1
|
He Y, Liu Y, Zheng M, Zou Y, Huang M, Wang L, Gao G, Zhou Z, Jin G. Targeting ATAD3A Phosphorylation Mediated by TBK1 Ameliorates Senescence-Associated Pathologies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2404109. [PMID: 39520088 DOI: 10.1002/advs.202404109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Targeting cellular senescence, one of the hallmarks of aging and aging-related pathologies emerges as an effective strategy for anti-aging and cancer chemotherapy. Here, a switch from TBK1-OPTN axis to TBK1-ATAD3A axis to promote cellular senescence is shown. Mechanically, TBK1 protein is abnormally activated and localized to the mitochondria during senescence, which directly phosphorylates ATAD3A at Ser321. Phosphorylated ATAD3A is significantly elevated in cellular senescence as well as in physiological and pathological aging and is essential for suppressing Pink1-mediated mitophagy by facilitating Pink1 mitochondrial import. Inhibition of ATAD3A phosphorylation at Ser321 by either TBK1 deficiency or by a Ser321A mutation rescues the cellular senescence. A blocking peptide, TAT-PEP, specifically abrogating ATAD3A phosphorylation, results in elevated cell death by preventing doxorubicin-induced senescence, thus leading to enhanced tumor sensitivity to chemotherapy. TAT-PEP treatment also ameliorates various phenotypes associated with physiological aging. Collectively, these results reveal the TBK1-ATAD3A-Pink1 axis as a driving force in cellular senescence and suggest a potential mitochondrial target for anti-aging therapy.
Collapse
Affiliation(s)
- Yujiao He
- Guangdong Cardiovascular Institute, Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Yanchen Liu
- Guangdong Cardiovascular Institute, Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Mingyue Zheng
- Guangdong Cardiovascular Institute, Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Yuxiu Zou
- Guangdong Cardiovascular Institute, Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Mujie Huang
- Guangdong Cardiovascular Institute, Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Linsheng Wang
- Guangdong Cardiovascular Institute, Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Ge Gao
- Guangdong Cardiovascular Institute, Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Zhongjun Zhou
- Guangdong Cardiovascular Institute, Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
- Orthopedic Center, University of Hong Kong-Shenzhen Hospital, No.1, Haiyuan 1st Road, Futian, Shenzhen, 518053, China
| | - Guoxiang Jin
- Guangdong Cardiovascular Institute, Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| |
Collapse
|
2
|
Abdul-Raheem J, Nikkola E, Chen Z, Rohena L. Expanding the phenotype of Harel-Yoon syndrome: A case report suggesting a genotype/phenotype correlation. Am J Med Genet A 2024; 194:e63647. [PMID: 38877820 DOI: 10.1002/ajmg.a.63647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/19/2024] [Accepted: 04/18/2024] [Indexed: 06/16/2024]
Abstract
Harel-Yoon syndrome (HAYOS) is a unique neurodevelopmental genetic disorder characterized by hypotonia, spasticity, intellectual disability, hypertrophic cardiomyopathy, and global developmental delay. It primarily results from mutations in the ATAD3A gene, pivotal for mitochondrial function. This report presents a 5-year-old girl with HAYOS harboring a de novo heterozygous variant c.1064G>A; (p.G355D) in ATAD3A. Her clinical profile includes delayed milestones, hypotonia, spastic quadriplegia, and ptosis. Notably, dermatologic anomalies such as hypopigmentation, café au lait macules, and freckling are observed, expanding the known phenotype of HAYOS. The inclusion of dermatologic features challenges our understanding of the syndrome and emphasizes the importance of further research to elucidate the molecular connections between ATAD3A mutations and dermatologic manifestations.
