudi Arabia; (N.A.); (S.A.A.); (B.E.)
| |
Collapse
|
2
|
Ameen S, Zaman U, AlSalem HS, Alhawiti AS, Alanazi AN, Zghab I, Alissa M, Alghamdi SA, Naz R, Rehman KU. Isolation and biochemical characterization of novel acid phosphatase and zinc-dependent acid phosphatase from the chicken's brain. Int J Biol Macromol 2024; 266:131339. [PMID: 38574925 DOI: 10.1016/j.ijbiomac.2024.131339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/18/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
The AcPase exhibits a specific activity of 31.32 U/mg of protein with a 728-fold purification, and the yield of the enzyme is raised to 3.15 %. The Zn2+-dependent AcPase showed a purification factor of 1.34 specific activity of 14 U/mg of proteins and a total recovery of 5.14. The SDS-PAGE showed a single band corresponding to a molecular weight of 18 kDa of AcPase and 29 kDa of Zn2+-dependent AcPase. The AcPase enzyme has shown a wide range of substrate specificity for p-NPP, phenyl phosphate and FMN, while in the case of ZnAcPase α and β-Naphthyl phosphate and p-NPP were proved to be superior substrates. The divalent metal ions like Mg2+, Mn2+, and Ca2+ increased the activity, while other substrates decreased the enzyme activity. The Km (0.14 mM) and Vmax (21 μmol/min/mg) values of AcPase were higher than those of Zn2+-AcPase (Km = 0.5 mM; Vmax = 9.7 μmol/min/mg). The Zn2+ ions activate the Zn2+-AcPase while Fe3+, Al3+, Pb2+, and Hg2+ showed inhibition on enzyme activity. Molybdate, vanadate and phosphate were found to be competitive inhibitors of AcPase with Ki values 316 μM, 185 μM, and 1.6 mM, while in Zn2+-AcPase tartrate and phosphate also showed competitive inhibition with Ki values 3 mM and 0.5 mM respectively.
Collapse
Affiliation(s)
- Shazia Ameen
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan 29050, KPK, Pakistan
| | - Umber Zaman
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan 29050, KPK, Pakistan
| | - Huda Salem AlSalem
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Aliyah S Alhawiti
- Department of chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Amal N Alanazi
- Department of Chemistry, Khafji University College, University of Hafr Al Batin, Saudi Arabia
| | - Imen Zghab
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Kingdom of Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Suad A Alghamdi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Rubina Naz
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan 29050, KPK, Pakistan
| | - Khalil Ur Rehman
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan 29050, KPK, Pakistan.
| |
Collapse
|
3
|
Hanley PJ. Elusive physiological role of prostatic acid phosphatase (PAP): generation of choline for sperm motility via auto-and paracrine cholinergic signaling. Front Physiol 2023; 14:1327769. [PMID: 38187135 PMCID: PMC10766772 DOI: 10.3389/fphys.2023.1327769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024] Open
Abstract
Prostatic acid phosphatase (PAP) exists as two splice variants, secreted PAP and transmembrane PAP, the latter of which is implicated in antinociceptive signaling in dorsal root ganglia. However, PAP is predominantly expressed in the prostate gland and the physiological role of seminal PAP, first identified in 1938, is largely unknown. Here, the author proposes that PAP, following ejaculation, functions to hydrolyze phosphocholine (PC) in seminal fluid and generate choline, which is imported by sperm via a choline transporter and converted to acetylcholine (ACh) by choline acetyltransferase. Auto- and paracrine cholinergic signaling, or choline directly, may subsequently stimulate sperm motility via α7 nicotinic ACh receptors (nAChRs) and contractility of the female reproductive tract through muscarinic ACh receptors (mAChRs). Consistent with a role of PAP in cholinergic signaling, 1) seminal vesicles secrete PC, 2) the prostate gland secretes PAP, 3) PAP specifically catalyzes the hydrolysis of PC into inorganic phosphate and choline, 4) seminal choline levels increase post-ejaculation, 5) pharmacological inhibition of choline acetyltransferase inhibits sperm motility, 6) inhibition or genetic deletion of α7 nAChRs impairs sperm motility, and 7) mAChRs are expressed in the uterus and oviduct (fallopian tube). Notably, PAP does not degrade glycerophosphocholine (GPC), the predominant choline source in the semen of rats and other mammals. Instead, uterine GPC phosphodiesterases may liberate choline from seminal GPC. In summary, the author deduces that PAP in humans, and uterine GPC phosphodiesterases in other mammals, function to generate choline for sperm cholinergic signaling, which promotes sperm motility and possibly contractility of the female reproductive tract.
