1
|
Elias E, Brache K, Schäfers J, Croce R. Coloring Outside the Lines: Exploiting Pigment-Protein Synergy for Far-Red Absorption in Plant Light-Harvesting Complexes. J Am Chem Soc 2024; 146:3508-3520. [PMID: 38286009 PMCID: PMC10859958 DOI: 10.1021/jacs.3c13373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/31/2024]
Abstract
Plants are designed to utilize visible light for photosynthesis. Expanding this light absorption toward the far-red could boost growth in low-light conditions and potentially increase crop productivity in dense canopies. A promising strategy is broadening the absorption of antenna complexes to the far-red. In this study, we investigated the capacity of the photosystem I antenna protein Lhca4 to incorporate far-red absorbing chlorophylls d and f and optimize their spectra. We demonstrate that these pigments can successfully bind to Lhca4, with the protein environment further red-shifting the chlorophyll d absorption, markedly extending the absorption range of this complex above 750 nm. Notably, chlorophyll d substitutes the canonical chlorophyll a red-forms, resulting in the most red-shifted emission observed in a plant light-harvesting complex. Using ultrafast spectroscopy, we show that the introduction of these novel chlorophylls does not interfere with the excited state decay or the energy equilibration processes within the complex. The results demonstrate the feasibility of engineering plant antennae to absorb deeper into the far-red region while preserving their functional and structural integrity, paving the way for innovative strategies to enhance photosynthesis.
Collapse
Affiliation(s)
- Eduard Elias
- Department of Physics and
Astronomy and Institute for Lasers, Life and Biophotonics, Faculty
of Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Katrin Brache
- Department of Physics and
Astronomy and Institute for Lasers, Life and Biophotonics, Faculty
of Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Judith Schäfers
- Department of Physics and
Astronomy and Institute for Lasers, Life and Biophotonics, Faculty
of Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Roberta Croce
- Department of Physics and
Astronomy and Institute for Lasers, Life and Biophotonics, Faculty
of Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
2
|
Hu C, Elias E, Nawrocki WJ, Croce R. Drought affects both photosystems in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2023; 240:663-675. [PMID: 37530066 DOI: 10.1111/nph.19171] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/14/2023] [Indexed: 08/03/2023]
Abstract
Drought is a major abiotic stress that impairs plant growth and development. Despite this, a comprehensive understanding of drought effects on the photosynthetic apparatus is lacking. In this work, we studied the consequences of 14-d drought treatment on Arabidopsis thaliana. We used biochemical and spectroscopic methods to examine photosynthetic membrane composition and functionality. Drought led to the disassembly of PSII supercomplexes and the degradation of PSII core. The light-harvesting complexes (LHCII) instead remain in the membrane but cannot act as an antenna for active PSII, thus representing a potential source of photodamage. This effect can also be observed during nonphotochemical quenching (NPQ) induction when even short pulses of saturating light can lead to photoinhibition. At a later stage, under severe drought stress, the PSI antenna size is also reduced and the PSI-LHCI supercomplexes disassemble. Surprisingly, although we did not observe changes in the PSI core protein content, the functionality of PSI is severely affected, suggesting the accumulation of nonfunctional PSI complexes. We conclude that drought affects both photosystems, although at a different stage, and that the operative quantum efficiency of PSII (ΦPSII ) is very sensitive to drought and can thus be used as a parameter for early detection of drought stress.
Collapse
Affiliation(s)
- Chen Hu
- Biophysics of Photosynthesis, Department of Physics and Astronomy and Institute for Lasers, Life and Biophotonics, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, the Netherlands
| | - Eduard Elias
- Biophysics of Photosynthesis, Department of Physics and Astronomy and Institute for Lasers, Life and Biophotonics, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, the Netherlands
| | - Wojciech J Nawrocki
- Biophysics of Photosynthesis, Department of Physics and Astronomy and Institute for Lasers, Life and Biophotonics, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, the Netherlands
| | - Roberta Croce
- Biophysics of Photosynthesis, Department of Physics and Astronomy and Institute for Lasers, Life and Biophotonics, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, the Netherlands
| |
Collapse
|
3
|
Gisriel CJ, Elias E, Shen G, Soulier NT, Flesher DA, Gunner MR, Brudvig GW, Croce R, Bryant DA. Helical allophycocyanin nanotubes absorb far-red light in a thermophilic cyanobacterium. SCIENCE ADVANCES 2023; 9:eadg0251. [PMID: 36961897 PMCID: PMC10038336 DOI: 10.1126/sciadv.adg0251] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
To compete in certain low-light environments, some cyanobacteria express a paralog of the light-harvesting phycobiliprotein, allophycocyanin (AP), that strongly absorbs far-red light (FRL). Using cryo-electron microscopy and time-resolved absorption spectroscopy, we reveal the structure-function relationship of this FRL-absorbing AP complex (FRL-AP) that is expressed during acclimation to low light and that likely associates with chlorophyll a-containing photosystem I. FRL-AP assembles as helical nanotubes rather than typical toroids due to alterations of the domain geometry within each subunit. Spectroscopic characterization suggests that FRL-AP nanotubes are somewhat inefficient antenna; however, the enhanced ability to harvest FRL when visible light is severely attenuated represents a beneficial trade-off. The results expand the known diversity of light-harvesting proteins in nature and exemplify how biological plasticity is achieved by balancing resource accessibility with efficiency.