Collapse
Affiliation(s)
| | | | | | - Luis Rohena
- Division of Medical Genetics, Department of Pediatrics, Brooke Army Medical Center, Fort Sam Houston, Texas, USA
- Department of Pediatrics, UT Health San Antonio, Long School of Medicine, San Antonio, Texas, USA
| |
Collapse
|
3
|
Waters ER, Bezanilla M, Vierling E. ATAD3 Proteins: Unique Mitochondrial Proteins Essential for Life in Diverse Eukaryotic Lineages. PLANT & CELL PHYSIOLOGY 2024; 65:493-502. [PMID: 37859594 DOI: 10.1093/pcp/pcad122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023]
Abstract
ATPase family AAA domain-containing 3 (ATAD3) proteins are unique mitochondrial proteins that arose deep in the eukaryotic lineage but that are surprisingly absent in Fungi and Amoebozoa. These ∼600-amino acid proteins are anchored in the inner mitochondrial membrane and are essential in metazoans and Arabidopsis thaliana. ATAD3s comprise a C-terminal ATPases Associated with a variety of cellular Activities (AAA+) matrix domain and an ATAD3_N domain, which is located primarily in the inner membrane space but potentially extends to the cytosol to interact with the ER. Sequence and structural alignments indicate that ATAD3 proteins are most similar to classic chaperone unfoldases in the AAA+ family, suggesting that they operate in mitochondrial protein quality control. A. thaliana has four ATAD3 genes in two distinct clades that appear first in the seed plants, and both clades are essential for viability. The four genes are generally coordinately expressed, and transcripts are highest in growing apices and imbibed seeds. Plants with disrupted ATAD3 have reduced growth, aberrant mitochondrial morphology, diffuse nucleoids and reduced oxidative phosphorylation complex I. These and other pleiotropic phenotypes are also observed in ATAD3 mutants in metazoans. Here, we discuss the distribution of ATAD3 proteins as they have evolved in the plant kingdom, their unique structure, what we know about their function in plants and the challenges in determining their essential roles in mitochondria.
Collapse
Affiliation(s)
- Elizabeth R Waters
- Department of Biology, San Diego State University, 5500 Campanille Dr., San Diego, CA 92182, USA
| | - Magdalena Bezanilla
- Department of Biological Sciences, Dartmouth College, 78 College St., Hanover, NH 03755, USA
| | - Elizabeth Vierling
- Department of Biochemistry & Molecular Biology, University of Massachusetts Amherst, 240 Thatcher Road, Amherst, MA 01003, USA
| |
Collapse
|
4
|
Dong Z, Liao N, Luo Y, Zhang Y, Huang L, Chen P, Lu C, Pan M. BmATAD3A mediates mitochondrial ribosomal protein expression to maintain the mitochondrial energy metabolism of the silkworm, Bombyx mori. INSECT SCIENCE 2024. [PMID: 38616538 DOI: 10.1111/1744-7917.13366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/24/2024] [Accepted: 03/11/2024] [Indexed: 04/16/2024]
Abstract
ATAD3A is a mitochondrial membrane protein belonging to the ATPase family that contains the AAA+ domain. It is widely involved in mitochondrial metabolism, protein transport, cell growth, development and other important life processes. It has previously been reported that the deletion of ATAD3A causes growth and development defects in humans, mice and Caenorhabditis elegans. To delve into the mechanism underlying ATAD3A defects and their impact on development, we constructed a Bombyx mori ATAD3A (BmATAD3A) defect model in silkworm larvae. We aim to offer a reference for understanding ATAD3A genetic defects and elucidating the molecular regulatory mechanisms. The results showed that knockout of the BmATAD3A gene significantly affected the weight, survival rate, ATPase production and mitochondrial metabolism of individuals after 24 h of incubation. Combined metabolomics and transcriptomics analysis further demonstrated that BmATAD3A knockout inhibits amino acid biosynthesis through the regulation of mitochondrial ribosomal protein expression. Simultaneously, our findings indicate that BmATAD3A knockout impeded mitochondrial activity and ATPase synthesis and suppressed the mitochondrial oxidative phosphorylation pathway through B. mori mitochondrial ribosomal protein L11 (BmmRpL11). These results provide novel insights into the molecular mechanisms involved in the inhibition of development caused by ATAD3A deficiency, offering a potential direction for targeted therapy in diseases associated with abnormal ATAD3A expression.