Collapse
Affiliation(s)
- Peter J. Hanley
- IMM Institute for Molecular Medicine, HMU Health and Medical University Potsdam, Potsdam, Germany
| |
Collapse
|
4
|
Liang T, Wang SK, Smith C, Zhang H, Hu Y, Seymen F, Koruyucu M, Kasimoglu Y, Kim JW, Zhang C, Saunders TL, Simmer JP, Hu JCC. Enamel defects in Acp4 R110C/R110C mice and human ACP4 mutations. Sci Rep 2022; 12:16477. [PMID: 36183038 PMCID: PMC9526733 DOI: 10.1038/s41598-022-20684-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Human ACP4 (OMIM*606362) encodes a transmembrane protein that belongs to histidine acid phosphatase (ACP) family. Recessive mutations in ACP4 cause non-syndromic hypoplastic amelogenesis imperfecta (AI1J, OMIM#617297). While ACP activity has long been detected in developing teeth, its functions during tooth development and the pathogenesis of ACP4-associated AI remain largely unknown. Here, we characterized 2 AI1J families and identified a novel ACP4 disease-causing mutation: c.774_775del, p.Gly260Aspfs*29. To investigate the role of ACP4 during amelogenesis, we generated and characterized Acp4R110C mice that carry the p.(Arg110Cys) loss-of-function mutation. Mouse Acp4 expression was the strongest at secretory stage ameloblasts, and the protein localized primarily at Tomes' processes. While Acp4 heterozygous (Acp4+/R110C) mice showed no phenotypes, incisors and molars of homozygous (Acp4R110C/R110C) mice exhibited a thin layer of aplastic enamel with numerous ectopic mineralized nodules. Acp4R110C/R110C ameloblasts appeared normal initially but underwent pathology at mid-way of secretory stage. Ultrastructurally, sporadic enamel ribbons grew on mineralized dentin but failed to elongate, and aberrant needle-like crystals formed instead. Globs of organic matrix accumulated by the distal membranes of defective Tomes' processes. These results demonstrated a critical role for ACP4 in appositional growth of dental enamel probably by processing and regulating enamel matrix proteins around mineralization front apparatus.
Collapse
Affiliation(s)
- Tian Liang
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 N University Ave, Ann Arbor, MI, 48109, USA
| | - Shih-Kai Wang
- Department of Dentistry, National Taiwan University School of Dentistry, No. 1, Changde St., Zhongzheng Dist., Taipei City, 100, Taiwan
- Department of Pediatric Dentistry, National Taiwan University Children's Hospital, No. 8, Zhongshan S. Rd., Zhongzheng Dist., Taipei City, 100, Taiwan
| | - Charles Smith
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 N University Ave, Ann Arbor, MI, 48109, USA
- Department of Anatomy & Cell Biology, Faculty of Medicine & Health Sciences, McGill University, Montreal, QC, Canada
| | - Hong Zhang
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 N University Ave, Ann Arbor, MI, 48109, USA
| | - Yuanyuan Hu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 N University Ave, Ann Arbor, MI, 48109, USA
| | - Figen Seymen
- Department of Pedodontics, Faculty of Dentistry, Altinbas University, 34147, Istanbul, Turkey
| | - Mine Koruyucu
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, 34116, Istanbul, Turkey
| | - Yelda Kasimoglu
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, 34116, Istanbul, Turkey
| | - Jung-Wook Kim
- Department of Molecular Genetics & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea
- Department of Pediatric Dentistry & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea
| | - Chuhua Zhang
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 N University Ave, Ann Arbor, MI, 48109, USA
| | - Thomas L Saunders
- Division of Molecular, Medicine and Genetics, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - James P Simmer
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 N University Ave, Ann Arbor, MI, 48109, USA.
