1
|
Useckaite Z, Newman LA, Hopkins AM, Klebe S, Colella AD, Chegeni N, Williams R, Sorich MJ, Rodrigues AD, Chataway TK, Rowland A. Proteomic profiling of paired human liver homogenate and tissue derived extracellular vesicles. Proteomics 2024; 24:e2300025. [PMID: 38037300 DOI: 10.1002/pmic.202300025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023]
Abstract
Advances in technologies to isolate extracellular vesicles (EVs) and detect/quantify their cargo underpin the novel potential of these circulating particles as a liquid biopsy to understand physiology and disease. One organ of particular interest in terms of utilizing EVs as a liquid biopsy is the liver. The extent to which EVs originating from the liver reflect the functional status of this organ remains unknown. This is an important knowledge gap that underpins the utility of circulating liver derived EVs as a liquid biopsy. The primary objective of this study was to characterize the proteomic profile of EVs isolated from the extracellular space of liver tissue (LEV) and compare this profile to that of paired tissue (LH). LCMS analyses detected 2892 proteins in LEV and 2673 in LH. Of the 2673 proteins detected in LH, 1547 (58%) were also detected in LEV. Bioinformatic analyses demonstrated comparable representation of proteins in terms of biological functions and cellular compartments. Although, enriched representation of membrane proteins and associated functions was observed in LEV, while representation of nuclear proteins and associated functions was depleted in LEV. These data support the potential use of circulating liver derived EVs as a liquid biopsy for this organ.
Collapse
Affiliation(s)
- Zivile Useckaite
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Lauren A Newman
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Ashley M Hopkins
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Sonja Klebe
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Alex D Colella
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
- Flinders Proteomics Facility, Flinders University, Adelaide, South Australia, Australia
| | - Nusha Chegeni
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
- Flinders Proteomics Facility, Flinders University, Adelaide, South Australia, Australia
| | - Ruth Williams
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Michael J Sorich
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - A David Rodrigues
- Pharmacokinetics & Drug Metabolism, Medicine Design, Worldwide Research & Development, Pfizer Inc, Groton, Connecticut, USA
| | - Tim K Chataway
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
- Flinders Proteomics Facility, Flinders University, Adelaide, South Australia, Australia
| | - Andrew Rowland
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
2
|
Balbisi M, Sugár S, Turiák L. Protein glycosylation in lung cancer from a mass spectrometry perspective. MASS SPECTROMETRY REVIEWS 2024. [PMID: 38576136 DOI: 10.1002/mas.21882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/27/2024] [Accepted: 03/23/2024] [Indexed: 04/06/2024]
Abstract
Lung cancer is a severe disease for which better diagnostic and therapeutic approaches are urgently needed. Increasing evidence implies that aberrant protein glycosylation plays a crucial role in the pathogenesis and progression of lung cancer. Differences in glycosylation patterns have been previously observed between healthy and cancerous samples as well as between different lung cancer subtypes, which suggests untapped diagnostic potential. In addition, understanding the changes mediated by glycosylation may shed light on possible novel therapeutic targets and personalized treatment strategies for lung cancer patients. Mass spectrometry based glycomics and glycoproteomics have emerged as powerful tools for in-depth characterization of changes in protein glycosylation, providing valuable insights into the molecular basis of lung cancer. This paper reviews the literature on the analysis of protein glycosylation in lung cancer using mass spectrometry, which is dominated by manuscripts published over the past 5 years. Studies analyzing N-glycosylation, O-glycosylation, and glycosaminoglycan patterns in tissue, serum, plasma, and rare biological samples of lung cancer patients are highlighted. The current knowledge on the potential utility of glycan and glycoprotein biomarkers is also discussed.
Collapse
Affiliation(s)
- Mirjam Balbisi
- MTA-TTK Lendület (Momentum) Glycan Biomarker Research Group, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Semmelweis University Doctoral School, Budapest, Hungary
| | - Simon Sugár
- MTA-TTK Lendület (Momentum) Glycan Biomarker Research Group, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Lilla Turiák
- MTA-TTK Lendület (Momentum) Glycan Biomarker Research Group, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
3
|
Bhardwaj S, Bulluss M, D'Aubeterre A, Derakhshani A, Penner R, Mahajan M, Mahajan VB, Dufour A. Integrating the analysis of human biopsies using post-translational modifications proteomics. Protein Sci 2024; 33:e4979. [PMID: 38533548 DOI: 10.1002/pro.4979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/07/2024] [Accepted: 03/16/2024] [Indexed: 03/28/2024]
Abstract
Proteome diversities and their biological functions are significantly amplified by post-translational modifications (PTMs) of proteins. Shotgun proteomics, which does not typically survey PTMs, provides an incomplete picture of the complexity of human biopsies in health and disease. Recent advances in mass spectrometry-based proteomic techniques that enrich and study PTMs are helping to uncover molecular detail from the cellular level to system-wide functions, including how the microbiome impacts human diseases. Protein heterogeneity and disease complexity are challenging factors that make it difficult to characterize and treat disease. The search for clinical biomarkers to characterize disease mechanisms and complexity related to patient diagnoses and treatment has proven challenging. Knowledge of PTMs is fundamentally lacking. Characterization of complex human samples that clarify the role of PTMs and the microbiome in human diseases will result in new discoveries. This review highlights the key role of proteomic techniques used to characterize unknown biological functions of PTMs derived from complex human biopsies. Through the integration of diverse methods used to profile PTMs, this review explores the genetic regulation of proteoforms, cells of origin expressing specific proteins, and several bioactive PTMs and their subsequent analyses by liquid chromatography and tandem mass spectrometry.
Collapse
Affiliation(s)
- Sonali Bhardwaj
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mitchell Bulluss
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ana D'Aubeterre
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Afshin Derakhshani
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Regan Penner
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - MaryAnn Mahajan
- Molecular Surgery Laboratory, Stanford University, Palo Alto, California, USA
| | - Vinit B Mahajan
- Molecular Surgery Laboratory, Stanford University, Palo Alto, California, USA
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, California, USA
| | - Antoine Dufour
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
4
|
Chang CJ, Huang YN, Lu YB, Zhang Y, Wu PH, Huang JS, Yang W, Chiang TY, Hsieh HS, Chung WH, Weng YC. Proteomic analysis of serum extracellular vesicles from biliary tract infection patients to identify novel biomarkers. Sci Rep 2024; 14:5707. [PMID: 38459197 PMCID: PMC10923810 DOI: 10.1038/s41598-024-56036-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/29/2024] [Indexed: 03/10/2024] Open
Abstract
Biliary tract infection (BTI), a commonly occurring abdominal disease, despite being extensively studied for its initiation and underlying mechanisms, continues to pose a challenge in the quest for identifying specific diagnostic biomarkers. Extracellular vesicles (EVs), which emanate from diverse cell types, serve as minute biological entities that mirror unique physiological or pathological conditions. Despite their potential, there has been a relatively restricted exploration of EV-oriented methodologies for diagnosing BTI. To uncover potent protein biomarkers for BTI patients, we applied a label-free quantitative proteomic method known for its unbiased and high-throughput nature. Furthermore, 192 differentially expressed proteins surfaced within EVs isolated from individuals afflicted with BTI. Subsequent GO and KEGG analyses pinpointed Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) and Crumbs homolog 3 (CRB3) as noteworthy biomarkers. Validation via data analysis of plasma-derived EV samples confirmed their specificity to BTI. Our study leveraged an unbiased proteomic tool to unveil CEACAM1 and CRB3 as promising protein biomarkers in serum EVs, presenting potential avenues for the advancement of diagnostic systems for BTI detection.
Collapse
Affiliation(s)
- Chih-Jung Chang
- School of Medicine and Medical Research Center, Xiamen Chang Gung Hospital Hua Qiao University, Quanzhou and Xiamen, Fujian, China
| | - Yung-Ning Huang
- Department of Digestive Disease, Xiamen Chang Gung Hospital Hua Qiao University, Xiamen, Fujian, China
| | - Yang-Bor Lu
- Department of Digestive Disease, Xiamen Chang Gung Hospital Hua Qiao University, Xiamen, Fujian, China
- Hepatobiliary and Pancreatic Unit, Xiamen Chang Gung Hospital Hua Qiao University, Xiamen, Fujian, China
| | - Yi Zhang
- Department of Emergency Clinic, Xiamen Chang Gung Hospital Hua Qiao University, Xiamen, Fujian, China
| | - Ping-Hua Wu
- Department of Emergency Clinic, Xiamen Chang Gung Hospital Hua Qiao University, Xiamen, Fujian, China
| | - Jian-Shan Huang
- Department of Emergency Clinic, Xiamen Chang Gung Hospital Hua Qiao University, Xiamen, Fujian, China
| | - Wei Yang
- Department of Digestive Disease, Xiamen Chang Gung Hospital Hua Qiao University, Xiamen, Fujian, China
| | - Tung-Ying Chiang
- Department of Digestive Disease, Xiamen Chang Gung Hospital Hua Qiao University, Xiamen, Fujian, China
| | - Hui-Shan Hsieh
- Department of Otolaryngology-Head and Neck Surgery, Sleep Center, Xiamen Chang Gung Hospital Hua Qiao University, Xiamen, Fujian, China
| | - Wen-Hung Chung
- School of Medicine and Medical Research Center, Xiamen Chang Gung Hospital Hua Qiao University, Quanzhou and Xiamen, Fujian, China.
- Drug Hypersensitivity Clinical and Research Center, Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taipei and Keelung, Taiwan.
- Department of Dermatology, Xiamen Chang Gung Hospital Hua Qiao University, Xiamen, Fujian, China.
| | - Yu-Chieh Weng
- Department of Digestive Disease, Xiamen Chang Gung Hospital Hua Qiao University, Xiamen, Fujian, China.
| |
Collapse
|
5
|
Gordeeva AI, Valueva AA, Rybakova EE, Ershova MO, Shumov ID, Kozlov AF, Ziborov VS, Kozlova AS, Zgoda VG, Ivanov YD, Ilgisonis EV, Kiseleva OI, Ponomarenko EA, Lisitsa AV, Archakov AI, Pleshakova TO. MS Identification of Blood Plasma Proteins Concentrated on a Photocrosslinker-Modified Surface. Int J Mol Sci 2023; 25:409. [PMID: 38203578 PMCID: PMC10778900 DOI: 10.3390/ijms25010409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/14/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
This work demonstrates the use of a modified mica to concentrate proteins, which is required for proteomic profiling of blood plasma by mass spectrometry (MS). The surface of mica substrates, which are routinely used in atomic force microscopy (AFM), was modified with a photocrosslinker to allow "irreversible" binding of proteins via covalent bond formation. This modified substrate was called the AFM chip. This study aimed to determine the role of the surface and crosslinker in the efficient concentration of various types of proteins in plasma over a wide concentration range. The substrate surface was modified with a 4-benzoylbenzoic acid N-succinimidyl ester (SuccBB) photocrosslinker, activated by UV irradiation. AFM chips were incubated with plasma samples from a healthy volunteer at various dilution ratios (102X, 104X, and 106X). Control experiments were performed without UV irradiation to evaluate the contribution of physical protein adsorption to the concentration efficiency. AFM imaging confirmed the presence of protein layers on the chip surface after incubation with the samples. MS analysis of different samples indicated that the proteomic profile of the AFM-visualized layers contained common and unique proteins. In the working series of experiments, 228 proteins were identified on the chip surface for all samples, and 21 proteins were not identified in the control series. In the control series, a total of 220 proteins were identified on the chip surface, seven of which were not found in the working series. In plasma samples at various dilution ratios, a total of 146 proteins were identified without the concentration step, while 17 proteins were not detected in the series using AFM chips. The introduction of a concentration step using AFM chips allowed us to identify more proteins than in plasma samples without this step. We found that AFM chips with a modified surface facilitate the efficient concentration of proteins owing to the adsorption factor and the formation of covalent bonds between the proteins and the chip surface. The results of our study can be applied in the development of highly sensitive analytical systems for determining the complete composition of the plasma proteome.
