1
|
Strnad Š, Vrkoslav V, Mengr A, Fabián O, Rybáček J, Kubánek M, Melenovský V, Maletínská L, Cvačka J. Thermal evaporation as sample preparation for silver-assisted laser desorption/ionization mass spectrometry imaging of cholesterol in amyloid tissues. Analyst 2024; 149:3152-3160. [PMID: 38630503 DOI: 10.1039/d4an00181h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Cholesterol plays an important biological role in the body, and its disruption in homeostasis and synthesis has been implicated in several diseases. Mapping the locations of cholesterol is crucial for gaining a better understanding of these conditions. Silver deposition has proven to be an effective method for analyzing cholesterol using mass spectrometry imaging (MSI). We optimized and evaluated thermal evaporation as an alternative deposition technique to sputtering for silver deposition in MSI of cholesterol. A silver layer with a thickness of 6 nm provided an optimal combination of cholesterol signal intensity and mass resolution. The deposition of an ultrathin nanofilm of silver enabled high-resolution MSI with a pixel size of 10 μm. We used this optimized method to visualize the distribution of cholesterol in the senile plaques in the brains of APP/PS1 mice, a model that resembles Alzheimer's disease pathology. We found that cholesterol was evenly distributed across the frontal cortex tissue, with no evidence of plaque-like accumulation. Additionally, we investigated the presence and distribution of cholesterol in myocardial sections of a human heart affected by wild-type ATTR amyloidosis. We identified the presence of cholesterol in areas with amyloid deposition, but complete colocalization was not observed.
Collapse
Affiliation(s)
- Štěpán Strnad
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10, Prague, Czech Republic.
| | - Vladimír Vrkoslav
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10, Prague, Czech Republic.
| | - Anna Mengr
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10, Prague, Czech Republic.
| | - Ondřej Fabián
- Institute for Clinical and Experimental Medicine, 140 21, Prague, Czech Republic
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University and Thomayer Hospital, 140 59, Prague, Czech Republic
| | - Jiří Rybáček
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10, Prague, Czech Republic.
| | - Miloš Kubánek
- Institute for Clinical and Experimental Medicine, 140 21, Prague, Czech Republic
| | - Vojtěch Melenovský
- Institute for Clinical and Experimental Medicine, 140 21, Prague, Czech Republic
| | - Lenka Maletínská
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10, Prague, Czech Republic.
| | - Josef Cvačka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10, Prague, Czech Republic.
| |
Collapse
|
2
|
Griffiths WJ, Yutuc E, Wang Y. Mass Spectrometry Imaging of Cholesterol and Oxysterols. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:73-87. [PMID: 38036876 DOI: 10.1007/978-3-031-43883-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Mass spectrometry imaging (MSI) is a new technique in the toolbox of the analytical biochemist. It allows the generation of a compound-specific image from a tissue slice where a measure of compound abundance is given pixel by pixel, usually displayed on a color scale. As mass spectra are recorded at each pixel, the data can be interrogated to generate images of multiple different compounds all in the same experiment. Mass spectrometry (MS) requires the ionization of analytes, but cholesterol and other neutral sterols tend to be poorly ionized by the techniques employed in most MSI experiments, so despite their high abundance in mammalian tissues, cholesterol is poorly represented in the MSI literature. In this chapter, we discuss some of the MSI studies where cholesterol has been imaged and introduce newer methods for its analysis by MSI. Disturbed cholesterol metabolism is linked to many disorders, and the potential of MSI to study cholesterol, its precursors, and its metabolites in animal models and from human biopsies will be discussed.