| | - Jan C-C Hu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 N University Ave, Ann Arbor, MI, 48109, USA
| |
Collapse
|
5
|
Zaitsev VG, Zheltova AA, Martynova SA, Tibirkova EV. Can conventional clinical chemistry tests help doctors in the monitoring of oncology patients? RUSSIAN OPEN MEDICAL JOURNAL 2021. [DOI: 10.15275/rusomj.2021.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The use of laboratory assays in the diagnostic care of oncology patients can markedly increase the efficacy of cancer treatments. Many cancer-specific biomarker assays have been developed. However, the use of these has some limitations due to their cost. Moreover, not every diagnostic laboratory can perform a complete set of these assays. On the other hand, the smart use of conventional clinical chemistry tests could improve the management of cancer. They could be especially valuable tools in the long-term care of patients with a verified diagnosis. In this review, we discuss the utilization of the conventional clinical chemistry assays for the diagnosis, monitoring and prognosis of various oncological diseases. The use of conventional blood tests to assess the levels of chemical elements, metabolites and proteins (including enzymatic activity measurements) in the care of oncology patients is discussed. We have shown that some clinical chemistry assays could be used in the management of distinct kinds of cancer.
Collapse
|
6
|
Analysis of Chemical and Biochemical Parameters of Petrol-Contaminated Soil after Biostimulation with an Enzyme Reagent. Processes (Basel) 2020. [DOI: 10.3390/pr8080949] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
This study aimed to assess the effect of petrol and the Fyre Zyme reagent on selected chemical and biochemical properties of loamy sand. The experiment was conducted under laboratory conditions. First, petrol was introduced into the soil at doses of 0 and 50 g k−1dry matter (DM). Next, 6% Fyre-Zyme enzyme reagent solution was added to the samples contaminated and uncontaminated with petrol, in the following combinations: 0 (control), once at 40 cm3 kg−1 DM, twice at 20 cm3 kg−1 DM at two-week intervals, and four times at 10 cm3 kg−1 DM at weekly intervals. Contamination of loamy sand with petrol caused slight changes in the determined chemical parameters and stimulated dehydrogenase activities, but inhibited the activity of phosphatases. The introduction of the enzyme reagent into the soil increased the Corg and Ntot content. The greatest changes were observed in the activity of phosphatases. The receiver operating characteristic (ROC) curves revealed that the application of the enzyme reagent at the application of 4 × 10 cm3 kg−1 DM was the most beneficial. However, the results of the η2 analysis indicate that the greatest influence on the determined experimental parameters was found in the soil contaminated with petrol.
Collapse
|
7
|
Randall TA, Gu C, Li X, Wang H, Shears SB. A two-way switch for inositol pyrophosphate signaling: Evolutionary history and biological significance of a unique, bifunctional kinase/phosphatase. Adv Biol Regul 2019; 75:100674. [PMID: 31776069 DOI: 10.1016/j.jbior.2019.100674] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/30/2019] [Accepted: 11/06/2019] [Indexed: 11/25/2022]
Abstract
The inositol pyrophosphates (PP-InsPs) are a unique subgroup of intracellular signals with diverse functions, many of which can be viewed as reflecting an overarching role in metabolic homeostasis. Thus, considerable attention is paid to the enzymes that synthesize and metabolize the PP-InsPs. One of these enzyme families - the diphosphoinositol pentakisphosphate kinases (PPIP5Ks) - provides an extremely rare example of separate kinase and phosphatase activities being present within the same protein. Herein, we review the current state of structure/function insight into the PPIP5Ks, the separate specialized activities of the two metazoan PPIP5K genes, and we describe a phylogenetic analysis that places PPIP5K evolutionary origin within the Excavata, the very earliest of eukaryotes. These different aspects of PPIP5K biology are placed in the context of a single, overriding question. Why are they bifunctional: i.e., what is the particular significance of the ability to turn PP-InsP signaling on or off from two separate 'switches' in a single protein?