Collapse
Affiliation(s)
| | | | | | | | - Ivan D. Shumov
- Institute of Biomedical Chemistry (IBMC), 119121 Moscow, Russia; (A.I.G.); (A.A.V.); (E.E.R.); (M.O.E.); (A.F.K.); (V.S.Z.); (A.S.K.); (V.G.Z.); (Y.D.I.); (E.V.I.); (O.I.K.); (E.A.P.); (A.V.L.); (A.I.A.); (T.O.P.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Darijani MH, Aminzadeh A, Rahimi HR, Mandegary A, Heidari MR, Karami-Mohajeri S, Jafari E. Evaluating the protective effect of metformin against diclofenac-induced oxidative stress and hepatic damage: In vitro and in vivo studies. Biochem Biophys Res Commun 2023; 685:149168. [PMID: 37907013 DOI: 10.1016/j.bbrc.2023.149168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/21/2023] [Accepted: 10/26/2023] [Indexed: 11/02/2023]
Abstract
Diclofenac (DIC) is one of the most commonly prescribed non-steroidal anti-inflammatory drugs and has been shown to cause oxidative stress and liver injury. The current study investigated protective effects of metformin against DIC-induced hepatic toxicity in both in vitro and in vivo models. For the in vitro study, HepG2 cells were exposed to DIC in the presence or absence of metformin. The effect of metformin on cell viability was evaluated by MTT assay. Oxidative stress parameters (malondialdehyde (MDA), total thiol molecules (TTM), and total antioxidant capacity (TAC)) were assessed. For the in vivo study, thirty-six male Wistar rats were randomly divided into 6 groups. These groups were normal saline, metformin (200 mg/kg), DIC (50 mg/kg/day), DIC + metformin (50, 100, and 200 mg/kg/day). Histopathological studies and serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), albumin, direct and total bilirubin were measured. Also, oxidative stress parameters were assessed in liver tissue. Furthermore, expression of glutathione peroxidase (GPX)-1, -3, and -4, catalase (CAT), superoxide dismutase (SOD)-1, and -3 was examined using the real-time PCR method in hepatic tissue. In the in vitro study, metformin significantly prevented DIC-induced loss in cell viability in HepG2 cells. Metformin markedly reduced DIC-induced elevation of MDA levels and increased the TAC and TTM levels. In the in vivo study, metformin significantly prevented DIC-induced changes in hematological and histological markers. Administration of metformin significantly improved oxidative stress parameters in liver tissue. In addition, metformin increased the expression of antioxidant enzymes. Our results suggest that metformin exerts a significant protective effect against DIC-induced hepatic toxicity.
Collapse
Affiliation(s)
- Mohammad Hossein Darijani
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Azadeh Aminzadeh
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.
| | - Hamid-Reza Rahimi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Mandegary
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahmoud-Reza Heidari
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Somayyeh Karami-Mohajeri
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Jafari
- Pathology and Stem Cell Research Center, Department of Pathology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
7
|
Song JG, Baral KC, Kim GL, Park JW, Seo SH, Kim DH, Jung DH, Ifekpolugo NL, Han HK. Quantitative analysis of therapeutic proteins in biological fluids: recent advancement in analytical techniques. Drug Deliv 2023; 30:2183816. [PMID: 36880122 PMCID: PMC10003146 DOI: 10.1080/10717544.2023.2183816] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/06/2023] [Indexed: 03/08/2023] Open
Abstract
Pharmaceutical application of therapeutic proteins has been continuously expanded for the treatment of various diseases. Efficient and reliable bioanalytical methods are essential to expedite the identification and successful clinical development of therapeutic proteins. In particular, selective quantitative assays in a high-throughput format are critical for the pharmacokinetic and pharmacodynamic evaluation of protein drugs and to meet the regulatory requirements for new drug approval. However, the inherent complexity of proteins and many interfering substances presented in biological matrices have a great impact on the specificity, sensitivity, accuracy, and robustness of analytical assays, thereby hindering the quantification of proteins. To overcome these issues, various protein assays and sample preparation methods are currently available in a medium- or high-throughput format. While there is no standard or universal approach suitable for all circumstances, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay often becomes a method of choice for the identification and quantitative analysis of therapeutic proteins in complex biological samples, owing to its high sensitivity, specificity, and throughput. Accordingly, its application as an essential analytical tool is continuously expanded in pharmaceutical R&D processes. Proper sample preparation is also important since clean samples can minimize the interference from co-existing substances and improve the specificity and sensitivity of LC-MS/MS assays. A combination of different methods can be utilized to improve bioanalytical performance and ensure more accurate quantification. This review provides an overview of various protein assays and sample preparation methods, with particular emphasis on quantitative protein analysis by LC-MS/MS.
Collapse
Affiliation(s)
- Jae Geun Song
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Kshitis Chandra Baral
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Gyu-Lin Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Ji-Won Park
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Soo-Hwa Seo
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Da-Hyun Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Dong Hoon Jung
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Nonye Linda Ifekpolugo
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Hyo-Kyung Han
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| |
Collapse
|
8
|
TATAR N, AKGÖNÜLLÜ S, YAVUZ H, DENİZLİ A. Cibacron Blue F3GA ligand dye-based magnetic silica particles for the albumin purification. Turk J Chem 2023; 47:1125-1137. [PMID: 38173736 PMCID: PMC10760827 DOI: 10.55730/1300-0527.3599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 10/31/2023] [Accepted: 10/10/2023] [Indexed: 01/05/2024] Open
Abstract
Dye-ligand affinity chromatography is among the increasingly popular affinity chromatography based on molecular recognition for the purification of albumin. This study focuses on the binding of Cibacron Blue F3GA ligand dye with magnetic silica particles and purification by separation. Mono-disperse silica particles with bimodal pore size distribution were employed as a high-performance adsorbent for human serum albumin (HSA) protein purification under equilibrium conditions. The synthesized ligand-dye affinity based magnetic silica particles were characterized by electron spin resonance, Fourier-transform infrared spectroscopy, scanning electron microscopy, vibrating sample magnetometer, elemental analysis, and dispersive X-ray analysis. The HSA purification performance of the proposed material in the presence of a magnetic field was relatively investigated using magnetic-based particles with similar morphologies. The maximum adsorption capacity for HSA in an artificial plasma medium was defined as 48.6 mg/g magnetic silica particle. By using the designed magnetic silica particles, 1.0 M NaCl solution was successfully utilized for obtaining quantitative desorption with HSA. However, continued HSA purification performances of magnetic-based particles were significantly lower concerning the ligand-dye magnetic silica particles. The purity of the removed albumin was about 97%. The magnetic silica particles could be utilized many times without decreasing their protein adsorption capacities remarkably.
Collapse
Affiliation(s)
- Nurhak TATAR
- Institute of Nuclear Sciences, Hacettepe University, Ankara,
Turkiye
| | - Semra AKGÖNÜLLÜ
- Division of Biochemistry, Department of Chemistry, Hacettepe University, Ankara,
Turkiye
| | - Handan YAVUZ
- Division of Biochemistry, Department of Chemistry, Hacettepe University, Ankara,
Turkiye
| | - Adil DENİZLİ
- Division of Biochemistry, Department of Chemistry, Hacettepe University, Ankara,
Turkiye
| |
Collapse
|
9
|
Kourti M, Aivaliotis M, Hatzipantelis E. Proteomics in Childhood Acute Lymphoblastic Leukemia: Challenges and Opportunities. Diagnostics (Basel) 2023; 13:2748. [PMID: 37685286 PMCID: PMC10487225 DOI: 10.3390/diagnostics13172748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common cancer in children and one of the success stories in cancer therapeutics. Risk-directed therapy based on clinical, biologic and genetic features has played a significant role in this accomplishment. Despite the observed improvement in survival rates, leukemia remains one of the leading causes of cancer-related deaths. Implementation of next-generation genomic and transcriptomic sequencing tools has illustrated the genomic landscape of ALL. However, the underlying dynamic changes at protein level still remain a challenge. Proteomics is a cutting-edge technology aimed at deciphering the mechanisms, pathways, and the degree to which the proteome impacts leukemia subtypes. Advances in mass spectrometry enable high-throughput collection of global proteomic profiles, representing an opportunity to unveil new biological markers and druggable targets. The purpose of this narrative review article is to provide a comprehensive overview of studies that have utilized applications of proteomics in an attempt to gain insight into the pathogenesis and identification of biomarkers in childhood ALL.
Collapse
Affiliation(s)
- Maria Kourti
- Third Department of Pediatrics, School of Medicine, Aristotle University and Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Michalis Aivaliotis
- Laboratory of Biological Chemistry, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Emmanouel Hatzipantelis
- Children & Adolescent Hematology-Oncology Unit, Second Department of Pediatrics, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
10
|
Perico D, Tong Y, Chen L, Imamichi S, Sanada Y, Ishiai M, Suzuki M, Masutani M, Mauri P. Proteomic Characterization of SAS Cell-Derived Extracellular Vesicles in Relation to Both BPA and Neutron Irradiation Doses. Cells 2023; 12:1562. [PMID: 37371031 PMCID: PMC10296566 DOI: 10.3390/cells12121562] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/22/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Boron neutron capture therapy (BNCT) is a selective radiotherapy based on nuclear reaction that occurs when 10B atoms accumulated in cancer cells are irradiated by thermal neutrons, triggering a nuclear fission response leading to cell death. Despite its growing importance in cancer treatment, molecular characterization of its effects is still lacking. In this context, proteomics investigation can be useful to study BNCT effect and identify potential biomarkers. Hence, we performed proteomic analysis with nanoLC-MS/MS (liquid chromatography coupled to tandem mass spectrometry) on extracellular vesicles (EVs) isolated from SAS cultures treated or not with 10B-boronophenylalanine (BPA) and different doses of neutron irradiation, to study the cellular response related to both boron administration and neutrons action. Despite the interference of fetal bovine serum in the medium, we were able to stratify BPA- and BPA+ conditions and to identify EVs-derived proteins characterizing pathways potentially related to a BNCT effect such as apoptosis, DNA repair and inflammatory response. In particular, KLF11, SERPINA1 and SERPINF2 were up-regulated in BPA+, while POLE and SERPINC1 were up-regulated in BPA-. These results provide the first proteomic investigation of EVs treated with BNCT in different conditions and highlight the potentiality of proteomics for improving biomarkers identification and mechanisms understanding of BNCT.
Collapse
Affiliation(s)
- Davide Perico
- Institute of Biomedical Technologies ITB-CNR, Via Fratelli Cervi 93, 20054 Segrate, Italy;
| | - Ying Tong
- Department of Molecular and Genomic Biomedicine, Center for Bioinformatics & Molecular Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan; (Y.T.); (S.I.)
| | - Lichao Chen
- Central Radioisotope Division, National Cancer Center Research Institute, Tokyo 104-0045, Japan; (L.C.); (M.I.)
| | - Shoji Imamichi
- Department of Molecular and Genomic Biomedicine, Center for Bioinformatics & Molecular Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan; (Y.T.); (S.I.)
- Central Radioisotope Division, National Cancer Center Research Institute, Tokyo 104-0045, Japan; (L.C.); (M.I.)
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka 590-0494, Japan; (Y.S.); (M.S.)
| | - Yu Sanada
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka 590-0494, Japan; (Y.S.); (M.S.)
| | - Masamichi Ishiai
- Central Radioisotope Division, National Cancer Center Research Institute, Tokyo 104-0045, Japan; (L.C.); (M.I.)
| | - Minoru Suzuki
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka 590-0494, Japan; (Y.S.); (M.S.)
| | - Mitsuko Masutani
- Department of Molecular and Genomic Biomedicine, Center for Bioinformatics & Molecular Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan; (Y.T.); (S.I.)
- Central Radioisotope Division, National Cancer Center Research Institute, Tokyo 104-0045, Japan; (L.C.); (M.I.)
| | - Pierluigi Mauri
- Institute of Biomedical Technologies ITB-CNR, Via Fratelli Cervi 93, 20054 Segrate, Italy;
- Institute of Life Sciences, Sant’Anna School of Advanced Studies, 56127 Pisa, Italy
| |
Collapse
|
11
|
Heidarzadeh M, Zarebkohan A, Rahbarghazi R, Sokullu E. Protein corona and exosomes: new challenges and prospects. Cell Commun Signal 2023; 21:64. [PMID: 36973780 PMCID: PMC10041507 DOI: 10.1186/s12964-023-01089-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/24/2023] [Indexed: 03/29/2023] Open
Abstract
Recent advances in extracellular vesicle (EVs) detection and isolation methods have led to the development of novel therapeutic modalities. Among different types of EVs, exosomes (Exos) can transfer different signaling biomolecules and exhibit several superior features compared to whole-cell-based therapies. Therapeutic factors are normally loaded into the Exo lumen or attached to their surface for improving the on-target delivery rate and regenerative outcomes. Despite these advantages, there are several limitations in the application of Exos in in vivo conditions. It was suggested that a set of proteins and other biological compounds are adsorbed around Exos in aqueous phases and constitute an external layer named protein corona (PC). Studies have shown that PC can affect the physicochemical properties of synthetic and natural nanoparticles (NPs) after introduction in biofluids. Likewise, PC is generated around EVs, especially Exos in in vivo conditions. This review article is a preliminary attempt to address the interfering effects of PC on Exo bioactivity and therapeutic effects. Video Abstract.