Collapse
Affiliation(s)
| | - Eylan Yutuc
- Swansea University Medical School, Swansea, Wales, UK
| | - Yuqin Wang
- Swansea University Medical School, Swansea, Wales, UK
| |
Collapse
|
3
|
Huang X, Wang R, Wang Y, Chen C, Liu S. Investigation on property differences of ginseng and American ginseng by spatial metabolomics of neurochemicals with desorption electrospray ionization mass spectrometry imaging. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:116006. [PMID: 36516905 DOI: 10.1016/j.jep.2022.116006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The properties are the body's response to traditional Chinese medicine (TCM). The essence of traditional Chinese medicine properties are cold, hot, warm, and cool. In the theory of traditional Chinese medicine, ginseng is warm and American ginseng is cool, they present two opposite properties. The material basis of property differences and effect mechanism of property degree need further investigation. AIM OF THE STUDY The aim of this work was to screen out the neurochemicals related to warm and cool properties of ginseng and American ginseng, and investigate the distributions of identified neurochemicals in rat brain and the metabolic mechanism. MATERIALS AND METHODS Spatial metabolomics was applied to study the effects of ginseng and American ginseng on the distributions of neurochemicals in rat brain by desorption electrospray ionization mass spectrometry imaging (DESI-MSI). Based on discriminant coefficients in partial least square discriminant analysis (PLS-DA) processing, neurochemicals related to warm and cool properties were classified. In addition, the score contributions of the neurochemicals markers could be used to evaluate the warm and cool property degrees. RESULTS A total of 25 neurochemicals were imaged and identified in brain section. The distribution regions of main neurochemicals were consistent with in sagittal and coronal sections of brain reported in literature. 17 neurochemicals were classified as warm markers. Meanwhile, 8 neurochemicals were identified as cool markers, correlated with the cool properties of American ginseng. It demonstrated that the score contributions of the 25 neurochemicals markers could be used to evaluate the warm and cool property degrees. Based on the regulatory effects of neurochemicals, the warm markers could promote the body's energy metabolism, improve the function of endocrine system, and enhance the excitability of central nervous system. The cool property markers have reduced excitability of central nervous system, weakened metabolism and stress response ability, thus presented the biological activity of cool and cold. CONCLUSIONS Our findings provided a rapid and effective visualization method for the spatial distribution and metabolism of small molecular neurochemicals in rat brain. DESI-MSI was a reference methodology for evaluating the properties of TCM.
Collapse
Affiliation(s)
- Xin Huang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, PR China.
| | - Rui Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, PR China.
| | - Yikai Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, PR China.
| | - Changbao Chen
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, PR China.
| | - Shuying Liu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, PR China; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China.
| |
Collapse
|
4
|
Hou Y, Gao Y, Guo S, Zhang Z, Chen R, Zhang X. Applications of spatially resolved omics in the field of endocrine tumors. Front Endocrinol (Lausanne) 2023; 13:993081. [PMID: 36704039 PMCID: PMC9873308 DOI: 10.3389/fendo.2022.993081] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
Endocrine tumors derive from endocrine cells with high heterogeneity in function, structure and embryology, and are characteristic of a marked diversity and tissue heterogeneity. There are still challenges in analyzing the molecular alternations within the heterogeneous microenvironment for endocrine tumors. Recently, several proteomic, lipidomic and metabolomic platforms have been applied to the analysis of endocrine tumors to explore the cellular and molecular mechanisms of tumor genesis, progression and metastasis. In this review, we provide a comprehensive overview of spatially resolved proteomics, lipidomics and metabolomics guided by mass spectrometry imaging and spatially resolved microproteomics directed by microextraction and tandem mass spectrometry. In this regard, we will discuss different mass spectrometry imaging techniques, including secondary ion mass spectrometry, matrix-assisted laser desorption/ionization and desorption electrospray ionization. Additionally, we will highlight microextraction approaches such as laser capture microdissection and liquid microjunction extraction. With these methods, proteins can be extracted precisely from specific regions of the endocrine tumor. Finally, we compare applications of proteomic, lipidomic and metabolomic platforms in the field of endocrine tumors and outline their potentials in elucidating cellular and molecular processes involved in endocrine tumors.