Collapse
Affiliation(s)
| | - Eduard Elias
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Gaozhong Shen
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Nathan T. Soulier
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - David A. Flesher
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - M. R. Gunner
- Department of Physics, City College of New York, New York, NY 10031, USA
| | - Gary W. Brudvig
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Roberta Croce
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Donald A. Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
4
|
Gisriel CJ, Elias E, Shen G, Soulier NT, Flesher DA, Gunner MR, Brudvig GW, Croce R, Bryant DA. Helical allophycocyanin nanotubes absorb far-red light in a thermophilic cyanobacterium. SCIENCE ADVANCES 2023; 9:eadg0251. [PMID: 36961897 PMCID: PMC10038336 DOI: 10.1126/sciadv.adg0251 10.1126/sciadv.adg0251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/24/2023] [Indexed: 01/25/2025]
Abstract
To compete in certain low-light environments, some cyanobacteria express a paralog of the light-harvesting phycobiliprotein, allophycocyanin (AP), that strongly absorbs far-red light (FRL). Using cryo-electron microscopy and time-resolved absorption spectroscopy, we reveal the structure-function relationship of this FRL-absorbing AP complex (FRL-AP) that is expressed during acclimation to low light and that likely associates with chlorophyll a-containing photosystem I. FRL-AP assembles as helical nanotubes rather than typical toroids due to alterations of the domain geometry within each subunit. Spectroscopic characterization suggests that FRL-AP nanotubes are somewhat inefficient antenna; however, the enhanced ability to harvest FRL when visible light is severely attenuated represents a beneficial trade-off. The results expand the known diversity of light-harvesting proteins in nature and exemplify how biological plasticity is achieved by balancing resource accessibility with efficiency.
Collapse
Affiliation(s)
| | - Eduard Elias
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Gaozhong Shen
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Nathan T. Soulier
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - David A. Flesher
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - M. R. Gunner
- Department of Physics, City College of New York, New York, NY 10031, USA
| | - Gary W. Brudvig
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Roberta Croce
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Donald A. Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
5
|
Skakun VV, Digris A, Nolles A, Borst JW, Visser A. Revealing heterogeneity in correlation times of EGFP encapsulated in complex coacervate core micelles by analysis of fluorescence anisotropies. Methods Appl Fluoresc 2022; 10. [PMID: 35952674 DOI: 10.1088/2050-6120/ac8911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 08/11/2022] [Indexed: 11/11/2022]
Abstract
Encapsulation of enhanced green fluorescent protein (EGFP) in complex coacervate core micelles (C3Ms) can be established by mixing EGFP with diblock polymers at equal charge ratio. It has previously been shown that this encapsulation system is highly dynamic, implying existence of different populations; GFP free in solution or complexed with polymers (small complexes) and EGFP encapsulated in C3Ms. We performed time resolved fluorescence anisotropy experiments to determine the relative populations of EGFP encapsulated in C3Ms using three different fluorescence anisotropy decay analysis methods. First, Maximum Entropy Method (MEM) data analysis was employed for five different EGFP concentrations in C3Ms that were mixed with dark fluorescent proteins (10, 20, 30, 40 and 50% EGFP, respectively). In all cases, correlation-time distributions between 0.1 and 100 ns (on a logarithmic timescale) are clearly visible showing bimodal distribution. The distribution between 0.1 and 2.0 ns is due to homo-FRET between EGFP molecules packed in micelles and the distribution between 8 and 30 ns coincides with the correlation-time distribution of free EGFP in solution. The fraction of homo-FRET distribution linearly increases with increase of relative micellar EGFP concentrations. These MEM results were corroborated by two different analysis methods: global population analysis of all five fluorescence anisotropy decays arising from EGFP in micelles together with the one of free EGFP (direct analysis of anisotropies) and global associative population analysis of anisotropies by fitting parallel and perpendicular fluorescence decay components. In contrast to global analyses approaches, the MEM method directly reveals distributions of correlation times without any prior information about the sample. However, global associative analysis of anisotropies by fitting parallel and perpendicular fluorescence decay components is the only method that allows to estimate accurately fractions of free fluorophores in solution and encapsulated fluorophores.