Collapse
Affiliation(s)
- Morteza Heidarzadeh
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Turkey
| | - Amir Zarebkohan
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Emel Sokullu
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Turkey
- Biophysics Department, Koç University School of Medicine, Rumeli Feneri, 34450, Sariyer, Istanbul, Turkey
| |
Collapse
|
12
|
Jalaludin I, Lubman DM, Kim J. A guide to mass spectrometric analysis of extracellular vesicle proteins for biomarker discovery. MASS SPECTROMETRY REVIEWS 2023; 42:844-872. [PMID: 34747512 DOI: 10.1002/mas.21749] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/21/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Exosomes (small extracellular vesicles) in living organisms play an important role in processes such as cell proliferation or intercellular communication. Recently, exosomes have been extensively investigated for biomarker discoveries for various diseases. An important aspect of exosome analysis involves the development of enrichment methods that have been introduced for successful isolation of exosomes. These methods include ultracentrifugation, size exclusion chromatography, polyethylene glycol-based precipitation, immunoaffinity-based enrichment, ultrafiltration, and asymmetric flow field-flow fractionation among others. To confirm the presence of exosomes, various characterization methods have been utilized such as Western blot analysis, atomic force microscopy, electron microscopy, optical methods, zeta potential, visual inspection, and mass spectrometry. Recent advances in high-resolution separations, high-performance mass spectrometry and comprehensive proteome databases have all contributed to the successful analysis of exosomes from patient samples. Herein we review various exosome enrichment methods, characterization methods, and recent trends of exosome investigations using mass spectrometry-based approaches for biomarker discovery.
Collapse
Affiliation(s)
- Iqbal Jalaludin
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - David M Lubman
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Jeongkwon Kim
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
13
|
Li C, Xiao J, Wu S, Liu L, Zeng X, Zhao Q, Zhang Z. Clinical application of serum-based proteomics technology in human tumor research. Anal Biochem 2023; 663:115031. [PMID: 36580994 DOI: 10.1016/j.ab.2022.115031] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 12/27/2022]
Abstract
The rapid development of proteomics technology in the past decades has led to further human understanding of tumor research, and in some ways, the technology plays a very important supporting role in the early detection of tumors. Human serum has been shown to contain a variety of proteins closely related to life activities, and the dynamic change in proteins can often reflect the physiological and pathological conditions of the body. Serum has the advantage of easy extraction, so the application of proteomics technology in serum has become a hot spot and frontier area for the study of malignant tumors. However, there are still many difficulties in the standardized use of proteomic technologies, which inevitably limit the clinical application of proteomic technologies due to the heterogeneity of human proteins leading to incomplete whole proteome populations, in addition to most serum protein markers being now not highly specific in aiding the early detection of tumors. Nevertheless, further development of proteomics technologies will greatly increase our understanding of tumor biology and help discover more new tumor biomarkers with specificity that will enable medical technology.
Collapse
Affiliation(s)
- Chen Li
- Department of Pathology, The First Affiliated Hospital of University of South China, Hunan, Hengyang, 421001, Hunan Province, China
| | - Juan Xiao
- Department of Otorhinolaryngology, The Second Affiliated Hospital of University of South China, Hunan, Hengyang, 421001, Hunan Province, China
| | - Shihua Wu
- Department of Pathology, The Second Hospital of Shaoyang College, Hunan, Shaoyang, 422000, Hunan Province, China
| | - Lu Liu
- Department of Pathology, The First Affiliated Hospital of University of South China, Hunan, Hengyang, 421001, Hunan Province, China
| | - Xuemei Zeng
- Cancer Research Institute of Hengyang Medical College, University of South China, Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hunan, Hengyang, 421001, China
| | - Qiang Zhao
- Department of Pathology, The First Affiliated Hospital of University of South China, Hunan, Hengyang, 421001, Hunan Province, China.
| | - Zhiwei Zhang
- Department of Pathology, The First Affiliated Hospital of University of South China, Hunan, Hengyang, 421001, Hunan Province, China; Cancer Research Institute of Hengyang Medical College, University of South China, Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hunan, Hengyang, 421001, China.
| |
Collapse
|
14
|
Araujo ANM, Leroux IN, Furtado DZS, Ferreira APSDS, Batista BL, Silva HDT, Handakas E, Assunção NA, Olympio KPK. Integration of proteomic and metabolomic analyses: New insights for mapping informal workers exposed to potentially toxic elements. Front Public Health 2023; 10:899638. [PMID: 36761330 PMCID: PMC9905639 DOI: 10.3389/fpubh.2022.899638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 12/29/2022] [Indexed: 01/26/2023] Open
Abstract
Occupational exposure to potentially toxic elements (PTEs) is a concerning reality of informal workers engaged in the jewelry production chain that can lead to adverse health effects. In this study, untargeted proteomic and metabolomic analyses were employed to assess the impact of these exposures on informal workers' exposome in Limeira city, São Paulo state, Brazil. PTE levels (Cr, Mn, Ni, Cu, Zn, As, Cd, Sn, Sb, Hg, and Pb) were determined in blood, proteomic analyses were performed for saliva samples (n = 26), and metabolomic analyses in plasma (n = 145) using ultra-high performance liquid chromatography (UHPLC) coupled with quadrupole-time-of-flight (Q-TOF) mass spectrometry. Blood PTE levels of workers, controls, and their family members were determined by inductively coupled plasma-mass spectrometry (ICP-MS). High concentration levels of Sn and Cu were detected in welders' blood (p < 0.001). Statistical analyses were performed using MetaboAnalyst 4.0. The results showed that 26 proteins were upregulated, and 14 proteins downregulated on the welder group, and thirty of these proteins were also correlated with blood Pb, Cu, Sb, and Sn blood levels in the welder group (p < 0.05). Using gene ontology analysis of these 40 proteins revealed the biological processes related to the upregulated proteins were translational initiation, SRP-dependent co-translational protein targeting to membrane, and viral transcription. A Metabolome-Wide Association Study (MWAS) was performed to search for associations between blood metabolites and exposure groups. A pathway enrichment analysis of significant features from the MWAS was then conducted with Mummichog. A total of 73 metabolomic compounds and 40 proteins up or down-regulated in welders were used to perform a multi-omics analysis, disclosing seven metabolic pathways potentially disturbed by the informal work: valine leucine and isoleucine biosynthesis, valine leucine and isoleucine degradation, arginine and proline metabolism, ABC transporters, central carbon metabolism in cancer, arachidonic acid metabolism and cysteine and methionine metabolism. The majority of the proteins found to be statistically up or downregulated in welders also correlated with at least one blood PTE level, providing insights into the biological responses to PTE exposures in the informal work exposure scenario. These findings shed new light on the effects of occupational activity on workers' exposome, underscoring the harmful effects of PTE.
Collapse
Affiliation(s)
- Alda Neis Miranda Araujo
- Graduate Program in Translational Medicine, Paulista School of Medicine, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Isabelle Nogueira Leroux
- School of Public Health, Department of Environmental Health, University of São Paulo, São Paulo, Brazil
| | - Danielle Zildeana Sousa Furtado
- Department of Chemistry, Institute of Environmental, Chemical, and Pharmaceutical Sciences, Federal University of São Paulo, Diadema, São Paulo, Brazil,Technology School of Teresina, Teresina, Piauí, Brazil
| | | | - Bruno Lemos Batista
- Center for Natural and Human Sciences, Federal University of ABC, São Paulo, Brazil
| | - Heron Dominguez Torres Silva
- Department of Chemistry, Institute of Environmental, Chemical, and Pharmaceutical Sciences, Federal University of São Paulo, Diadema, São Paulo, Brazil
| | - Evangelos Handakas
- Department of Medicine, Computation and Medicine, Imperial College London, London, United Kingdom
| | - Nilson Antônio Assunção
- Department of Chemistry, Institute of Environmental, Chemical, and Pharmaceutical Sciences, Federal University of São Paulo, Diadema, São Paulo, Brazil,Nilson Antônio Assunção ✉
| | - Kelly Polido Kaneshiro Olympio
- School of Public Health, Department of Environmental Health, University of São Paulo, São Paulo, Brazil,*Correspondence: Kelly Polido Kaneshiro Olympio ✉
| |
Collapse
|
15
|
Ono K, Eguchi T. Proteomic Profiling of the Extracellular Vesicle Chaperone in Cancer. Methods Mol Biol 2023; 2693:233-249. [PMID: 37540439 DOI: 10.1007/978-1-0716-3342-7_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Molecular chaperones are widely distributed intracellular proteins that play essential roles in maintaining proteome function by assisting in the folding of client proteins. Molecular chaperones, such as heat shock proteins (HSPs), are found intracellularly and extracellularly. Extracellular vesicles (EVs), such as exosomes, contain HSPs and horizontally transfer the functional chaperones into various recipient cells. Besides, mass spectrometry has enabled a comprehensive analysis of exosomal and EV proteins, which is useful in basic biomedical research to clinical biomarker search. We have performed deep proteome analysis of EVs, including exosomes, from metastatic tongue and prostate cancers and detected >700 protein types, including cytoplasmic, ER, mitochondrial, small, and large HSPs. Here, we provide protocols for isolating exosomes/EVs and deep proteome analysis to detect the EV chaperone.
Collapse
Affiliation(s)
- Kisho Ono
- Department of Oral and Maxillofacial Surgery, Okayama University Hospital, Okayama, Japan
| | - Takanori Eguchi
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
| |
Collapse
|
16
|
Sandri BJ, Kim J, Lubach GR, Lock EF, Guerrero C, Higgins L, Markowski TW, Kling PJ, Georgieff MK, Coe CL, Rao RB. Tandem mass tag proteomic and untargeted metabolomic profiling reveals altered serum and CSF biochemical datasets in iron deficient monkeys. Data Brief 2022; 45:108591. [PMID: 36164307 PMCID: PMC9508431 DOI: 10.1016/j.dib.2022.108591] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/26/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
The effects of early-life iron deficiency anemia (IDA) extend past the blood and include both short- and long-term adverse effects on many tissues including the brain. Prior to IDA, iron deficiency (ID) can cause similar tissue effects, but a sensitive biomarker of iron-dependent brain health is lacking. To determine serum and CSF biomarkers of ID-induced metabolic dysfunction we performed proteomic and metabolomic analysis of serum and CSF at 4- and 6- months from a nonhuman primate model of infantile IDA. LC/MS/MS analyses identified a total of 227 metabolites and 205 proteins in serum. In CSF, we measured 210 metabolites and 1,560 proteins. Data were either processed from a Q-Exactive (Thermo Scientific, Waltham, MA) through Progenesis QI with accurate mass and retention time comparisons to a proprietary small molecule database and Metlin or with raw files imported directly from a Fusion Orbitrap (Thermo Scientific, Waltham, MA) through Sequest in Proteome Discoverer 2.4.0.305 (Thermo Scientific, Waltham, MA) with peptide matches through the latest Rhesus Macaque HMDB database. Metabolite and protein identifiers, p-values, and q-values were utilized for molecular pathway analysis with Ingenuity Pathways Analysis (IPA). We applied multiway distance weighted discrimination (DWD) to identify a weighted sum of the features (proteins or metabolites) that distinguish ID from IS at 4-months (pre-anemic period) and 6-months of age (anemic).
Collapse
|
17
|
Reale A, Khong T, Spencer A. Extracellular Vesicles and Their Roles in the Tumor Immune Microenvironment. J Clin Med 2022; 11:jcm11236892. [PMID: 36498469 PMCID: PMC9737553 DOI: 10.3390/jcm11236892] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022] Open
Abstract
Tumor cells actively incorporate molecules (e.g., proteins, lipids, RNA) into particles named extracellular vesicles (EVs). Several groups have demonstrated that EVs can be transferred to target (recipient) cells, making EVs an important means of intercellular communication. Indeed, EVs are able to modulate the functions of target cells by reprogramming signaling pathways. In a cancer context, EVs promote the formation of a supportive tumor microenvironment (TME) and (pre)metastatic niches. Recent studies have revealed that immune cells, tumor cells and their secretome, including EVs, promote changes in the TME and immunosuppressive functions of immune cells (e.g., natural killer, dendritic cells, T and B cells, monocytes, macrophages) that allow tumor cells to establish and propagate. Despite the growing knowledge on EVs and on their roles in cancer and as modulators of the immune response/escape, the translation into clinical practice remains in its early stages, hence requiring improved translational research in the EVs field. Here, we comprehensively review the current knowledge and most recent research on the roles of EVs in tumor immune evasion and immunosuppression in both solid tumors and hematological malignancies. We also highlight the clinical utility of EV-mediated immunosuppression targeting and EV-engineering. Importantly, we discuss the controversial role of EVs in cancer biology, current limitations and future perspectives to further the EV knowledge into clinical practice.