Collapse
Affiliation(s)
- Yinuo Hou
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Yan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Shudi Guo
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Zhibin Zhang
- General Surgery, Tianjin First Center Hospital, Tianjin, China
| | - Ruibing Chen
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Xiangyang Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
5
|
Hou JJ, Zhang ZJ, Wu WY, He QQ, Zhang TQ, Liu YW, Wang ZJ, Gao L, Long HL, Lei M, Wu WY, Guo DA. Mass spectrometry imaging: new eyes on natural products for drug research and development. Acta Pharmacol Sin 2022; 43:3096-3111. [PMID: 36229602 PMCID: PMC9712638 DOI: 10.1038/s41401-022-00990-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/25/2022] [Indexed: 11/09/2022] Open
Abstract
Natural products (NPs) and their structural analogs represent a major source of novel drug development for disease prevention and treatment. The development of new drugs from NPs includes two crucial aspects. One is the discovery of NPs from medicinal plants/microorganisms, and the other is the evaluation of the NPs in vivo at various physiological and pathological states. The heterogeneous spatial distribution of NPs in medicinal plants/microorganisms or in vivo can provide valuable information for drug development. However, few molecular imaging technologies can detect thousands of compounds simultaneously on a label-free basis. Over the last two decades, mass spectrometry imaging (MSI) methods have progressively improved and diversified, thereby allowing for the development of various applications of NPs in plants/microorganisms and in vivo NP research. Because MSI allows for the spatial mapping of the production and distribution of numerous molecules in situ without labeling, it provides a visualization tool for NP research. Therefore, we have focused this mini-review on summarizing the applications of MSI technology in discovering NPs from medicinal plants and evaluating NPs in preclinical studies from the perspective of new drug research and development (R&D). Additionally, we briefly reviewed the factors that should be carefully considered to obtain the desired MSI results. Finally, the future development of MSI in new drug R&D is proposed.
Collapse
Affiliation(s)
- Jin-Jun Hou
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zi-Jia Zhang
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Yong Wu
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Qing-Qing He
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Teng-Qian Zhang
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ya-Wen Liu
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhao-Jun Wang
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Gao
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hua-Li Long
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Lei
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wan-Ying Wu
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - De-An Guo
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Nezhad ZS, Salazar JP, Pryce RS, Munter LM, Chaurand P. Absolute quantification of cholesterol from thin tissue sections by silver-assisted laser desorption ionization mass spectrometry imaging. Anal Bioanal Chem 2022; 414:6947-6954. [PMID: 35953724 DOI: 10.1007/s00216-022-04262-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/25/2022]
Abstract
Cholesterol is essential to all animal life, and its dysregulation is observed in many diseases. For some of these, the precise determination of cholesterol's histological location and absolute abundance at cellular length scales within tissue samples would open the door to a more fundamental understanding of the role of cholesterol in disease onset and progression. We have developed a fast and simple method for absolute quantification of cholesterol within brain samples based on the sensitive detection and mapping of cholesterol by silver-assisted laser desorption ionization mass spectrometry imaging (AgLDI MSI) from thin tissue sections. Reproducible calibration curves were generated by depositing a range of cholesterol-D7 concentrations on brain homogenate tissue sections combined with the homogeneous spray deposition of a non-animal steroid reference standard detectable by AgLDI MSI to minimize experimental variability. Results obtained from serial brain sections gave consistent cholesterol quantitative values in very good agreement with those obtained with other mass spectrometry-based methods.
Collapse
Affiliation(s)
- Zari Saadati Nezhad
- Department of Chemistry, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Québec, H3C 3J7, Canada
| | - Juan Pablo Salazar
- Department of Chemistry, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Québec, H3C 3J7, Canada
| | - Rachel S Pryce
- Department of Chemistry, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Québec, H3C 3J7, Canada
| | - Lisa M Munter
- Dept of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Pierre Chaurand
- Department of Chemistry, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Québec, H3C 3J7, Canada.
| |
Collapse
|
7
|
Knodel A, Marggraf U, Hoffmann-Posorske E, Burhenn S, Brandt S, Ahlmann N, Foest D, Lorenz K, Franzke J. Pulsed Blue Laser Diode Thermal Desorption Microplasma Imaging Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:45-53. [PMID: 34856796 DOI: 10.1021/jasms.1c00221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
An ambient air laser desorption, plasma ionization imaging method is developed and presented using a microsecond pulsed laser diode for desorption and a flexible microtube plasma for ionization of the neutral desorbate. Inherent parameters such as the laser repetition rate and pulse width are optimized to the imaging application. For the desorption substrate, copper spots on a copper-glass sandwich structure are used. This novel design enables imaging without ablating the metal into the mass spectrometer. On this substrate, fixed calibration markers are used to decrease the positioning error in the imaging process, featuring a 3D offset correction within the experiment. The image is both screened spot-by-spot and per line scanning at a constant speed, which allows direct comparison. In spot-by-spot scanning, a novel algorithm is presented to unfold and to reconstruct the imaging data. This approach significantly decreases the time required for the imaging process, which allows imaging even at decreased sampling rates and thus higher mass resolution. After the experiment, the raw data is automatically converted and interpreted by a second algorithm, which allows direct visualization of the image from the data, even on low-intensity signals. Mouse liver microtome cuts have been screened for dehydrated cholesterol, proving good agreement of the unfolded data with the morphology of the tissue. The method optically resolves 30 μm, with 30 μm diameter copper spots and a 10 μm gap. No conventional chemical matrices or vacuum conditions are required.