Collapse
Affiliation(s)
- Victor V Skakun
- Department of Systems Analysis and Computer Simulation, Belarusian State University, Nezavisimisty Ave., 4, Minsk, 220030, BELARUS
| | - Anatoli Digris
- Department of Systems Analysis and Computer Simulation, Belarusian State University, Nezavisimisty Ave., 4, Minsk, 220030, BELARUS
| | - Antsje Nolles
- Wageningen University & Research, Stippeneng 4, Wageningen, Gelderland, 6700 HB, NETHERLANDS
| | - Jan Willem Borst
- Laboratory of Biochemistry, Microspectroscopy Research Facility , Wageningen University & Research, Stippeneng 4, 6708WE, Wageningen, Gelderland, 6700 HB, NETHERLANDS
| | - Antonie Visser
- Wageningen University & Research, Stippeneng 4, Wageningen, Gelderland, 6700 HB, NETHERLANDS
| |
Collapse
|
6
|
Elias E, Liguori N, Saga Y, Schäfers J, Croce R. Harvesting Far-Red Light with Plant Antenna Complexes Incorporating Chlorophyll d. Biomacromolecules 2021; 22:3313-3322. [PMID: 34269578 PMCID: PMC8356222 DOI: 10.1021/acs.biomac.1c00435] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/28/2021] [Indexed: 11/28/2022]
Abstract
Increasing the absorption cross section of plants by introducing far-red absorbing chlorophylls (Chls) has been proposed as a strategy to boost crop yields. To make this strategy effective, these Chls should bind to the photosynthetic complexes without altering their functional architecture. To investigate if plant-specific antenna complexes can provide the protein scaffold to accommodate these Chls, we have reconstituted the main light-harvesting complex (LHC) of plants LHCII in vitro and in silico, with Chl d. The results demonstrate that LHCII can bind Chl d in a number of binding sites, shifting the maximum absorption ∼25 nm toward the red with respect to the wild-type complex (LHCII with Chl a and b) while maintaining the native LHC architecture. Ultrafast spectroscopic measurements show that the complex is functional in light harvesting and excitation energy transfer. Overall, we here demonstrate that it is possible to obtain plant LHCs with enhanced far-red absorption and intact functional properties.
Collapse
Affiliation(s)
- Eduard Elias
- Department
of Physics and Astronomy and Institute for Lasers, Life and Biophotonics,
Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Nicoletta Liguori
- Department
of Physics and Astronomy and Institute for Lasers, Life and Biophotonics,
Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Yoshitaka Saga
- Department
of Physics and Astronomy and Institute for Lasers, Life and Biophotonics,
Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
- Department
of Chemistry, Faculty of Science and Engineering, Kindai University, Higashi-Osaka 577-8502, Osaka, Japan
| | - Judith Schäfers
- Department
of Physics and Astronomy and Institute for Lasers, Life and Biophotonics,
Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Roberta Croce
- Department
of Physics and Astronomy and Institute for Lasers, Life and Biophotonics,
Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
7
|
Nolles A, van Dongen NJE, Westphal AH, Visser AJWG, Kleijn JM, van Berkel WJH, Borst JW. Encapsulation into complex coacervate core micelles promotes EGFP dimerization. Phys Chem Chem Phys 2018; 19:11380-11389. [PMID: 28422208 DOI: 10.1039/c7cp00755h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Complex coacervate core micelles (C3Ms) are colloidal structures useful for encapsulation of biomacromolecules. We previously demonstrated that enhanced green fluorescent protein (EGFP) can be encapsulated into C3Ms using the diblock copolymer poly(2-methyl-vinyl-pyridinium)41-b-poly(ethylene-oxide)205. This packaging resulted in deviating spectroscopic features of the encapsulated EGFP molecules. Here we show that for monomeric EGFP variant (mEGFP) micellar encapsulation affects the absorption and fluorescence properties to a much lesser extent, and that changes in circular dichroism characteristics are specific for encapsulated EGFP. Time-resolved fluorescence anisotropy of encapsulated (m)EGFP established the occurrence of homo-FRET (Förster resonance energy transfer) with larger transfer correlation times in the case of EGFP. Together, these findings support that EGFP dimerizes whereas the mEGFP mainly remains as a monomer in the densely packed C3Ms. We propose that dimerization of encapsulated EGFP causes a reorientation of Glu222, resulting in a pKa shift of the chromophore, which is fully reversible after release of EGFP from the C3Ms at a high ionic strength.