Collapse
Affiliation(s)
- Antonia Reale
- Myeloma Research Group, Australian Centre for Blood Diseases, Central Clinical School, Monash University—Alfred Health, Melbourne, VIC 3004, Australia
- Correspondence: (A.R.); (A.S.)
| | - Tiffany Khong
- Myeloma Research Group, Australian Centre for Blood Diseases, Central Clinical School, Monash University—Alfred Health, Melbourne, VIC 3004, Australia
| | - Andrew Spencer
- Myeloma Research Group, Australian Centre for Blood Diseases, Central Clinical School, Monash University—Alfred Health, Melbourne, VIC 3004, Australia
- Malignant Haematology and Stem Cell Transplantation, Department of Haematology, Alfred Hospital, Melbourne, VIC 3004, Australia
- Department of Clinical Hematology, Monash University, Melbourne, VIC 3004, Australia
- Correspondence: (A.R.); (A.S.)
| |
Collapse
|
18
|
He B, Huang Z, Huang C, Nice EC. Clinical applications of plasma proteomics and peptidomics: Towards precision medicine. Proteomics Clin Appl 2022; 16:e2100097. [PMID: 35490333 DOI: 10.1002/prca.202100097] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/16/2022] [Accepted: 04/28/2022] [Indexed: 02/05/2023]
Abstract
In the context of precision medicine, disease treatment requires individualized strategies based on the underlying molecular characteristics to overcome therapeutic challenges posed by heterogeneity. For this purpose, it is essential to develop new biomarkers to diagnose, stratify, or possibly prevent diseases. Plasma is an available source of biomarkers that greatly reflects the physiological and pathological conditions of the body. An increasing number of studies are focusing on proteins and peptides, including many involving the Human Proteome Project (HPP) of the Human Proteome Organization (HUPO), and proteomics and peptidomics techniques are emerging as critical tools for developing novel precision medicine preventative measures. Excitingly, the emerging plasma proteomics and peptidomics toolbox exhibits a huge potential for studying pathogenesis of diseases (e.g., COVID-19 and cancer), identifying valuable biomarkers and improving clinical management. However, the enormous complexity and wide dynamic range of plasma proteins makes plasma proteome profiling challenging. Herein, we summarize the recent advances in plasma proteomics and peptidomics with a focus on their emerging roles in COVID-19 and cancer research, aiming to emphasize the significance of plasma proteomics and peptidomics in clinical applications and precision medicine.
Collapse
Affiliation(s)
- Bo He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, P. R. China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, P. R. China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, P. R. China.,Department of Pharmacology, and Provincial Key Laboratory of Pathophysiology in Ningbo University School of Medicine, Ningbo, Zhejiang, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
19
|
Wang H, Xu J, Dong P, Li Y, Cui Y, Li H, Li H, Zhang J, Wang S, Dai L. Comprehensive Analysis of Pterostilbene Metabolites In Vivo and In Vitro Using a UHPLC-Q-Exactive Plus Mass Spectrometer with Multiple Data-Mining Methods. ACS OMEGA 2022; 7:38561-38575. [PMID: 36340088 PMCID: PMC9631410 DOI: 10.1021/acsomega.2c03924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Pterostilbene, a stilbene phytoalexin, is mainly obtained from blueberries and grape vines; however, its metabolic mechanisms were unclear in vivo. In the present study, three different methods were used to prepare biological samples, and then, an efficient strategy based on ultrahigh-performance liquid chromatography coupled with mass spectrometry was developed to screen and identify pterostilbene metabolites in rat urine, plasma, liver, and feces. In order to elucidate pterostilbene or its metabolites involved in vitro, this study was assessed by the liver microsome system. As a result, a total of 88 pterostilbene metabolites were characterized. Among them, 77 metabolites in vivo and 14 metabolites in vitro were found; 50 and 38 metabolites were observed in rat plasma and urine, while only 4 and 12 metabolites were detected in rat feces and liver, inferring that plasma and urine possessed more diverse types of pterostilbene metabolites; 41 metabolic products were obtained by solid-phase extraction, and 9 and 10 metabolites were screened by methanol precipitation and acetonitrile precipitation, respectively, indicating that solid-phase extraction could be adopted as the most acceptable method for pterostilbene metabolism. The results also demonstrated that pterostilbene mainly underwent glucosylation, dehydrogenation, hydrogenation, demethoxylation, sulfation, NAC binding, methylene ketogenic, acetylation, and methylation. In summary, this research provides an idea for the further study of drug metabolism.
Collapse
Affiliation(s)
- Hong Wang
- School
of Pharmacy, Binzhou Medical University, Yantai 264003, China
- School
of Pharmacy, Shandong University of Traditional
Chinese Medicine, Jinan 250300, China
| | - Jing Xu
- School
of Pharmacy, Binzhou Medical University, Yantai 264003, China
- School
of Pharmacy, Shandong University of Traditional
Chinese Medicine, Jinan 250300, China
| | - Pingping Dong
- State
Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao 999078, China
| | - Yanan Li
- School
of Pharmacy, Shandong University of Traditional
Chinese Medicine, Jinan 250300, China
| | - Yifang Cui
- School
of Pharmacy, Shandong University of Traditional
Chinese Medicine, Jinan 250300, China
| | - Huajian Li
- School
of Pharmacy, Shandong University of Traditional
Chinese Medicine, Jinan 250300, China
| | - Haoran Li
- School
of Pharmacy, Shandong University of Traditional
Chinese Medicine, Jinan 250300, China
| | - Jiayu Zhang
- School
of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Shaoping Wang
- School
of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Long Dai
- School
of Pharmacy, Binzhou Medical University, Yantai 264003, China
| |
Collapse
|
20
|
King CD, Kapp KL, Arul AB, Choi MJ, Robinson RAS. Advancements in automation for plasma proteomics sample preparation. Mol Omics 2022; 18:828-839. [PMID: 36048090 PMCID: PMC9879274 DOI: 10.1039/d2mo00122e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Automation is necessary to increase sample processing throughput for large-scale clinical analyses. Replacement of manual pipettes with robotic liquid handler systems is especially helpful in processing blood-based samples, such as plasma and serum. These samples are very heterogenous, and protein expression can vary greatly from sample-to-sample, even for healthy controls. Detection of true biological changes requires that variation from sample preparation steps and downstream analytical detection methods, such as mass spectrometry, remains low. In this mini-review, we discuss plasma proteomics protocols and the benefits of automation towards enabling detection of low abundant proteins and providing low sample error and increased sample throughput. This discussion includes considerations for automation of major sample depletion and/or enrichment strategies for plasma toward mass spectrometry detection.
Collapse
Affiliation(s)
- Christina D King
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Kathryn L Kapp
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Albert B Arul
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Min Ji Choi
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Renã A S Robinson
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
- Vanderbilt Memory & Alzheimer's Center, Vanderbilt University Medical Center, Nashville, Tennessee 37212, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee 37232, USA
| |
Collapse
|
21
|
Perico D, Di Silvestre D, Imamichi S, Sanada Y, Masutani M, Mauri PL. Systems Biology Approach to Investigate Biomarkers, Boron-10 Carriers, and Mechanisms Useful for Improving Boron Neutron Capture Therapy. Cancer Biother Radiopharm 2022; 38:152-159. [PMID: 36269655 DOI: 10.1089/cbr.2022.0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Systems biology approach, carried out with high-throughput omics technologies, has become a fundamental aspect of the study of complex diseases like cancer. It can molecularly characterize subjects, physiopathological conditions, and interactions, allowing a precise description, to reach personalized medicine. In particular, proteomics, typically performed with liquid chromatography coupled to mass spectrometry, is a powerful tool for systems biology, giving the possibility to perform diagnosis, patient stratification, and prediction of therapy effects. Boron Neutron Capture Therapy (BNCT) is a selective antitumoral radiotherapy based on a nuclear reaction that occurs when 10B atoms are irradiated by low-energy thermal neutrons, leading to cell death, thanks to the production of high-energy α particles. Since BNCT is recently becoming an important therapy for the treatment of different types of solid tumors such as gliomas, head and neck cancers, and others, it can take advantage of molecular investigation to improve the understanding of effects and mechanisms and so help its clinical applications. In this context, proteomics can provide a better understanding of mechanisms related to BNCT effect, identify potential biomarkers, and individuate differential responses by specific patients, stratifying responders and nonresponders. Another key aspect of BNCT is the study of new potential Boron-10 carriers to improve the selectivity of Boron delivery to tumors and proteomics can be important in this application, studying the effectiveness of new boron delivery agents, including protein-based carriers, also using computational studies that can investigate new molecules, such as boronated monoclonal antibodies, for improving BNCT.
Collapse
Affiliation(s)
- Davide Perico
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), Segrate, Italy
| | - Dario Di Silvestre
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), Segrate, Italy
| | - Shoji Imamichi
- Department of Molecular and Genomic Biomedicine, School of Biomedical Sciences, Nagasaki University Graduate, Nagasaki, Japan.,Central Radioisotope Division, National Cancer Center Research Institute, Tokyo, Japan.,Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Japan
| | - Yu Sanada
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Japan
| | - Mitsuko Masutani
- Department of Molecular and Genomic Biomedicine, School of Biomedical Sciences, Nagasaki University Graduate, Nagasaki, Japan.,Central Radioisotope Division, National Cancer Center Research Institute, Tokyo, Japan
| | - Pier Luigi Mauri
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), Segrate, Italy.,Institute of Life Science, Scuola Superiore Sant'Anna, Pisa, Italy
| |
Collapse
|
22
|
Nanostructured Silicon Enabled HR-MS for the Label-Free Detection of Biomarkers in Colorectal Cancer Plasma Small Extracellular Vesicles. JOURNAL OF NANOTHERANOSTICS 2022. [DOI: 10.3390/jnt3040013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Despite improvements in treatment options for advanced colorectal cancer (CRC), survival outcomes are still best for patients with non-metastasised disease. Diagnostic tools to identify blood-based biomarkers and assist in CRC subtype classification could afford a means to track CRC progression and treatment response. Cancer cell-derived small extracellular vesicles (EVs) circulating in blood carry an elevated cargo of lipids and proteins that could be used as a signature of tumour suppressor/promoting events or stages leading up to and including metastasis. Here, we used pre-characterised biobanked plasma samples from surgical units, typically with a low volume (~100 µL), to generate and discover signatures of CRC-derived EVs. We employed nanostructured porous silicon (pSi) surface assisted-laser desorption/ionisation (SALDI) coupled with high-resolution mass spectrometry (HR-MS), to allow sensitive detection of low abundant analytes in plasma EVs. When applied to CRC samples, SALDI-HR-MS enabled the detection of the peptide mass fingerprint of cancer suppressor proteins, including serine/threonine phosphatases and activating-transcription factor 3. SALDI-HR-MS also allowed the detection of a spectrum of glycerophospholipids and sphingolipid signatures in metastatic CRC. We observed that lithium chloride enhanced detection sensitivity to elucidate the structure of low abundant lipids in plasma EVs. pSi SALDI can be used as an effective system for label-free and high throughput analysis of low-volume patient samples, allowing rapid and sensitive analysis for CRC classification.
Collapse
|
23
|
Yang R, Meyer AS, Droujinine IA, Udeshi ND, Hu Y, Guo J, McMahon JA, Carey DK, Xu C, Fang Q, Sha J, Qin S, Rocco D, Wohlschlegel J, Ting AY, Carr SA, Perrimon N, McMahon AP. A genetic model for in vivo proximity labelling of the mammalian secretome. Open Biol 2022; 12:220149. [PMID: 35946312 PMCID: PMC9364151 DOI: 10.1098/rsob.220149] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Organ functions are highly specialized and interdependent. Secreted factors regulate organ development and mediate homeostasis through serum trafficking and inter-organ communication. Enzyme-catalysed proximity labelling enables the identification of proteins within a specific cellular compartment. Here, we report a BirA*G3 mouse strain that enables CRE-dependent promiscuous biotinylation of proteins trafficking through the endoplasmic reticulum. When broadly activated throughout the mouse, widespread labelling of proteins was observed within the secretory pathway. Streptavidin affinity purification and peptide mapping by quantitative mass spectrometry (MS) proteomics revealed organ-specific secretory profiles and serum trafficking. As expected, secretory proteomes were highly enriched for signal peptide-containing proteins, highlighting both conventional and non-conventional secretory processes, and ectodomain shedding. Lower-abundance proteins with hormone-like properties were recovered and validated using orthogonal approaches. Hepatocyte-specific activation of BirA*G3 highlighted liver-specific biotinylated secretome profiles. The BirA*G3 mouse model demonstrates enhanced labelling efficiency and tissue specificity over viral transduction approaches and will facilitate a deeper understanding of secretory protein interplay in development, and in healthy and diseased adult states.