Collapse
Affiliation(s)
- Alexander Knodel
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
| | - Ulrich Marggraf
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
| | - Edeltraut Hoffmann-Posorske
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
| | - Sebastian Burhenn
- Experimental Physics II, Faculty of Physics and Astronomy, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Sebastian Brandt
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
| | - Norman Ahlmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
| | - Daniel Foest
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
| | - Kristina Lorenz
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
- Institute of Pharmacology and Toxicology, University of Würzburg, 97078 Würzburg, Germany
| | - Joachim Franzke
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
| |
Collapse
|
8
|
Engel KM, Prabutzki P, Leopold J, Nimptsch A, Lemmnitzer K, Vos DRN, Hopf C, Schiller J. A new update of MALDI-TOF mass spectrometry in lipid research. Prog Lipid Res 2022; 86:101145. [PMID: 34995672 DOI: 10.1016/j.plipres.2021.101145] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/06/2021] [Accepted: 12/29/2021] [Indexed: 01/06/2023]
Abstract
Matrix-assisted laser desorption and ionization (MALDI) mass spectrometry (MS) is an indispensable tool in modern lipid research since it is fast, sensitive, tolerates sample impurities and provides spectra without major analyte fragmentation. We will discuss some methodological aspects, the related ion-forming processes and the MALDI MS characteristics of the different lipid classes (with the focus on glycerophospholipids) and the progress, which was achieved during the last ten years. Particular attention will be given to quantitative aspects of MALDI MS since this is widely considered as the most serious drawback of the method. Although the detailed role of the matrix is not yet completely understood, it will be explicitly shown that the careful choice of the matrix is crucial (besides the careful evaluation of the positive and negative ion mass spectra) in order to be able to detect all lipid classes of interest. Two developments will be highlighted: spatially resolved Imaging MS is nowadays well established and the distribution of lipids in tissues merits increasing interest because lipids are readily detectable and represent ubiquitous compounds. It will also be shown that a combination of MALDI MS with thin-layer chromatography (TLC) enables a fast spatially resolved screening of an entire TLC plate which makes the method competitive with LC/MS.
Collapse
Affiliation(s)
- Kathrin M Engel
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany
| | - Patricia Prabutzki
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany
| | - Jenny Leopold
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany
| | - Ariane Nimptsch
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany
| | - Katharina Lemmnitzer
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany
| | - D R Naomi Vos
- Center for Biomedical Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack-Strasse 10, D-68163 Mannheim, Germany
| | - Carsten Hopf
- Center for Biomedical Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack-Strasse 10, D-68163 Mannheim, Germany
| | - Jürgen Schiller
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany.
| |
Collapse
|
9
|
Jeng JY, Jiang ZH, Cho YT, Su H, Lee CW, Shiea J. Obtaining molecular imagings of pesticide residues on strawberry surfaces with probe sampling followed by ambient ionization mass spectrometric analysis. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4644. [PMID: 32885563 DOI: 10.1002/jms.4644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/30/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
Thermal desorption-electrospray ionization tandem mass spectrometry (TD-ESI/MS/MS) was used to rapidly characterize the residual pesticides collected on the surface of a strawberry with a metallic probe. Twelve pesticides, including nine fungicides and three miticides, were detected; the results were validated by comparison with results that used solvent extraction followed by gas chromatography/mass spectrometry and liquid chromatography/tandem mass spectrometry analyses. The distribution of pesticide residues on a strawberry's surface was explored by collecting multiple samples using probes from 40 positions on the strawberry, with the collected samples being analyzed with TD-ESI/MS/MS. The obtained molecular information was used to construct mass spectrometry imaging of the strawberry's pesticide residues.