Collapse
Affiliation(s)
- Zhanqi Dong
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Nachuan Liao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Yan Luo
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Ya Zhang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Liang Huang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Peng Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Cheng Lu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Minhui Pan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| |
Collapse
|
5
|
Liu Z, Sun L, Zheng B, Wang H, Qin X, Zhang P, Wo Q, Li H, Mou Y, Zhang D, Wang S. The value of ATAD3A as a potential biomarker for bladder cancer. Cancer Med 2023; 12:22395-22406. [PMID: 38018291 PMCID: PMC10757082 DOI: 10.1002/cam4.6759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 06/28/2023] [Accepted: 09/29/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Bladder cancer (BCa) is a highly malignant tumor, and if left untreated, it can develop severe hematuria and tumor metastasis, thereby endangering the patient's life. The purpose of this paper was to detect the expression of ATAD3A in BCa and research the relationship between ATAD3A and pathological features of bladder cancer and the prognosis of patients. METHODS First, the expression of ATAD3A in BCa and normal bladder tissues was analyzed based on the UALCAN and Oncomine public databases. Second, 491 cases of surgically resected bladder cancer specimens and 110 cases of normal adjacent tissues were immunohistochemically stained. The expression of ATAD3A was quantified, and the value and prognosis of ATAD3A as a biomarker of BCa were evaluated. RESULTS The expression of ATAD3A in bladder cancer tissues was higher than that in normal bladder mucosa. High expression of ATAD3A was correlated with patient age, tumor size, number of tumors, distant metastasis, lymph node metastasis, lymphovascular invasion, and TNM stage (p < 0.05). Overexpression of ATAD3A is closely related to cancer patient survival. The mean survival time of bladder cancer patients with high ATAD3A expression was shorter than those with low ATAD3A levels. According to the relative comparing result, the high ATAD3A expression herald reduced overall survival in BCa patients. CONCLUSIONS The abnormal overexpression of ATAD3A may be related to the initiation and progress of bladder cancer. The upregulation of ATAD3A can be used as an effective indicator to diagnose bladder cancer and predict tumor progression. Furthermore, the combination of information from public databases and the results of clinical sample analysis can help us better understand the mechanism of action of molecular oncogenes in bladder cancer.
Collapse
Affiliation(s)
- Zhenghong Liu
- Urology & Nephrology Center, Department of UrologyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Li Sun
- Urology & Nephrology Center, Department of UrologyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Bin Zheng
- Urology & Nephrology Center, Department of UrologyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Heng Wang
- Urology & Nephrology Center, Department of UrologyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Xiaowen Qin
- Urology & Nephrology Center, Department of UrologyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Pu Zhang
- Urology & Nephrology Center, Department of UrologyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Qijun Wo
- Urology & Nephrology Center, Department of UrologyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Haichang Li
- Urology & Nephrology Center, Department of UrologyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Yixuan Mou
- Urology & Nephrology Center, Department of UrologyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Dahong Zhang
- Urology & Nephrology Center, Department of UrologyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Shuai Wang
- Urology & Nephrology Center, Department of UrologyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouZhejiangChina
| |
Collapse
|
6
|
Kumar V, Bauer C, Stewart JH. Cancer cell-specific cGAS/STING Signaling pathway in the era of advancing cancer cell biology. Eur J Cell Biol 2023; 102:151338. [PMID: 37423035 DOI: 10.1016/j.ejcb.2023.151338] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023] Open
Abstract
Pattern-recognition receptors (PRRs) are critical to recognizing endogenous and exogenous threats to mount a protective proinflammatory innate immune response. PRRs may be located on the outer cell membrane, cytosol, and nucleus. The cGAS/STING signaling pathway is a cytosolic PRR system. Notably, cGAS is also present in the nucleus. The cGAS-mediated recognition of cytosolic dsDNA and its cleavage into cGAMP activates STING. Furthermore, STING activation through its downstream signaling triggers different interferon-stimulating genes (ISGs), initiating the release of type 1 interferons (IFNs) and NF-κB-mediated release of proinflammatory cytokines and molecules. Activating cGAS/STING generates type 1 IFN, which may prevent cellular transformation and cancer development, growth, and metastasis. The current article delineates the impact of the cancer cell-specific cGAS/STING signaling pathway alteration in tumors and its impact on tumor growth and metastasis. This article further discusses different approaches to specifically target cGAS/STING signaling in cancer cells to inhibit tumor growth and metastasis in conjunction with existing anticancer therapies.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA 70012, USA.
| | - Caitlin Bauer
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA 70012, USA
| | - John H Stewart
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA 70012, USA; Louisiana Children's Medical Center Cancer Center, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA 70012, USA.