Collapse
Affiliation(s)
- Rui Yang
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Amanda S. Meyer
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | | | | | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Jinjin Guo
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Jill A. McMahon
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | | | - Charles Xu
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Qiao Fang
- Department of Molecular Genetics, University of Toronto, Toronto, ON Canada, M5S 3E1
| | - Jihui Sha
- Department of Biological Chemistry, Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, USA
| | - Shishang Qin
- BIOPIC, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing, People's Republic of China
| | - David Rocco
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - James Wohlschlegel
- Department of Biological Chemistry, Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alice Y. Ting
- Chan Zuckerberg Biohub, San Francisco, CA, USA,Departments of Genetics, Biology, and Chemistry, Stanford University, Stanford, CA, USA
| | | | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA,Howard Hughes Medical Institute, Boston, MA, USA
| | - Andrew P. McMahon
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
24
|
Proteomics for Biomarker Discovery for Diagnosis and Prognosis of Kidney Transplantation Rejection. Proteomes 2022; 10:proteomes10030024. [PMID: 35893765 PMCID: PMC9326686 DOI: 10.3390/proteomes10030024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 02/07/2023] Open
Abstract
Renal transplantation is currently the treatment of choice for end-stage kidney disease, enabling a quality of life superior to dialysis. Despite this, all transplanted patients are at risk of allograft rejection processes. The gold-standard diagnosis of graft rejection, based on histological analysis of kidney biopsy, is prone to sampling errors and carries high costs and risks associated with such invasive procedures. Furthermore, the routine clinical monitoring, based on urine volume, proteinuria, and serum creatinine, usually only detects alterations after graft histologic damage and does not differentiate between the diverse etiologies. Therefore, there is an urgent need for new biomarkers enabling to predict, with high sensitivity and specificity, the rejection processes and the underlying mechanisms obtained from minimally invasive procedures to be implemented in routine clinical surveillance. These new biomarkers should also detect the rejection processes as early as possible, ideally before the 78 clinical outputs, while enabling balanced immunotherapy in order to minimize rejections and reducing the high toxicities associated with these drugs. Proteomics of biofluids, collected through non-invasive or minimally invasive analysis, e.g., blood or urine, present inherent characteristics that may provide biomarker candidates. The current manuscript reviews biofluids proteomics toward biomarkers discovery that specifically identify subclinical, acute, and chronic immune rejection processes while allowing for the discrimination between cell-mediated or antibody-mediated processes. In time, these biomarkers will lead to patient risk stratification, monitoring, and personalized and more efficient immunotherapies toward higher graft survival and patient quality of life.
Collapse
|
25
|
Sandri BJ, Kim J, Lubach GR, Lock EF, Guerrero C, Higgins L, Markowski TW, Kling PJ, Georgieff MK, Coe CL, Rao RB. Multiomic profiling of iron-deficient infant monkeys reveals alterations in neurologically important biochemicals in serum and cerebrospinal fluid before the onset of anemia. Am J Physiol Regul Integr Comp Physiol 2022; 322:R486-R500. [PMID: 35271351 PMCID: PMC9054343 DOI: 10.1152/ajpregu.00235.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/17/2022]
Abstract
The effects of iron deficiency (ID) during infancy extend beyond the hematologic compartment and include short- and long-term adverse effects on many tissues including the brain. However, sensitive biomarkers of iron-dependent brain health are lacking in humans. To determine whether serum and cerebrospinal fluid (CSF) biomarkers of ID-induced metabolic dysfunction are concordant in the pre/early anemic stage of ID before anemia in a nonhuman primate model of infantile iron deficiency anemia (IDA). ID (n = 7), rhesus infants at 4 mo (pre-anemic period) and 6 mo of age (anemic) were examined. Hematological, metabolomic, and proteomic profiles were generated via HPLC/MS at both time points to discriminate serum biomarkers of ID-induced brain metabolic dysfunction. We identified 227 metabolites and 205 proteins in serum. Abnormalities indicating altered liver function, lipid dysregulation, and increased acute phase reactants were present in ID. In CSF, we measured 210 metabolites and 1,560 proteins with changes in ID infants indicative of metabolomic and proteomic differences indexing disrupted synaptogenesis. Systemic and CSF proteomic and metabolomic changes were present and concurrent in the pre-anemic and anemic periods. Multiomic serum and CSF profiling uncovered pathways disrupted by ID in both the pre-anemic and anemic stages of infantile IDA, including evidence for hepatic dysfunction and activation of acute phase response. Parallel changes observed in serum and CSF potentially provide measurable serum biomarkers of ID that reflect at-risk brain processes prior to progression to clinical anemia.
Collapse
Affiliation(s)
- Brian J Sandri
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, Minnesota
| | - Jonathan Kim
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Gabriele R Lubach
- Harlow Center for Biological Psychology, University of Wisconsin, Madison, Wisconsin
| | - Eric F Lock
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Candace Guerrero
- Department of Biochemistry, Molecular Biology, & Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - LeeAnn Higgins
- Department of Biochemistry, Molecular Biology, & Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - Todd W Markowski
- Department of Biochemistry, Molecular Biology, & Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - Pamela J Kling
- Division of Neonatology, Department of Pediatrics, University of Wisconsin, Madison, Wisconsin
| | - Michael K Georgieff
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, Minnesota
| | - Christopher L Coe
- Harlow Center for Biological Psychology, University of Wisconsin, Madison, Wisconsin
| | - Raghavendra B Rao
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
26
|
A Comparison of Blood Plasma Small Extracellular Vesicle Enrichment Strategies for Proteomic Analysis. Proteomes 2022; 10:proteomes10020019. [PMID: 35736799 PMCID: PMC9229025 DOI: 10.3390/proteomes10020019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 12/13/2022] Open
Abstract
Proteomic analysis of small extracellular vesicles (sEVs) poses a significant challenge. A ‘gold-standard’ method for plasma sEV enrichment for downstream proteomic analysis is yet to be established. Methods were evaluated for their capacity to successfully isolate and enrich sEVs from plasma, minimise the presence of highly abundant plasma proteins, and result in the optimum representation of sEV proteins by liquid chromatography tandem mass spectrometry. Plasma from four cattle (Bos taurus) of similar physical attributes and genetics were used. Three methods of sEV enrichment were utilised: ultracentrifugation (UC), size-exclusion chromatography (SEC), and ultrafiltration (UF). These methods were combined to create four groups for methodological evaluation: UC + SEC, UC + SEC + UF, SEC + UC and SEC + UF. The UC + SEC method yielded the highest number of protein identifications (IDs). The SEC + UC method reduced plasma protein IDs compared to the other methods, but also resulted in the lowest number of protein IDs overall. The UC + SEC + UF method decreased sEV protein ID, particle number, mean and mode particle size, particle yield, and did not improve purity compared to the UC + SEC method. In this study, the UC + SEC method was the best method for sEV protein ID, purity, and overall particle yield. Our data suggest that the method and sequence of sEV enrichment strategy impacts protein ID, which may influence the outcome of biomarker discovery studies.
Collapse
|
27
|
Holcar M, Kandušer M, Lenassi M. Blood Nanoparticles - Influence on Extracellular Vesicle Isolation and Characterization. Front Pharmacol 2021; 12:773844. [PMID: 34867406 PMCID: PMC8635996 DOI: 10.3389/fphar.2021.773844] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
Blood is a rich source of disease biomarkers, which include extracellular vesicles (EVs). EVs are nanometer-to micrometer-sized spherical particles that are enclosed by a phospholipid bilayer and are secreted by most cell types. EVs reflect the physiological cell of origin in terms of their molecular composition and biophysical characteristics, and they accumulate in blood even when released from remote organs or tissues, while protecting their cargo from degradation. The molecular components (e.g., proteins, miRNAs) and biophysical characteristics (e.g., size, concentration) of blood EVs have been studied as biomarkers of cancers and neurodegenerative, autoimmune, and cardiovascular diseases. However, most biomarker studies do not address the problem of contaminants in EV isolates from blood plasma, and how these might affect downstream EV analysis. Indeed, nonphysiological EVs, protein aggregates, lipoproteins and viruses share many molecular and/or biophysical characteristics with EVs, and can therefore co-isolate with EVs from blood plasma. Consequently, isolation and downstream analysis of EVs from blood plasma remain a unique challenge, with important impacts on the outcomes of biomarker studies. To help improve rigor, reproducibility, and reliability of EV biomarker studies, we describe here the major contaminants of EV isolates from blood plasma, and we report on how different EV isolation methods affect their levels, and how contaminants that remain can affect the interpretation of downstream EV analysis.
Collapse
Affiliation(s)
- Marija Holcar
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Maša Kandušer
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Metka Lenassi
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
28
|
Łuczaj W, Gęgotek A, Skrzydlewska E. Analytical approaches to assess metabolic changes in psoriasis. J Pharm Biomed Anal 2021; 205:114359. [PMID: 34509137 DOI: 10.1016/j.jpba.2021.114359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 12/18/2022]
Abstract
Psoriasis is one of the most common human skin diseases, although its development is not limited to one tissue, but is associated with autoimmune reactions throughout the body. Overproduction of pro-inflammatory cytokines and growth factors systemically stimulates the proliferation of skin cells, which manifests as excessive exfoliation of the epidermis, and/or arthritis, as well as other comorbidities such as insulin resistance, metabolic syndrome, hypertension, and depression. Thus, there is a great need for a thorough analysis of the pathophysiology of psoriatic patients, including classical methods, such as spectrophotometry, chromatography, or Western blot, and also novel omics approaches such as lipidomics and proteomics. Moreover, the extensive pathophysiology forces increased research examining biological changes in both skin cells, and systemically. A wide range of techniques involved in lipidomic research based on a combination of mass spectrometry and different types of chromatography (RP-LC-QTOF-MS/MS, HILIC-QTOF-MS/MS or RP-LC-QTRAP-MS/MS), have allowed comprehensive assessment of lipid modification in psoriatic skin and provided new insight into the role of lipids and their mechanism of action in psoriasis. Moreover, proteomic analysis using gel-nanoLC-OrbiTrap-MS/MS, as well as MALDI-TOF/TOF techniques facilitates the description of panels of enzymes involved in lipidome modifications, and the response of the endocannabinoid system to metabolic changes. Psoriasis is known to alter the expression of proteins that are involved in the inflammatory and antioxidant response, as well as protein biosynthesis, degradation, as well as cell proliferation and apoptosis. Knowledge of changes in the lipidomic and proteomic profile will not only allow the understanding of psoriasis pathophysiology, but also facilitate proper and early diagnosis and effective pharmacotherapy.
Collapse
Affiliation(s)
- Wojciech Łuczaj
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2d, 15-222, Bialystok, Poland
| | - Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2d, 15-222, Bialystok, Poland
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2d, 15-222, Bialystok, Poland.
| |
Collapse
|
29
|
Reale A, Khong T, Mithraprabhu S, Spencer A. Translational Potential of RNA Derived From Extracellular Vesicles in Multiple Myeloma. Front Oncol 2021; 11:718502. [PMID: 34513695 PMCID: PMC8429596 DOI: 10.3389/fonc.2021.718502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/04/2021] [Indexed: 12/20/2022] Open
Abstract
The cross-talk between tumour cells and stromal cells is a hallmark of multiple myeloma (MM), a blood cancer that still remains incurable despite increased knowledge of its biology and advances in its treatment. Extracellular vesicles (EVs) derived from both tumour and stromal cells have been shown to play an important role in mediating this cross-talk ultimately favouring MM progression and drug resistance. Furthermore, EVs and their content including RNA (EV-RNA) have been successfully isolated from blood and are being explored as liquid biomarkers in MM with the potential to improve diagnosis and monitoring modalities with a minimally-invasive and repeatable analysis, i.e. liquid biopsy. In this review, we describe both the role of EV-RNA in defining the biological features of MM and their potential translational relevance as liquid biomarkers, therapeutic targets and delivery systems. We also discuss the limitations and technical challenges related to the isolation and characterization of EVs and provide a perspective on the future of MM-derived EV-RNA in translational research.