Collapse
Affiliation(s)
- Thomas A Randall
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Chunfang Gu
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Xingyao Li
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Huanchen Wang
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Stephen B Shears
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
8
|
Rahimi-Balaei M, Buchok M, Vihko P, Parkinson FE, Marzban H. Loss of prostatic acid phosphatase and α-synuclein cause motor circuit degeneration without altering cerebellar patterning. PLoS One 2019; 14:e0222234. [PMID: 31509576 PMCID: PMC6738605 DOI: 10.1371/journal.pone.0222234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/23/2019] [Indexed: 01/08/2023] Open
Abstract
Prostatic acid phosphatase (PAP), which is secreted by prostate, increases in some diseases such as prostate cancer. PAP is also present in the central nervous system. In this study we reveal that α-synuclein (Snca) gene is co-deleted/mutated in PAP null mouse. It is indicated that mice deficient in transmembrane PAP display neurological alterations. By using immunohistochemistry, cerebellar cortical neurons and zone and stripes pattern were studied in Pap-/- ;Snca-/- mouse cerebellum. We show that the Pap-/- ;Snca-/- cerebellar cortex development appears to be normal. Compartmentation genes expression such as zebrin II, HSP25, and P75NTR show the zone and stripe phenotype characteristic of the normal cerebellum. These data indicate that although aggregation of PAP and SNCA causes severe neurodegenerative diseases, PAP-/- with absence of the Snca does not appear to interrupt the cerebellar architecture development and zone and stripe pattern formation. These findings question the physiological and pathological role of SNCA and PAP during cerebellar development or suggest existence of the possible compensatory mechanisms in the absence of these genes.
Collapse
Affiliation(s)
- Maryam Rahimi-Balaei
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- The Children's Hospital Research Institute of Manitoba (CHRIM), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Matthew Buchok
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Pirkko Vihko
- Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | - Fiona E. Parkinson
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Hassan Marzban
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- The Children's Hospital Research Institute of Manitoba (CHRIM), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|
9
|
Sousa AML, Li TD, Varghese S, Halling PJ, Aaron Lau KH. Highly Active Protein Surfaces Enabled by Plant-Based Polyphenol Coatings. ACS APPLIED MATERIALS & INTERFACES 2018; 10:39353-39362. [PMID: 30299089 DOI: 10.1021/acsami.8b13793] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Proteins represent complex biomolecules capable of wide-ranging but also highly specific functionalities. Their immobilization on material supports can enable broad applications from sensing and industrial biocatalysis to biomedical interfaces and materials. We demonstrate the advantages of using aqueous-processed cross-linked polyphenol coatings for immobilizing proteins, including IgG, avidin, and various single and multidomain enzymes on diverse materials, to enable active biofunctional structures (e.g., ca. 2.2, 1.7, 1.1, and 4.8 mg·m-2 active phosphatase on nanoporous cellulose and alumina, steel mesh, and polyester fabric, respectively). Enzyme assays, X-ray photoelectron spectroscopy, silver staining, supplemented with contact angle, solid-state 13C NMR, HPLC, and ESI-MS measurements were used to characterize the polyphenols, coatings, and protein layers. We show that the functionalization process may be advantageously optimized directly for protein activity rather than the traditional focus on the thickness of the coating layer. Higher activities (by more than an order of magnitude in some cases) and wider process pH and material compatibility are demonstrated with polyphenol coatings than other approaches such as polydopamine. Coatings formed from different plant polyphenol extracts, even at lowered purity (and cost), were also found to be highly functional. Chemically, our results indicate that polyphenol coatings differ from polydopamine mainly because of the elimination of amine groups, and that polyphenol layers with intermediate levels of reactivity may better lead to high immobilized protein activity. Overall, an improved understanding of simple-to-use polyphenol coatings has been obtained, which enabled a significant development in active protein surfaces that may be applied across diverse materials and nanostructured supports.