Collapse
Affiliation(s)
- A Nolles
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
8
|
Novikov EG, Skakun VV, Borst JW, Visser AJWG. Maximum entropy analysis of polarized fluorescence decay of (E)GFP in aqueous solution. Methods Appl Fluoresc 2017; 6:014001. [PMID: 28858857 DOI: 10.1088/2050-6120/aa898b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The maximum entropy method (MEM) was used for the analysis of polarized fluorescence decays of enhanced green fluorescent protein (EGFP) in buffered water/glycerol mixtures, obtained with time-correlated single-photon counting (Visser et al 2016 Methods Appl. Fluoresc. 4 035002). To this end, we used a general-purpose software module of MEM that was earlier developed to analyze (complex) laser photolysis kinetics of ligand rebinding reactions in oxygen binding proteins. We demonstrate that the MEM software provides reliable results and is easy to use for the analysis of both total fluorescence decay and fluorescence anisotropy decay of aqueous solutions of EGFP. The rotational correlation times of EGFP in water/glycerol mixtures, obtained by MEM as maxima of the correlation-time distributions, are identical to the single correlation times determined by global analysis of parallel and perpendicular polarized decay components. The MEM software is also able to determine homo-FRET in another dimeric GFP, for which the transfer correlation time is an order of magnitude shorter than the rotational correlation time. One important advantage utilizing MEM analysis is that no initial guesses of parameters are required, since MEM is able to select the least correlated solution from the feasible set of solutions.
Collapse
Affiliation(s)
- Eugene G Novikov
- Institut Curie-Recherche (INSERM U350), Centre Universitaire, F-91405 Orsay, France. Carl Zeiss Microscopy GmbH, D-07745 Jena, Germany
| | | | | | | |
Collapse
|
9
|
Visser AJWG, Westphal AH, Skakun VV, Borst JW. GFP as potential cellular viscosimeter. Methods Appl Fluoresc 2016; 4:035002. [PMID: 28355162 DOI: 10.1088/2050-6120/4/3/035002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The molecular dimensions of proteins such as green fluorescent protein (GFP) are large as compared to the ones of solvents like water or glycerol. The microscopic viscosity, which determines the resistance to diffusion of, e.g. GFP, is then the same as that determined from the resistance of the solvent to flow, which is known as macroscopic viscosity. GFP in water/glycerol mixtures senses this macroscopic viscosity, because the translational and rotational diffusion coefficients are proportional to the reciprocal value of the viscosity as predicted by the Stokes-Einstein equations. To test this hypothesis, we have performed time-resolved fluorescence anisotropy (reporting on rotational diffusion) and fluorescence correlation spectroscopy (reporting on translational diffusion) experiments of GFP in water/glycerol mixtures. When the solvent also contains macromolecules of similar or larger dimensions as GFP, the microscopic and macroscopic viscosities can be markedly different and the Stokes-Einstein relations must be adapted. It was established from previous dynamic fluorescence spectroscopy observations of diffusing proteins with dextran polysaccharides as co-solvents (Lavalette et al 2006 Eur. Biophys. J. 35 517-22), that rotation and translation sense a different microscopic viscosity, in which the one arising from rotation is always less than that from translation. A microscopic viscosity parameter is defined that depends on scaling factors between GFP and its immediate environment. The direct consequence is discussed for two reported diffusion coefficients of GFP in living cells.
Collapse
Affiliation(s)
- Antonie J W G Visser
- Laboratory of Biochemistry, Microspectroscopy Centre, Wageningen University, PO Box 8128, 6700 ET Wageningen, The Netherlands
| | | | | | | |
Collapse
|
10
|
Ultra-Fast Fluorescence Anisotropy Decay of N-Acetyl-l-Tryptophanamide Reports on the Apparent Microscopic Viscosity of Aqueous Solutions of Guanidine Hydrochloride. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/4243_2016_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|