| |
Collapse
|
7
|
Chen L, Li Y, Zambidis A, Papadopoulos V. ATAD3A: A Key Regulator of Mitochondria-Associated Diseases. Int J Mol Sci 2023; 24:12511. [PMID: 37569886 PMCID: PMC10419812 DOI: 10.3390/ijms241512511] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Mitochondrial membrane protein ATAD3A is a member of the AAA-domain-containing ATPases superfamily. It is important for the maintenance of mitochondrial DNA, structure, and function. In recent years, an increasing number of ATAD3A mutations have been identified in patients with neurological symptoms. Many of these mutations disrupt mitochondrial structure, function, and dynamics and are lethal to patients at a young age. Here, we summarize the current understanding of the relationship between ATAD3A and mitochondria, including the interaction of ATAD3A with mitochondrial DNA and mitochondrial/ER proteins, the regulation of ATAD3A in cholesterol mitochondrial trafficking, and the effect of known ATAD3A mutations on mitochondrial function. In the current review, we revealed that the oligomerization and interaction of ATAD3A with other mitochondrial/ER proteins are vital for its various functions. Despite affecting different domains of the protein, nearly all documented mutations observed in ATAD3A exhibit either loss-of-function or dominant-negative effects, potentially leading to disruption in the dimerization of ATAD3A; autophagy; mitophagy; alteration in mitochondrial number, size, and cristae morphology; and diminished activity of mitochondrial respiratory chain complexes I, IV, and V. These findings imply that ATAD3A plays a critical role in mitochondrial dynamics, which can be readily perturbed by ATAD3A mutation variants.
Collapse
Affiliation(s)
| | | | | | - Vassilios Papadopoulos
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 99089, USA; (L.C.); (Y.L.); (A.Z.)
| |
Collapse
|
8
|
Teng Y. Remodeling of Mitochondria in Cancer and Other Diseases. Int J Mol Sci 2023; 24:ijms24097693. [PMID: 37175401 PMCID: PMC10178075 DOI: 10.3390/ijms24097693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023] Open
Abstract
Mitochondria are highly dynamic and responsive organelles capable of fission and fusion and are a hub of diverse signaling pathways that are fundamental to cellular homeostasis, energy production, metabolism, survival, and death [...].
Collapse
Affiliation(s)
- Yong Teng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, School of Medicine, Atlanta, GA 30322, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
9
|
Liao WT, Chu PY, Su CC, Wu CC, Li CJ. Mitochondrial AAA protease gene associated with immune infiltration is a prognostic biomarker in human ovarian cancer. Pathol Res Pract 2022; 240:154215. [DOI: 10.1016/j.prp.2022.154215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/19/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
|
10
|
Lang L, Loveless R, Dou J, Lam T, Chen A, Wang F, Sun L, Juarez J, Qin ZS, Saba NF, Shay C, Teng Y. ATAD3A mediates activation of RAS-independent mitochondrial ERK1/2 signaling, favoring head and neck cancer development. J Exp Clin Cancer Res 2022; 41:43. [PMID: 35093151 PMCID: PMC8800319 DOI: 10.1186/s13046-022-02274-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/25/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Targeting mitochondrial oncoproteins presents a new concept in the development of effective cancer therapeutics. ATAD3A is a nuclear-encoded mitochondrial enzyme contributing to mitochondrial dynamics, cholesterol metabolism, and signal transduction. However, its impact and underlying regulatory mechanisms in cancers remain ill-defined. METHODS We used head and neck squamous cell carcinoma (HNSCC) as a research platform and achieved gene depletion by lentiviral shRNA and CRISPR/Cas9. Molecular alterations were examined by RNA-sequencing, phospho-kinase profiling, Western blotting, RT-qPCR, immunohistochemistry, and immunoprecipitation. Cancer cell growth was assessed by MTT, colony formation, soft agar, and 3D cultures. The therapeutic efficacy in tumor development was evaluated in orthotopic tongue tumor NSG mice. RESULTS ATAD3A is highly expressed in HNSCC tissues and cell lines. Loss of ATAD3A expression suppresses HNSCC cell growth and elicits tumor regression in orthotopic tumor-bearing mice, whereas gain of ATAD3A expression produces the opposite effects. From a mechanistic perspective, the tumor suppression induced by the overexpression of the Walker A dead mutant of ATAD3A (K358) produces a potent dominant-negative effect due to defective ATP-binding. Moreover, ATAD3A binds to ERK1/2 in the mitochondria of HNSCC cells in the presence of VDAC1, and this interaction is essential for the activation of mitochondrial ERK1/2 signaling. Most importantly, the ATAD3A-ERK1/2 signaling axis drives HNSCC development in a RAS-independent fashion and, thus, tumor suppression is more effectively achieved when ATAD3A knockout is combined with RAS inhibitor treatment. CONCLUSIONS These findings highlight the novel function of ATAD3A in regulating mitochondrial ERK1/2 activation that favors HNSCC development. Combined targeting of ATAD3A and RAS signaling may potentiate anticancer activity for HNSCC therapeutics.