Collapse
Affiliation(s)
- Ana M L Sousa
- WestCHEM/Department of Pure & Applied Chemistry , University of Strathclyde , 295 Cathedral Street , Glasgow G1 1XL , U.K
| | - Tai-De Li
- Advanced Science Research Center (ASRC) of Graduate Center and Department of Physics in City College of New York , CUNY , New York , New York 10031 , United States
| | - Sabu Varghese
- Department of Chemistry , Lancaster University , Lancaster LA1 4YB , U.K
| | - Peter J Halling
- WestCHEM/Department of Pure & Applied Chemistry , University of Strathclyde , 295 Cathedral Street , Glasgow G1 1XL , U.K
| | - King Hang Aaron Lau
- WestCHEM/Department of Pure & Applied Chemistry , University of Strathclyde , 295 Cathedral Street , Glasgow G1 1XL , U.K
| |
Collapse
|
10
|
Clemente Z, Castro VLSS, Franqui LS, Silva CA, Martinez DST. Nanotoxicity of graphene oxide: Assessing the influence of oxidation debris in the presence of humic acid. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 225:118-128. [PMID: 28363143 DOI: 10.1016/j.envpol.2017.03.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/01/2017] [Accepted: 03/15/2017] [Indexed: 05/27/2023]
Abstract
This study sought to evaluate the toxicological effects of graphene oxide (GO) through tests with Danio rerio (zebrafish) embryos, considering the influence of the base washing treatment and the interaction with natural organic matter (i.e., humic acid, HA). A commercial sample of GO was refluxed with NaOH to remove oxidation debris (OD) byproducts, which resulted in a base washed GO sample (bw-GO). This process decreased the total oxygenated groups in bw-GO and its stability in water compared to GO. When tested in the presence of HA, both GO and bw-GO stabilities were enhanced in water. Although the embryo exposure showed no acute toxicity or malformation, the larvae exposed to GO showed a reduction in their overall length and acetylcholinesterase activity. In the presence of HA, GO also inhibited acid phosphatase activity. Our findings indicate a mitigation of material toxicity after OD removal. The difference in the biological effects may be related to the materials' bioavailability and biophysicochemical interactions. This study reports for the first time the critical influence of OD on the GO material biological reactivity and HA interaction, providing new data for nanomaterial environmental risk assessment and sustainable nanotechnology.
Collapse
Affiliation(s)
- Zaira Clemente
- Laboratory of Ecotoxicology and Biosafety, Brazilian Agricultural Research Corporation (Embrapa Environment), Jaguariúna, SP, Brazil; Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil.