Collapse
Affiliation(s)
- Antonia Reale
- Myeloma Research Group, Australian Centre for Blood Diseases, Central Clinical School, Monash University/Alfred Health, Melbourne, VIC, Australia
| | - Tiffany Khong
- Myeloma Research Group, Australian Centre for Blood Diseases, Central Clinical School, Monash University/Alfred Health, Melbourne, VIC, Australia
| | - Sridurga Mithraprabhu
- Myeloma Research Group, Australian Centre for Blood Diseases, Central Clinical School, Monash University/Alfred Health, Melbourne, VIC, Australia
| | - Andrew Spencer
- Myeloma Research Group, Australian Centre for Blood Diseases, Central Clinical School, Monash University/Alfred Health, Melbourne, VIC, Australia.,Malignant Haematology and Stem Cell Transplantation, The Alfred Hospital, and Department of Clinical Haematology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
30
|
Effect of L- to D-Amino Acid Substitution on Stability and Activity of Antitumor Peptide RDP215 against Human Melanoma and Glioblastoma. Int J Mol Sci 2021; 22:ijms22168469. [PMID: 34445175 PMCID: PMC8395111 DOI: 10.3390/ijms22168469] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/31/2022] Open
Abstract
The study investigates the antitumor effect of two cationic peptides, R-DIM-P-LF11-215 (RDP215) and the D-amino acid variant 9D-R-DIM-P-LF11-215 (9D-RDP215), targeting the negatively charged lipid phosphatidylserine (PS) exposed by cancer cells, such as of melanoma and glioblastoma. Model studies mimicking cancer and non-cancer membranes revealed the specificity for the cancer-mimic PS by both peptides with a slightly stronger impact by the D-peptide. Accordingly, membrane effects studied by DSC, leakage and quenching experiments were solely induced by the peptides when the cancer mimic PS was present. Circular dichroism revealed a sole increase in β-sheet conformation in the presence of the cancer mimic for both peptides; only 9D-RDP215 showed increased structure already in the buffer. Ex vitro stability studies by SDS-PAGE as well as in vitro with melanoma A375 revealed a stabilizing effect of D-amino acids in the presence of serum, which was also confirmed in 2D and 3D in vitro experiments on glioblastoma LN-229. 9D-RDP215 was additionally able to pass a BBB model, whereupon it induced significant levels of cell death in LN-229 spheroids. Summarized, the study encourages the introduction of D-amino acids in the design of antitumor peptides for the improvement of their stable antitumor activity.
Collapse
|
31
|
Regimbeau M, Abrey J, Vautrot V, Causse S, Gobbo J, Garrido C. Heat shock proteins and exosomes in cancer theranostics. Semin Cancer Biol 2021; 86:46-57. [PMID: 34343652 DOI: 10.1016/j.semcancer.2021.07.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 01/19/2023]
Abstract
Heat shock proteins (HSPs) are a superfamily of molecular chaperones that were discovered through their ability to be induced by different stresses including heat shock. Other than their function as chaperones in proteins homeostasis, HSPs have been shown to inhibit different forms of cell death and to participate in cell proliferation and differentiation processes. Because cancer cells have to rewire their metabolism, they require a high amount of these stress-inducible chaperones for their survival. Therefore, HSPs are unusually abundant in cancer cells where they have oncogene-like functions. In cancer, HSPs have been involved in the regulation of apoptosis, immune responses, angiogenesis, metastasis and treatment resistance. Recently, HSPs have been shown to be secreted through exosomes by cancer cells. These tumor-derived exosomes can be used as circulating markers: HSP-exosomes have been reported as biomarkers of cancer dissemination, response to therapy and/or patient outcome. A new range of functions, mostly in modulation of anticancer immune responses, have been described for these extracellular HSPs. In this review, we will describe those recently reported functions of HSP-exosomes that makes them both targets for anticancer therapeutics and biomarkers for the monitoring of the disease. We will also discuss their emerging interest in cancer vaccines.
Collapse
Affiliation(s)
- Mathilde Regimbeau
- INSERM, UMR 1231, Label Ligue Nationale Contre le Cancer and LipSTIC. 7 blvd Jeanne d'Arc, 21000, Dijon, France; Université. Bourgogne Franche-Comté, 21000, Dijon, France
| | - Jimena Abrey
- INSERM, UMR 1231, Label Ligue Nationale Contre le Cancer and LipSTIC. 7 blvd Jeanne d'Arc, 21000, Dijon, France; Université. Bourgogne Franche-Comté, 21000, Dijon, France
| | - Valentin Vautrot
- INSERM, UMR 1231, Label Ligue Nationale Contre le Cancer and LipSTIC. 7 blvd Jeanne d'Arc, 21000, Dijon, France; Université. Bourgogne Franche-Comté, 21000, Dijon, France; Anticancer Center Georges François Leclerc, Dijon, France
| | - Sebastien Causse
- INSERM, UMR 1231, Label Ligue Nationale Contre le Cancer and LipSTIC. 7 blvd Jeanne d'Arc, 21000, Dijon, France; Université. Bourgogne Franche-Comté, 21000, Dijon, France
| | - Jessica Gobbo
- INSERM, UMR 1231, Label Ligue Nationale Contre le Cancer and LipSTIC. 7 blvd Jeanne d'Arc, 21000, Dijon, France; Anticancer Center Georges François Leclerc, Dijon, France; Early Phase Unit INCa CLIP², Department of Oncology, Georges-François Leclerc Centre, Dijon, France; Centre d'investigation Clinique INSERM 1432, CHU Dijon-Bourgogne, Dijon, France
| | - Carmen Garrido
- INSERM, UMR 1231, Label Ligue Nationale Contre le Cancer and LipSTIC. 7 blvd Jeanne d'Arc, 21000, Dijon, France; Université. Bourgogne Franche-Comté, 21000, Dijon, France; Anticancer Center Georges François Leclerc, Dijon, France.
| |
Collapse
|
32
|
Cao X, Sandberg A, Araújo JE, Cvetkovski F, Berglund E, Eriksson LE, Pernemalm M. Evaluation of Spin Columns for Human Plasma Depletion to Facilitate MS-Based Proteomics Analysis of Plasma. J Proteome Res 2021; 20:4610-4620. [PMID: 34320313 PMCID: PMC8419864 DOI: 10.1021/acs.jproteome.1c00378] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
High abundant protein depletion is a common strategy applied to increase analytical depth in global plasma proteomics experiment setups. The standard strategies for depletion of the highest abundant proteins currently rely on multiple-use HPLC columns or multiple-use spin columns. Here we evaluate the performance of single-use spin columns for plasma depletion and show that the single-use spin reduces handling time by allowing parallelization and is easily adapted to a nonspecialized lab environment without reducing the high plasma proteome coverage and reproducibility. In addition, we evaluate the effect of viral heat inactivation on the plasma proteome, an additional step in the plasma preparation workflow that allows the sample preparation of SARS-Cov2-infected samples to be performed in a BSL3 laboratory, and report the advantage of performing the heat inactivation postdepletion. We further show the possibility of expanding the use of the depletion column cross-species to macaque plasma samples. In conclusion, we report that single-use spin columns for high abundant protein depletion meet the requirements for reproducibly in in-depth plasma proteomics and can be applied on a common animal model while also reducing the sample handling time.
Collapse
Affiliation(s)
- Xiaofang Cao
- Cancer Proteomics Mass Spectrometry, Scilifelab, Department of Oncology and Pathology, Karolinska Institutet, SE-141 86 Stockholm, Sweden
| | - AnnSofi Sandberg
- Cancer Proteomics Mass Spectrometry, Scilifelab, Department of Oncology and Pathology, Karolinska Institutet, SE-141 86 Stockholm, Sweden
| | - José Eduardo Araújo
- Cancer Proteomics Mass Spectrometry, Scilifelab, Department of Oncology and Pathology, Karolinska Institutet, SE-141 86 Stockholm, Sweden
| | - Filip Cvetkovski
- Research and Development, ITB-Med AB, SE-113 66 Stockholm, Sweden
| | - Erik Berglund
- Section of Endocrine and Sarcoma Surgery, Department of Molecular Medicine and Surgery; Department of Clinical Science, Intervention and Technology (CLINTEC), Division of Transplantation, Surgery, Karolinska Institute, SE-141 86 Stockholm, Sweden
| | - Lars E Eriksson
- Department of Learning, Informatics, Management and Ethics, Karolinska Institutet, SE-171 77 Stockholm, Sweden.,Medical Unit Infectious Diseases, Karolinska University Hospital, SE-141 86 Huddinge, Sweden.,School of Health Sciences, City University of London, London EC1 V 0HB, United Kingdom
| | - Maria Pernemalm
- Cancer Proteomics Mass Spectrometry, Scilifelab, Department of Oncology and Pathology, Karolinska Institutet, SE-141 86 Stockholm, Sweden
| |
Collapse
|
33
|
Dunphy K, O’Mahoney K, Dowling P, O’Gorman P, Bazou D. Clinical Proteomics of Biofluids in Haematological Malignancies. Int J Mol Sci 2021; 22:ijms22158021. [PMID: 34360786 PMCID: PMC8348619 DOI: 10.3390/ijms22158021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 12/25/2022] Open
Abstract
Since the emergence of high-throughput proteomic techniques and advances in clinical technologies, there has been a steady rise in the number of cancer-associated diagnostic, prognostic, and predictive biomarkers being identified and translated into clinical use. The characterisation of biofluids has become a core objective for many proteomic researchers in order to detect disease-associated protein biomarkers in a minimally invasive manner. The proteomes of biofluids, including serum, saliva, cerebrospinal fluid, and urine, are highly dynamic with protein abundance fluctuating depending on the physiological and/or pathophysiological context. Improvements in mass-spectrometric technologies have facilitated the in-depth characterisation of biofluid proteomes which are now considered hosts of a wide array of clinically relevant biomarkers. Promising efforts are being made in the field of biomarker diagnostics for haematologic malignancies. Several serum and urine-based biomarkers such as free light chains, β-microglobulin, and lactate dehydrogenase are quantified as part of the clinical assessment of haematological malignancies. However, novel, minimally invasive proteomic markers are required to aid diagnosis and prognosis and to monitor therapeutic response and minimal residual disease. This review focuses on biofluids as a promising source of proteomic biomarkers in haematologic malignancies and a key component of future diagnostic, prognostic, and disease-monitoring applications.
Collapse
Affiliation(s)
- Katie Dunphy
- Department of Biology, National University of Ireland, W23 F2K8 Maynooth, Ireland; (K.D.); (P.D.)
| | - Kelly O’Mahoney
- Department of Haematology, Mater Misericordiae University Hospital, D07 WKW8 Dublin, Ireland; (K.O.); (P.O.)
| | - Paul Dowling
- Department of Biology, National University of Ireland, W23 F2K8 Maynooth, Ireland; (K.D.); (P.D.)
| | - Peter O’Gorman
- Department of Haematology, Mater Misericordiae University Hospital, D07 WKW8 Dublin, Ireland; (K.O.); (P.O.)
| | - Despina Bazou
- Department of Haematology, Mater Misericordiae University Hospital, D07 WKW8 Dublin, Ireland; (K.O.); (P.O.)
- Correspondence:
| |
Collapse
|
34
|
Azimzadeh O, von Toerne C, Subramanian V, Sievert W, Multhoff G, Atkinson MJ, Tapio S. Data-Independent Acquisition Proteomics Reveals Long-Term Biomarkers in the Serum of C57BL/6J Mice Following Local High-Dose Heart Irradiation. Front Public Health 2021; 9:678856. [PMID: 34277544 PMCID: PMC8283568 DOI: 10.3389/fpubh.2021.678856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/18/2021] [Indexed: 12/23/2022] Open
Abstract
Background and Purpose: Cardiotoxicity is a well-known adverse effect of radiation therapy. Measurable abnormalities in the heart function indicate advanced and often irreversible heart damage. Therefore, early detection of cardiac toxicity is necessary to delay and alleviate the development of the disease. The present study investigated long-term serum proteome alterations following local heart irradiation using a mouse model with the aim to detect biomarkers of radiation-induced cardiac toxicity. Materials and Methods: Serum samples from C57BL/6J mice were collected 20 weeks after local heart irradiation with 8 or 16 Gy X-ray; the controls were sham-irradiated. The samples were analyzed by quantitative proteomics based on data-independent acquisition mass spectrometry. The proteomics data were further investigated using bioinformatics and ELISA. Results: The analysis showed radiation-induced changes in the level of several serum proteins involved in the acute phase response, inflammation, and cholesterol metabolism. We found significantly enhanced expression of proinflammatory cytokines (TNF-α, TGF-β, IL-1, and IL-6) in the serum of the irradiated mice. The level of free fatty acids, total cholesterol, low-density lipoprotein (LDL), and oxidized LDL was increased, whereas that of high-density lipoprotein was decreased by irradiation. Conclusions: This study provides information on systemic effects of heart irradiation. It elucidates a radiation fingerprint in the serum that may be used to elucidate adverse cardiac effects after radiation therapy.