Collapse
Affiliation(s)
- Jing-Yueh Jeng
- Department of Medicinal Chemistry, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Zong-Han Jiang
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Yi-Tzu Cho
- Department of Cosmetic Applications and Management, Yuh-Ing Junior College of Health Care & Management, Kaohsiung, Taiwan
| | - Hung Su
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chi-Wei Lee
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jentaie Shiea
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
10
|
McLaughlin N, Bielinski TM, Tressler CM, Barton E, Glunde K, Stumpo KA. Pneumatically Sprayed Gold Nanoparticles for Mass Spectrometry Imaging of Neurotransmitters. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2452-2461. [PMID: 32841002 DOI: 10.1021/jasms.0c00156] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Using citrate-capped gold nanoparticles (AuNPs) for laser desorption ionization mass spectrometry (LDI-MS) is an approach that has demonstrated broad applicability to ionization of different classes of molecules. Here, we show a simple AuNP-based approach for the ionization of neurotransmitters. Specifically, the detection of acetylcholine, dopamine, epinephrine, glutamine, 4-aminobutyric acid, norepinephrine, octopamine, and serotonin was achieved at physiologically relevant concentrations in serum and homogenized tissue. Additionally, pneumatic spraying of AuNPs onto tissue sections facilitated mass spectrometry imaging (MSI) of rabbit brain tissue sections, zebrafish embryos, and neuroblastoma cells for several neurotransmitters simultaneously using this quick and simple sample preparation. AuNP LDI-MS achieved mapping of neurotransmitters in fine structures of zebrafish embryos and neuroblastoma cells at a lateral spatial resolution of 5 μm. The use of AuNPs to ionize small aminergic neurotransmitters in situ provides a fast, high-spatial resolution method for simultaneous detection of a class of molecules that typically evade comprehensive detection with traditional matrixes.
Collapse
Affiliation(s)
- Nolan McLaughlin
- Department of Chemistry, University of Scranton, Scranton, Pennsylvania 18510, United States
| | - Tyler M Bielinski
- Department of Chemistry, University of Scranton, Scranton, Pennsylvania 18510, United States
| | - Caitlin M Tressler
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Eric Barton
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Kristine Glunde
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Katherine A Stumpo
- Department of Chemistry, University of Scranton, Scranton, Pennsylvania 18510, United States
| |
Collapse
|
11
|
Localization of sterols and oxysterols in mouse brain reveals distinct spatial cholesterol metabolism. Proc Natl Acad Sci U S A 2020; 117:5749-5760. [PMID: 32132201 PMCID: PMC7084107 DOI: 10.1073/pnas.1917421117] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The brain is a remarkably complex organ and cholesterol homeostasis underpins brain function. It is known that cholesterol is not evenly distributed across different brain regions; however, the precise map of cholesterol metabolism in the brain remains unclear. If cholesterol metabolism is to be correlated with brain function it is essential to generate such a map. Here we describe an advanced mass spectrometry platform to reveal spatial cholesterol metabolism in situ at 400-µm spot diameter on 10-µm tissue slices from mouse brain. We mapped, not only cholesterol, but also other biologically active sterols arising from cholesterol turnover in both wild type and mice lacking cholesterol 24S-hydroxylase (CYP46A1), the major cholesterol metabolizing enzyme. Dysregulated cholesterol metabolism is implicated in a number of neurological disorders. Many sterols, including cholesterol and its precursors and metabolites, are biologically active and important for proper brain function. However, spatial cholesterol metabolism in brain and the resulting sterol distributions are poorly defined. To better understand cholesterol metabolism in situ across the complex functional regions of brain, we have developed on-tissue enzyme-assisted derivatization in combination with microliquid extraction for surface analysis and liquid chromatography-mass spectrometry to locate sterols in tissue slices (10 µm) of mouse brain. The method provides sterolomic analysis at 400-µm spot diameter with a limit of quantification of 0.01 ng/mm2. It overcomes the limitations of previous mass spectrometry imaging techniques in analysis of low-abundance and difficult-to-ionize sterol molecules, allowing isomer differentiation and structure identification. Here we demonstrate the spatial distribution and quantification of multiple sterols involved in cholesterol metabolic pathways in wild-type and cholesterol 24S-hydroxylase knockout mouse brain. The technology described provides a powerful tool for future studies of spatial cholesterol metabolism in healthy and diseased tissues.