| | - Vera Lúcia S S Castro
- Laboratory of Ecotoxicology and Biosafety, Brazilian Agricultural Research Corporation (Embrapa Environment), Jaguariúna, SP, Brazil
| | - Lidiane S Franqui
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Cristiane A Silva
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Diego Stéfani T Martinez
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| |
Collapse
|
11
|
Boyd-Tressler AM, Lane GS, Dubyak GR. Up-regulated Ectonucleotidases in Fas-Associated Death Domain Protein- and Receptor-Interacting Protein Kinase 1-Deficient Jurkat Leukemia Cells Counteract Extracellular ATP/AMP Accumulation via Pannexin-1 Channels during Chemotherapeutic Drug-Induced Apoptosis. Mol Pharmacol 2017; 92:30-47. [PMID: 28461585 DOI: 10.1124/mol.116.104000] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 04/26/2017] [Indexed: 12/13/2022] Open
Abstract
Pannexin-1 (Panx1) channels mediate the efflux of ATP and AMP from cancer cells in response to induction of extrinsic apoptosis by death receptors or intrinsic apoptosis by chemotherapeutic agents. We previously described the accumulation of extracellular ATP /AMP during chemotherapy-induced apoptosis in Jurkat human leukemia cells. In this study, we compared how different signaling pathways determine extracellular nucleotide pools in control Jurkat cells versus Jurkat lines that lack the Fas-associated death domain (FADD) or receptor-interacting protein kinase 1 (RIP1) cell death regulatory proteins. Tumor necrosis factor-α induced extrinsic apoptosis in control Jurkat cells and necroptosis in FADD-deficient cells; treatment of both lines with chemotherapeutic drugs elicited similar intrinsic apoptosis. Robust extracellular ATP/AMP accumulation was observed in the FADD-deficient cells during necroptosis, but not during apoptotic activation of Panx1 channels. Accumulation of extracellular ATP/AMP was similarly absent in RIP1-deficient Jurkat cells during apoptotic responses to chemotherapeutic agents. Apoptotic activation triggered equivalent proteolytic gating of Panx1 channels in all three Jurkat cell lines. The differences in extracellular ATP/AMP accumulation correlated with cell-line-specific expression of ectonucleotidases that metabolized the released ATP/AMP. CD73 mRNA, and αβ-methylene-ADP-inhibitable ecto-AMPase activity were elevated in the FADD-deficient cells. In contrast, the RIP1-deficient cells were defined by increased expression of tartrate-sensitive prostatic acid phosphatase as a broadly acting ectonucleotidase. Thus, extracellular nucleotide accumulation during regulated tumor cell death involves interplay between ATP/AMP efflux pathways and different cell-autonomous ectonucleotidases. Differential expression of particular ectonucleotidases in tumor cell variants will determine whether chemotherapy-induced activation of Panx1 channels drives accumulation of immunostimulatory ATP versus immunosuppressive adenosine within the tumor microenvironment.
Collapse
Affiliation(s)
- Andrea M Boyd-Tressler
- Department of Physiology & Biophysics (G.S.L., G.R.D.), Department of Pharmacology (A.M.B.-T., G.R.D.), and Case Comprehensive Cancer Center (G.R.D.), School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Graham S Lane
- Department of Physiology & Biophysics (G.S.L., G.R.D.), Department of Pharmacology (A.M.B.-T., G.R.D.), and Case Comprehensive Cancer Center (G.R.D.), School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - George R Dubyak
- Department of Physiology & Biophysics (G.S.L., G.R.D.), Department of Pharmacology (A.M.B.-T., G.R.D.), and Case Comprehensive Cancer Center (G.R.D.), School of Medicine, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
12
|
Patel S. Pathogenicity-associated protein domains: The fiercely-conserved evolutionary signatures. GENE REPORTS 2017; 7:127-141. [PMID: 32363241 PMCID: PMC7185390 DOI: 10.1016/j.genrep.2017.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 03/29/2017] [Accepted: 04/07/2017] [Indexed: 12/15/2022]
Abstract