Collapse
Affiliation(s)
- Omid Azimzadeh
- Institute of Radiation Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,Section Radiation Biology, Federal Office for Radiation Protection, Oberschleissheim, Germany
| | - Christine von Toerne
- Research Unit Protein Science, Helmholtz Zentrum München - German Research Center for Environmental Health, Munich, Germany
| | - Vikram Subramanian
- Institute of Radiation Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Wolfgang Sievert
- Department of Radiation Oncology, Center for Translational Cancer Research (TranslaTUM), Campus Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Gabriele Multhoff
- Department of Radiation Oncology, Center for Translational Cancer Research (TranslaTUM), Campus Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Michael J Atkinson
- Institute of Radiation Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,Radiation Biology, Technical University of Munich, Munich, Germany
| | - Soile Tapio
- Institute of Radiation Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,Institute for Biological and Medical Imaging, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
35
|
Human Plasma Extracellular Vesicle Isolation and Proteomic Characterization for the Optimization of Liquid Biopsy in Multiple Myeloma. Methods Mol Biol 2021; 2261:151-191. [PMID: 33420989 DOI: 10.1007/978-1-0716-1186-9_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer cells secrete membranous extracellular vesicles (EVs) which contain specific oncogenic molecular cargo (including oncoproteins, oncopeptides, and RNA) into their microenvironment and the circulation. As such, EVs including exosomes (small EVs) and microvesicles (large EVs) represent important circulating biomarkers for various diseases, including cancer and its progression. These circulating biomarkers offer a potentially minimally invasive and repeatable targets for analysis (liquid biopsy) that could aid in the diagnosis, risk stratification, and monitoring of cancer. Although their potential as cancer biomarkers has been promising, the identification and quantification of EVs in clinical samples remain challenging. Like EVs, other types of circulating biomarkers (including cell-free nucleic acids, cf-NAs; or circulating tumor cells, CTCs) may represent a complementary or alternative approach to cancer diagnosis. In the context of multiple myeloma (MM), a systemic cancer type that causes cancer cells to accumulate in the bone marrow, the specific role for EVs as biomarkers for diagnosis and monitoring remains undefined. Tumor heterogeneity along with the various subtypes of MM (such as non-secretory MM) that cannot be monitored using conventional testing (e.g. sequential serological testing and bone marrow biopsies) render liquid biopsy and circulating tumor-derived EVs a promising approach. In this protocol, we describe the isolation and purification of EVs from peripheral blood plasma (PBPL) collected from healthy donors and patients with MM for a biomarker discovery strategy. Our results demonstrate detection of circulating EVs from as little as 1 mL of MM patients' PBPL. High-resolution mass spectrometry (MS)-based proteomics promises to provide new avenues in identifying novel markers for detection, monitoring, and therapeutic intervention of disease. We describe biophysical characterization and quantitative proteomic profiling of disease-specific circulating EVs which may provide important implications for the development of cancer diagnostics in MM.
Collapse
|
36
|
Reale A, Carmichael I, Xu R, Mithraprabhu S, Khong T, Chen M, Fang H, Savvidou I, Ramachandran M, Bingham N, Simpson RJ, Greening DW, Spencer A. Human myeloma cell- and plasma-derived extracellular vesicles contribute to functional regulation of stromal cells. Proteomics 2021; 21:e2000119. [PMID: 33580572 DOI: 10.1002/pmic.202000119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023]
Abstract
Circulating small extracellular vesicles (sEV) represent promising non-invasive biomarkers that may aid in the diagnosis and risk-stratification of multiple myeloma (MM), an incurable blood cancer. Here, we comprehensively isolated and characterized sEV from human MM cell lines (HMCL) and patient-derived plasma (psEV) by specific EV-marker enrichment and morphology. Importantly, we demonstrate that HMCL-sEV are readily internalised by stromal cells to functionally modulate proliferation. psEV were isolated using various commercial approaches and pre-analytical conditions (collection tube types, storage conditions) assessed for sEV yield and marker enrichment. Functionally, MM-psEV was shown to regulate stromal cell proliferation and migration. In turn, pre-educated stromal cells favour HMCL adhesion. psEV isolated from patients with both pre-malignant plasma cell disorders (monoclonal gammopathy of undetermined significance [MGUS]; smouldering MM [SMM]) and MM have a similar ability to promote cell migration and adhesion, suggesting a role for both malignant and pre-malignant sEV in disease progression. Proteomic profiling of MM-psEV (305 proteins) revealed enrichment of oncogenic factors implicated in cell migration and adhesion, in comparison to non-disease psEV. This study describes a protocol to generate morphologically-intact and biologically functional sEV capable of mediating the regulation of stromal cells, and a model for the characterization of tumour-stromal cross-talk by sEV in MM.
Collapse
Affiliation(s)
- Antonia Reale
- Myeloma Research Group, Australian Centre for Blood Diseases, Monash University/Alfred Health, Melbourne, Victoria, Australia.,Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Irena Carmichael
- Monash Micro Imaging-AMREP, Monash University, Melbourne, Victoria, Australia
| | - Rong Xu
- Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Nanobiotechnology Laboratory, Australian Centre for Blood Diseases, Monash University/Alfred Health, Melbourne, Victoria, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Sridurga Mithraprabhu
- Myeloma Research Group, Australian Centre for Blood Diseases, Monash University/Alfred Health, Melbourne, Victoria, Australia.,Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Tiffany Khong
- Myeloma Research Group, Australian Centre for Blood Diseases, Monash University/Alfred Health, Melbourne, Victoria, Australia.,Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Maoshan Chen
- Myeloma Research Group, Australian Centre for Blood Diseases, Monash University/Alfred Health, Melbourne, Victoria, Australia
| | - Haoyun Fang
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Ioanna Savvidou
- Myeloma Research Group, Australian Centre for Blood Diseases, Monash University/Alfred Health, Melbourne, Victoria, Australia.,Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Malarmathy Ramachandran
- Myeloma Research Group, Australian Centre for Blood Diseases, Monash University/Alfred Health, Melbourne, Victoria, Australia.,Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Nicholas Bingham
- Myeloma Research Group, Australian Centre for Blood Diseases, Monash University/Alfred Health, Melbourne, Victoria, Australia.,Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Richard J Simpson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - David W Greening
- Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia.,Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Andrew Spencer
- Myeloma Research Group, Australian Centre for Blood Diseases, Monash University/Alfred Health, Melbourne, Victoria, Australia.,Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Malignant Haematology and Stem Cell Transplantation, The Alfred Hospital, and Department of Clinical Haematology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
37
|
Turner N, Abeysinghe P, Sadowski P, Mitchell MD. Exosomal Cargo May Hold the Key to Improving Reproductive Outcomes in Dairy Cows. Int J Mol Sci 2021; 22:ijms22042024. [PMID: 33670752 PMCID: PMC7922264 DOI: 10.3390/ijms22042024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/15/2021] [Accepted: 02/15/2021] [Indexed: 12/25/2022] Open
Abstract
The reproductive status of dairy cows remains a challenge for dairy farmers worldwide, with impaired fertility linked to a significant reduction in herd profitability, due in part to impaired immunity, increased metabolic pressure, and longer postpartum anestrous interval (PPAI). Exosomes are nanovesicles released from a variety of cell types and end up in circulation, and carry proteins, bioactive peptides, lipids, and nucleic acids specific to the place of origin. As such, their role in health and disease has been investigated in humans and animals. This review discusses research into exosomes in the context of reproduction in dairy herds and introduces recent advances in mass-spectrometry (MS) based proteomics that have a potential to advance quantitative profiling of exosomal protein cargo in a search for early biomarkers of cattle fertility.
Collapse
Affiliation(s)
- Natalie Turner
- Institute of Health and Biomedical Innovation—Centre for Children’s Health Research, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4029, Australia; (N.T.); (P.A.)
| | - Pevindu Abeysinghe
- Institute of Health and Biomedical Innovation—Centre for Children’s Health Research, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4029, Australia; (N.T.); (P.A.)
| | - Pawel Sadowski
- Central Analytical Research Facility—Queensland University of Technology, Gardens Point, Brisbane, QLD 4000, Australia;
| | - Murray D. Mitchell
- Institute of Health and Biomedical Innovation—Centre for Children’s Health Research, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4029, Australia; (N.T.); (P.A.)
- Correspondence: ; Tel.: +61-7-3069-7438
| |
Collapse
|
38
|
"Omics" in traumatic brain injury: novel approaches to a complex disease. Acta Neurochir (Wien) 2021; 163:2581-2594. [PMID: 34273044 PMCID: PMC8357753 DOI: 10.1007/s00701-021-04928-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/23/2021] [Indexed: 11/12/2022]
Abstract
BACKGROUND To date, there is neither any pharmacological treatment with efficacy in traumatic brain injury (TBI) nor any method to halt the disease progress. This is due to an incomplete understanding of the vast complexity of the biological cascades and failure to appreciate the diversity of secondary injury mechanisms in TBI. In recent years, techniques for high-throughput characterization and quantification of biological molecules that include genomics, proteomics, and metabolomics have evolved and referred to as omics. METHODS In this narrative review, we highlight how omics technology can be applied to potentiate diagnostics and prognostication as well as to advance our understanding of injury mechanisms in TBI. RESULTS The omics platforms provide possibilities to study function, dynamics, and alterations of molecular pathways of normal and TBI disease states. Through advanced bioinformatics, large datasets of molecular information from small biological samples can be analyzed in detail and provide valuable knowledge of pathophysiological mechanisms, to include in prognostic modeling when connected to clinically relevant data. In such a complex disease as TBI, omics enables broad categories of studies from gene compositions associated with susceptibility to secondary injury or poor outcome, to potential alterations in metabolites following TBI. CONCLUSION The field of omics in TBI research is rapidly evolving. The recent data and novel methods reviewed herein may form the basis for improved precision medicine approaches, development of pharmacological approaches, and individualization of therapeutic efforts by implementing mathematical "big data" predictive modeling in the near future.
Collapse
|
39
|
Miao Z, Ding K, Jin S, Dai L, Dai C, Li X. Using serum peptidomics to discovery the diagnostic marker for different stage of ulcerative colitis. J Pharm Biomed Anal 2020; 193:113725. [PMID: 33181429 DOI: 10.1016/j.jpba.2020.113725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 10/23/2022]
Abstract
The use of peptidomics to find diagnostic markers has attracted increasing clinical attention. Ulcerative colitis (UC) is a type of inflammatory bowel disease, and the traditional auxiliary diagnostic technique is colonoscopy. However, this invasive method is not effective in distinguishing between patients with endoscopic remission and healthy people, which carries the risk of delayed diagnosis of UC. In this study, we used peptidomics to find serum diagnostic markers for different stages of UC. A total of 78 serum samples were collected to form a training set (60 samples) and a testing set (18 samples). Among them, patients with active UC, remitting UC and healthy people accounted for one third each. The nano-liquid chromatography coupled with hybrid linear trap quadrupole orbitrap mass spectrometry was used for detection of low molecular weight peptides in serum. According to the protein database search and de novo sequencing algorithm, forty peptides were simultaneously identified in all samples. Six biomarker peptides were screened in the training set through orthogonal partial least-squares-discriminant analysis and receiver operating characteristic curve analysis. These six peptides were derived from proteins involved in coagulation and complement activation. We evaluated the diagnostic ability of the six peptides in the testing set through hierarchical cluster analysis, and showed that perturbation of these peptides could distinguish patients with active UC, patients with remitting UC and healthy people. This study validated the feasibility of serum peptidomics for the discovery of diagnostic markers, and provided a potential method for diagnosing different stages of UC.
Collapse
Affiliation(s)
- Zhiwei Miao
- Department of Gastroenterology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, China
| | - Kang Ding
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, China
| | - Shuyin Jin
- First Clinical Medical College, Nanjing University of Chinese Medicine, China
| | - Lin Dai
- College of Life Sciences, Nanjing Agricultural University, China
| | - Chen Dai
- College of Life Sciences, Nanjing Agricultural University, China.
| | - Xiang Li
- Department of Gastroenterology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, China.
| |
Collapse
|
40
|
Sun Z, Li W, Xu J, Ren K, Gao F, Jiang Z, Ji F, Pan D. Proteomic Analysis of Cerebrospinal Fluid in Children with Acute Enterovirus-Associated Meningoencephalitis Identifies Dysregulated Host Processes and Potential Biomarkers. J Proteome Res 2020; 19:3487-3498. [PMID: 32678604 DOI: 10.1021/acs.jproteome.0c00307] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Enteroviruses (EVs) are major causes of viral meningoencephalitis in children. To better understand the pathogenesis and identify potential biomarkers, cerebrospinal fluid proteome in children (n = 52) suffering from EV meningoencephalitis was compared to that in EV-negative control subjects (n = 53) using the BoxCar acquisition technique. Among 1697 proteins identified, 1193 with robust assay readouts were used for quantitative analyses. Differential expression analyses identified 154 upregulated and 227 downregulated proteins in the EV-positive group. Functional analyses showed that the upregulated proteins are mainly related to activities of lymphocytes and cytokines, inflammation, and responses to stress and viral invasion, while the downregulated proteins are mainly related to neuronal integrity and activity as well as neurogenesis. According to receiver operating characteristic analysis results, Rho-GDP-dissociation inhibitor 2 exhibited the highest sensitivity (96.2%) and specificity (100%) for discriminating EV-positive from EV-negative patients. The chemokine CXCL10 was most upregulated (>300-fold) with also high sensitivity (92.3%) and specificity (94.3%) for indicating EV positivity. Thus, this study uncovered perturbations of multiple host processes due to EV meningoencephalitis, especially the general trend of enhanced immune responses but impaired neuronal functions. The identified dysregulated proteins may also prompt biomarker development.