Collapse
|
12
|
Carreira AC, Santos TC, Lone MA, Zupančič E, Lloyd-Evans E, de Almeida RFM, Hornemann T, Silva LC. Mammalian sphingoid bases: Biophysical, physiological and pathological properties. Prog Lipid Res 2019:100995. [PMID: 31445071 DOI: 10.1016/j.plipres.2019.100995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 12/19/2022]
Abstract
Sphingoid bases encompass a group of long chain amino alcohols which form the essential structure of sphingolipids. Over the last years, these amphiphilic molecules were moving more and more into the focus of biomedical research due to their role as bioactive molecules. In fact, free sphingoid bases interact with specific receptors and target molecules and have been associated with numerous biological and physiological processes. In addition, they can modulate the biophysical properties of biological membranes. Several human diseases are related to pathological changes in the structure and metabolism of sphingoid bases. Yet, the mechanisms underlying their biological and pathophysiological actions remain elusive. Within this review, we aimed to summarize the current knowledge on the biochemical and biophysical properties of the most common sphingoid bases and to discuss their importance in health and disease.
Collapse
Affiliation(s)
- A C Carreira
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; Centro de Química e Bioquímica (CQB) e Centro de Química Estrutural (CQE), Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal; Sir Martin Evans Building, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - T C Santos
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; Centro de Química-Física Molecular - Institute of Nanoscience and Nanotechnology (CQFM-IN) and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Institute for Clinical Chemistry, University Hospital Zurich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - M A Lone
- Institute for Clinical Chemistry, University Hospital Zurich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - E Zupančič
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - E Lloyd-Evans
- Sir Martin Evans Building, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - R F M de Almeida
- Centro de Química e Bioquímica (CQB) e Centro de Química Estrutural (CQE), Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal
| | - T Hornemann
- Institute for Clinical Chemistry, University Hospital Zurich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - L C Silva
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; Centro de Química-Física Molecular - Institute of Nanoscience and Nanotechnology (CQFM-IN) and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
13
|
Carreira AC, Santos TC, Lone MA, Zupančič E, Lloyd-Evans E, de Almeida RFM, Hornemann T, Silva LC. Mammalian sphingoid bases: Biophysical, physiological and pathological properties. Prog Lipid Res 2019; 75:100988. [PMID: 31132366 DOI: 10.1016/j.plipres.2019.100988] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 12/11/2022]
Abstract
Sphingoid bases encompass a group of long chain amino alcohols which form the essential structure of sphingolipids. Over the last years, these amphiphilic molecules were moving more and more into the focus of biomedical research due to their role as bioactive molecules. In fact, free sphingoid bases interact with specific receptors and target molecules, and have been associated with numerous biological and physiological processes. In addition, they can modulate the biophysical properties of biological membranes. Several human diseases are related to pathological changes in the structure and metabolism of sphingoid bases. Yet, the mechanisms underlying their biological and pathophysiological actions remain elusive. Within this review, we aimed to summarize the current knowledge on the biochemical and biophysical properties of the most common sphingoid bases and to discuss their importance in health and disease.
Collapse
Affiliation(s)
- A C Carreira
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisboa 1649-003, Portugal; Centro de Química e Bioquímica (CQB) e Centro de Química Estrutural (CQE), Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, Lisboa 1749-016, Portugal; Sir Martin Evans Building, School of Biosciences, Cardiff University, Cardiff, UK
| | - T C Santos
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisboa 1649-003, Portugal; Centro de Química-Física Molecular - Institute of Nanoscience and Nanotechnology (CQFM-IN), IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Institute for Clinical Chemistry, University Hospital Zurich, Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - M A Lone
- Institute for Clinical Chemistry, University Hospital Zurich, Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - E Zupančič
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisboa 1649-003, Portugal
| | - E Lloyd-Evans
- Sir Martin Evans Building, School of Biosciences, Cardiff University, Cardiff, UK
| | - R F M de Almeida
- Centro de Química e Bioquímica (CQB) e Centro de Química Estrutural (CQE), Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, Lisboa 1749-016, Portugal
| | - T Hornemann
- Institute for Clinical Chemistry, University Hospital Zurich, Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - L C Silva
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisboa 1649-003, Portugal; Centro de Química-Física Molecular - Institute of Nanoscience and Nanotechnology (CQFM-IN), IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|