Proteins have highly conserved domains that determine their functionality. Out of the thousands of domains discovered so far across all living forms, some of the predominant clinically-relevant domains include IENR1, HNHc, HELICc, Pro-kuma_activ, Tryp_SPc, Lactamase_B, PbH1, ChtBD3, CBM49, acidPPc, G3P_acyltransf, RPOL8c, KbaA, HAMP, HisKA, Hr1, Dak2, APC2, Citrate_ly_lig, DALR, VKc, YARHG, WR1, PWI, ZnF_BED, TUDOR, MHC_II_beta, Integrin_B_tail, Excalibur, DISIN, Cadherin, ACTIN, PROF, Robl_LC7, MIT, Kelch, GAS2, B41, Cyclin_C, Connexin_CCC, OmpH, Bac_rhodopsin, AAA, Knot1, NH, Galanin, IB, Elicitin, ACTH, Cache_2, CHASE, AgrB, PRP, IGR, and Antimicrobial21. These domains are distributed in nucleases/helicases, proteases, esterases, lipases, glycosylase, GTPases, phosphatases, methyltransferases, acyltransferase, acetyltransferase, polymerase, kinase, ligase, synthetase, oxidoreductase, protease inhibitors, nucleic acid binding proteins, adhesion and immunity-related proteins, cytoskeletal component-manipulating proteins, lipid biosynthesis and metabolism proteins, membrane-associated proteins, hormone-like and signaling proteins, etc. These domains are ubiquitous stretches or folds of the proteins in pathogens and allergens. Pathogenesis alleviation efforts can benefit enormously if the characteristics of these domains are known. Hence, this review catalogs and discusses the role of such pivotal domains, suggesting hypotheses for better understanding of pathogenesis at molecular level. Proteins have highly conserved regions or domains across pathogens and allergens. Knowledge on these critical domains can facilitate our understanding of pathogenesis mechanisms. Such immune manipulation-related domains include IENR1, HNHc, HELICc, ACTIN, PROF, Robl_LC7, OmpH etc. These domains are presnt in enzyme, transcription regulators, adhesion proteins, and hormones. This review discusses and hypothesizes on these domains.
Collapse
Key Words
- CARDs, caspase activation and recruitment domains
- CBM, carbohydrate binding module
- CTD, C-terminal domain
- ChtBD, chitin-binding domain
- Diversification
- HNHc, homing endonucleases
- HTH, helix-turn-helix
- IENR1, intron-encoded endonuclease repeat
- Immune manipulation
- PAMPs, pathogen associated molecular patterns
- Pathogenesis
- Phylogenetic conservation
- Protein domains
- SMART, Simple Modular Architecture Research Tool
- Shuffling
- UDG, uracil DNA glycosylase
Collapse
Affiliation(s)
- Seema Patel
- Bioinformatics and Medical Informatics Research Center, San Diego State University, San Diego 92182, USA
| |
Collapse
|
13
|
Takahashi T, Otsubo T, Ikeda K, Minami A, Suzuki T. Histochemical imaging of alkaline phosphatase using a novel fluorescent substrate. Biol Pharm Bull 2014; 37:1668-73. [PMID: 25109307 DOI: 10.1248/bpb.b14-00456] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Histochemical visualization of phosphatase is exclusively required for Western immunoblotting and antigen-positive cell staining using an alkaline phosphatase (AP)-labeled secondary antibody. This detection has been performed by several reagents including 5-bromo-4-chloro-3-indolyl-phosphate (X-Phos), nitro blue tetrazolium (NBT), 3-(2'-spiroadamantane)-4-methoxy-4-(3″-phosphoryloxy)phenyl-1,2-dioxetane and 2-(5'-chloro-2'-phosphoryloxyphenyl)-6-chloro-4-[3H]-quinazolinone (ELF® 97 Phosphate). We previously reported that 2-(benzothiazol-2-yl)-4-bromophenol bonded with N-acetylneuraminic acid (BTP3-Neu5Ac), enabled fluorescent histochemical visualization of sialidase activity. 2-(Benzothiazol-2-yl)-4-bromophenol (BTP3), which is formed from BTP3-Neu5Ac by sialidase reaction, is a crystalline, insoluble and stable fluorogenic compound, deposited at the site of enzyme activity. We developed a BTP3 phosphate ester (BTP3-Phos) for the purpose of fluorescent histochemical visualization of phosphatase activity. BTP3-Phos emitted fluorescence in a manner dependent on the concentration of the AP-labeled antibody. BTP3-Phos also enabled fluorescent histochemical visualization of AP-blotted dots in a manner dependent on the concentration of the AP-labeled antibody. The detection sensitivity of BTP3-Phos was estimated to be greater than that of the conventional method using X-Phos and NBT. Influenza A virus-infected cells were fixed and reacted with anti-influenza A virus antibodies and incubated continuously with an AP-labeled secondary antibody. BTP3-Phos stained the infected cells with distinct green fluorescence. These results indicate that BTP3-Phos can enable fluorescent immunohistochemical staining analysis using an AP-labeled antibody. BTP3-Phos would be beneficial for histochemical staining of AP activity, and may be applicable for multi-color staining or a cell sorter.