Collapse
Affiliation(s)
- Zeyu Sun
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Wei Li
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Jialu Xu
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Keyi Ren
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Feng Gao
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Zhengyi Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Feiyang Ji
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Dongli Pan
- Department of Medical Microbiology and Parasitology, and Department of Infectious Diseases of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
41
|
Al-Khalili Szigyarto C. Duchenne Muscular Dystrophy: recent advances in protein biomarkers and the clinical application. Expert Rev Proteomics 2020; 17:365-375. [PMID: 32713262 DOI: 10.1080/14789450.2020.1773806] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Early biomarker discovery studies have praised the value of their emerging results, predicting an unprecedented impact on health care. Biomarkers are expected to provide tests with increased specificity and sensitivity compared to existing measures, improve the decision-making process, and accelerate the development of therapies. For rare disorders, like Duchenne Muscular Dystrophy (DMD) such biomarkers can assist the development of therapies, therefore also helping to find a cure for the disease. AREA COVERED State-of-the-art technologies have been used to identify blood biomarkers for DMD and efforts have been coordinated to develop and promote translation of biomarkers for clinical practice. Biomarker translation to clinical practice is however, adjoined by challenges related to the complexity of the disease, involving numerous biological processes, and the limited sample resources. This review highlights the current progress on the development of biomarkers, describing the proteomics technologies used, the most promising findings and the challenges encountered. EXPERT OPINION Strategies for effective use of samples combined with orthogonal proteomics methods for protein quantification are essential for translating biomarkers to the patient's bed side. Progress is achieved only if strong evidence is provided that the biomarker constitutes a reliable indicator of the patient's health status for a specific context of use.
Collapse
Affiliation(s)
- Cristina Al-Khalili Szigyarto
- Science for Life Laboratory, KTH - Royal Institute of Technology , Solna, Sweden.,School of Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology , Stockholm, Sweden
| |
Collapse
|
42
|
Ding XQ, Wang ZY, Xia D, Wang RX, Pan XR, Tong JH. Proteomic Profiling of Serum Exosomes From Patients With Metastatic Gastric Cancer. Front Oncol 2020; 10:1113. [PMID: 32754443 PMCID: PMC7367030 DOI: 10.3389/fonc.2020.01113] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/03/2020] [Indexed: 12/21/2022] Open
Abstract
Background: Clinical management of metastatic gastric cancer (mGC) remains a major challenge due to a lack of specific biomarkers and effective therapeutic targets. Recently, accumulating evidence has suggested that exosomes play an essential role in cancer metastasis and can be an excellent reservoir of novel biomarkers and candidate therapeutic targets for cancer. Therefore, in this study, we aimed to reveal the proteomic profile of mGC-derived exosomes. Methods: Exosomes were isolated from pooled serum samples of 20 mGC patients and 40 healthy controls (HC) by ultracentrifugation. Next, quantitative proteomic analyses were applied to analyze the protein profiles of the exosomes, and bioinformatic analyses were conducted on the proteomic data. Finally, the expression of exosomal protein candidates was selectively validated in individual subjects by western blot analysis. Results: We isolated exosomes from serum samples. The size of the serum derived exosomes ranged from 30 to 150 nm in diameter. The exosomal markers CD9 and CD81 were observed in the serum exosomes. However, the exosomal negative marker calnexin, an endoplasmic reticulum protein, was not detected in exosomes. Overall, 443 exosomal proteins, including 110 differentially expressed proteins (DEPs) were identified by quantitative proteomics analyses. The bioinformatics analyses indicated that the upregulated proteins were enriched in the process of protein metabolic, whereas the downregulated proteins were largely involved in cell-cell adhesion organization. Surprisingly, 10 highly vital proteins (UBA52, PSMA1, PSMA5, PSMB6, PSMA7, PSMA4, PSMA3, PSMB1, PSMA6, and FGA) were filtered from DEPs, most of which are proteasome subunits. Moreover, the validation data confirmed that PSMA3 and PSMA6 were explicitly enriched in the serum derived exosomes from patients with mGC. Conclusion: The present study provided a comprehensive description of the serum exosome proteome of mGC patients, which could be an excellent resource for further studies of mGC.
Collapse
Affiliation(s)
- Xiao-Qing Ding
- Faculty of Medical Laboratory Science and Central Laboratory, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhe-Ying Wang
- Faculty of Medical Laboratory Science and Central Laboratory, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Di Xia
- Faculty of Medical Laboratory Science and Central Laboratory, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui-Xian Wang
- Faculty of Medical Laboratory Science and Central Laboratory, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Rong Pan
- Faculty of Medical Laboratory Science and Central Laboratory, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-Hua Tong
- Faculty of Medical Laboratory Science and Central Laboratory, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
43
|
Ghaffari MH, Schuh K, Kuleš J, Guillemin N, Horvatić A, Mrljak V, Eckersall PD, Dusel G, Koch C, Sadri H, Sauerwein H. Plasma proteomic profiling and pathway analysis of normal and overconditioned dairy cows during the transition from late pregnancy to early lactation. J Dairy Sci 2020; 103:4806-4821. [PMID: 32173013 DOI: 10.3168/jds.2019-17897] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/09/2020] [Indexed: 12/11/2022]
Abstract
This study applied a quantitative proteomics approach along with bioinformatics analyses to investigate changes in the plasma proteome of normal and overconditioned dairy cows during the transition period. Fifteen weeks before their anticipated calving date, 38 multiparous Holstein cows were selected based on their current and previous body condition scores (BCS) and allocated to either a high or a normal BCS group (19 cows each). They received different diets until dry-off to reach targeted differences in BCS and back fat thickness (BFT) until dry-off. At dry-off, normal BCS cows had a BCS <3.5 (minimum, 2.75) and BFT <1.2 cm (minimum, 0.58), and the high BCS cows had a BCS >3.75 (maximum, 4.50) and BFT >1.4 cm (maximum, 2.90). The proteomics study used a subset of 5 animals from each group. These cows were selected based on their circulating concentrations of fatty acids (FA) on d 14 postpartum and β-hydroxybutyrate (BHB) on d 21 postpartum, representing the greater or the lower extreme values within their BCS group, respectively. The high BCS subset (HE-HBCS) had 4.50 < BCS > 3.75, FA = 1.17 ± 0.46 mmol/L, and BHB = 2.15 ± 0.42 mmol/L (means ± SD), and the low BCS subset (LE-NBCS) had 3.50 < BCS > 2.75, FA = 0.51 ± 0.28 mmol/L, and BHB = 0.84 ± 0.17 mmol/L. Plasma samples from d -49, +7, and +21 relative to parturition were used for proteome profiling by applying the quantitative tandem mass tags (TMT) approach. Nondepleted plasma samples were subjected to reduction and digestion and then labeled with TMT 10plex reagents. High-resolution liquid chromatography-tandem mass spectrometry analysis of TMT-labeled peptides was carried out, and the acquired spectra were analyzed for protein identification and quantification. In total, 254 quantifiable proteins (criteria: 2 unique peptides and 5% false discovery rate) were identified in the plasma samples. From these, 24 differentially abundant proteins (14 more abundant, 10 less abundant) were observed in the LE-NBCS cows compared with the HE-HBCS cows during the transition period. Plasma α-2-macroglobulins were more abundant in HE-HBCS versus LE-NBCS cows at d +7 and +21. Gene Ontology enrichment analyses of differentially abundant proteins revealed that the acute inflammatory response, regulation of complement activation, protein activation cascade, and regulation of humoral immune response were the most enriched terms in the LE-NBCS group compared with the HE-HBCS group. In addition, we identified 24 differentially abundant proteins (16 in the LE-NBCS group, and 8 in the HE-HBCS group) during the transition period. The complement components C1q and C5 were less abundant, while C3 and C3d were more abundant in LE-NBCS compared with HE-HBCS cows. Overall, overconditioning around calving was associated with alterations in protein pathways related to acute inflammatory response and regulation of complement and coagulation cascades in transition cows.
Collapse
Affiliation(s)
- Morteza H Ghaffari
- Institute of Animal Science, Physiology & Hygiene Unit, University of Bonn, 53115 Bonn, Germany
| | - Katharina Schuh
- Institute of Animal Science, Physiology & Hygiene Unit, University of Bonn, 53115 Bonn, Germany; Department of Life Sciences and Engineering, Animal Nutrition, and Hygiene Unit, University of Applied Sciences Bingen, 55411 Bingen am Rhein, Germany
| | - Josipa Kuleš
- VetMedZg Laboratory, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, 10000, Croatia
| | - Nicolas Guillemin
- VetMedZg Laboratory, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, 10000, Croatia
| | - Anita Horvatić
- VetMedZg Laboratory, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, 10000, Croatia
| | - Vladimir Mrljak
- VetMedZg Laboratory, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, 10000, Croatia
| | - Peter David Eckersall
- VetMedZg Laboratory, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, 10000, Croatia; Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, G61 1QH, United Kingdom
| | - Georg Dusel
- VetMedZg Laboratory, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, 10000, Croatia
| | - Christian Koch
- Educational and Research Centre for Animal Husbandry, Hofgut Neumuehle, 67728 Muenchweiler an der Alsenz, Germany
| | - Hassan Sadri
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, 516616471 Tabriz, Iran
| | - Helga Sauerwein
- Institute of Animal Science, Physiology & Hygiene Unit, University of Bonn, 53115 Bonn, Germany.
| |
Collapse
|
44
|
Zhang W, Peng P, Ou X, Shen K, Wu X. Ovarian cancer circulating extracelluar vesicles promote coagulation and have a potential in diagnosis: an iTRAQ based proteomic analysis. BMC Cancer 2019; 19:1095. [PMID: 31718609 PMCID: PMC6852975 DOI: 10.1186/s12885-019-6176-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 09/20/2019] [Indexed: 02/08/2023] Open
Abstract
Background Circulating extracelluar vesicles (EVs) in epithelial ovarian cancer (EOC) patients emanate from multiple cells. These EVs are emerging as a new type of biomarker as they can be obtained by non-invasive approaches. The aim of this study was to investigate circulating EVs from EOC patients and healthy women to evaluate their biological function and potential as diagnostic biomarkers. Methods A quantitative proteomic analysis (iTRAQ) was applied and performed on 10 EOC patients with advanced stage (stage III–IV) and 10 controls. Twenty EOC patients and 20 controls were applied for validation. The candidate proteins were further validated in another 40-paired cohort to investigate their biomarker potential. Coagulation cascades activation was accessed by determining Factor X activity. Results Compared with controls, 200 proteins were upregulated and 208 proteins were downregulated in the EOC group. The most significantly involved pathway is complement and coagulation cascades. ApoE multiplexed with EpCAM, plg, serpinC1 and C1q provide optimal diagnostic information for EOC with AUC = 0.913 (95% confidence interval (CI) =0.848–0.957, p < 0.0001). Level of activated Factor X was significantly higher in EOC group than control (5.35 ± 0.14 vs. 3.69 ± 0.29, p < 0.0001). Conclusions Our study supports the concept of circulating EVs as a tool for non-invasive diagnosis of ovarian cancer. EVs also play pivotal roles in coagulation process, implying the inherent mechanism of generation of thrombus which often occurred in ovarian cancer patients at late stages.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, 270 Dong-an Road, Shanghai, 200032, People's Republic of China
| | - Peng Peng
- Department of Obstetrics and Gynecology Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaoxuan Ou
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, 270 Dong-an Road, Shanghai, 200032, People's Republic of China
| | - Keng Shen
- Department of Obstetrics and Gynecology Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Xiaohua Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, 270 Dong-an Road, Shanghai, 200032, People's Republic of China.
| |
Collapse
|