Collapse
Affiliation(s)
- Tadanobu Takahashi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
| | | | | | | | | |
Collapse
|
14
|
Araujo CL, Quintero IB, Kipar A, Herrala AM, Pulkka AE, Saarinen L, Hautaniemi S, Vihko P. Prostatic acid phosphatase is the main acid phosphatase with 5'-ectonucleotidase activity in the male mouse saliva and regulates salivation. Am J Physiol Cell Physiol 2014; 306:C1017-27. [PMID: 24717577 DOI: 10.1152/ajpcell.00062.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We have previously shown that in addition to the well-known secreted isoform of prostatic acid phosphatase (sPAP), a transmembrane isoform exists (TMPAP) that interacts with snapin (a SNARE-associated protein) and regulates the endo-/exocytic pathways. We have also shown that PAP has 5'-ectonucleotidase and thiamine monophosphatase activity and elicits antinociceptive effects in mouse models of chronic inflammatory and neuropathic pain. Therefore, to determine the physiological role of PAP in a typical exocrine organ, we studied the submandibular salivary gland (SMG) of PAP(-/-) and wild-type C57BL/6J mice by microarray analyses, microRNA sequencing, activity tests, immunohistochemistry, and biochemical and physiological analyses of saliva. We show that PAP is the main acid phosphatase in the wild-type male mouse saliva, accounting for 50% of the total acid phosphatase activity, and that it is expressed only in the granular convoluted tubules of the SMGs, where it is the only 5'-ectonucleotidase. The lack of PAP in male PAP(-/-) mice was associated with a significant increase in the salivation volume under secretagogue stimulation, overexpression of genes related to cell proliferation (Mki67, Aurkb, Birc5) and immune response (Irf7, Cxcl9, Ccl3, Fpr2), and upregulation of miR-146a in SMGs. An increased and sustained acinar cell proliferation was detected without signs of glandular hyperplasia. Our results indicate that in PAP(-/-) mice, SMG homeostasis is maintained by an innate immune response. Additionally, we suggest that in male mice, PAP via its 5'-ectonucleotidase activity and production of adenosine can elicit analgesic effects when animals lick their wounds.
Collapse
Affiliation(s)
- César L Araujo
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital Laboratory, Helsinki, Finland
| | - Ileana B Quintero
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital Laboratory, Helsinki, Finland
| | - Anja Kipar
- Finnish Centre for Laboratory Animal Pathology, Faculty of Veterinary Science, University of Helsinki, Helsinki, Finland; and
| | - Annakaisa M Herrala
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital Laboratory, Helsinki, Finland
| | - Anitta E Pulkka
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital Laboratory, Helsinki, Finland
| | - Lilli Saarinen
- Research Programs Unit; Genome-scale Biology and Institute of Biomedicine, University of Helsinki, Helsinki, Finland
| | - Sampsa Hautaniemi
- Research Programs Unit; Genome-scale Biology and Institute of Biomedicine, University of Helsinki, Helsinki, Finland
| | - Pirkko Vihko
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital Laboratory, Helsinki, Finland; Veterinary Pathology, School of Veterinary Science and Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|