Collapse
Affiliation(s)
- Liwei Lang
- Department of Oral Biology and Diagnostic Sciences, Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA
| | - Reid Loveless
- Department of Oral Biology and Diagnostic Sciences, Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA
| | - Juan Dou
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, 201 Dowman Dr, Atlanta, GA, 30322, USA
| | - Tiffany Lam
- Department of Oral Biology and Diagnostic Sciences, Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA
| | - Alex Chen
- Department of Oral Biology and Diagnostic Sciences, Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA
| | - Fang Wang
- Department of Oral Biology and Diagnostic Sciences, Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA
| | - Li Sun
- Department of Oral Biology and Diagnostic Sciences, Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA
| | - Jakeline Juarez
- Department of Oral Biology and Diagnostic Sciences, Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA
| | - Zhaohui Steve Qin
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, 30322, USA
| | - Nabil F Saba
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, 201 Dowman Dr, Atlanta, GA, 30322, USA
| | - Chloe Shay
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory, University, Atlanta, GA, 30322, USA
| | - Yong Teng
- Department of Oral Biology and Diagnostic Sciences, Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA.
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, 201 Dowman Dr, Atlanta, GA, 30322, USA.
| |
Collapse
|
11
|
Xie Q, Wang D, Luo X, Li Z, Hu A, Yang H, Tang J, Gao P, Sun T, Kong L. Proteome profiling of formalin-fixed, paraffin-embedded lung adenocarcinoma tissues using a tandem mass tag-based quantitative proteomics approach. Oncol Lett 2021; 22:706. [PMID: 34457061 PMCID: PMC8358594 DOI: 10.3892/ol.2021.12967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/22/2021] [Indexed: 12/18/2022] Open
Abstract
Over the past few decades, increasing efforts have been made to improve the understanding of, and treatment options for, lung adenocarcinoma (LUAD). However, considering the heterogeneity of LUAD, precise proteomics-based characterization at the molecular level is an urgent clinical requirement for effective treatment. Formalin-fixed, paraffin-embedded (FFPE) tissue is a good option as the working tool for proteomics studies. The present study aimed to obtain a global protein profile using LUAD FFPE tissue samples. Using a quantitative proteomics approach, the study revealed that 360 proteins were significantly more highly expressed in LUAD than in adjacent nontumor lung tissues. Also, 19 differentially expressed membrane proteins were found to be primarily responsible for immune processes. Epidermal growth factor (EGF)-like domain and laminin EGF domain showed markedly different expression levels between cancer tissues and tumor-adjacent normal tissues. Furthermore, Gene Ontology functional enrichment analysis showed that significantly upregulated proteins were associated with the endoplasmic reticulum lumen, protein disulfide isomerase activity, vitamin binding, cell cycle G1/S phase transition, to name but a few. Also, numerous kinases and post-translational modification enzymes were significantly upregulated across all eight LUAD samples compared with paracarcinoma tissues. Proteomics analysis revealed that AAA domain containing 3A (ATAD3a), a member of the ATPase family, was highly expressed in LUAD tissues, which was supported by immunohistochemical analysis. Furthermore, the study confirmed that ATAD3a enhanced the cisplatin sensitivity of LUAD cells. Collectively, the findings of the present study provide new potential candidate targets in patients with LUAD, and may aid auxiliary LUAD diagnosis and surveillance in a noninvasive manner.
Collapse
Affiliation(s)
- Qi Xie
- Department of Pathology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan 450003, P.R China
| | - Dan Wang
- Department of Neorology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan 450003, P.R China
| | - Xiao Luo
- International Medical Center, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan 450003, P.R China
| | - Zhen Li
- Department of Pathology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan 450003, P.R China
| | - Aixia Hu
- Department of Pathology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan 450003, P.R China
| | - Hui Yang
- Department of Thoracic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan 450003, P.R China
| | - Jinxing Tang
- Department of Thoracic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan 450003, P.R China
| | - Peiyu Gao
- Department of Thoracic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan 450003, P.R China
| | - Tingyi Sun
- Department of Pathology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan 450003, P.R China
| | - Lingfei Kong
- Department of Pathology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan 450003, P.R China
| |
Collapse
|
12
|
Zhang T, Nie Y, Gu J, Cai K, Chen X, Li H, Wang J. Identification of Mitochondrial-Related Prognostic Biomarkers Associated With Primary Bile Acid Biosynthesis and Tumor Microenvironment of Hepatocellular Carcinoma. Front Oncol 2021; 11:587479. [PMID: 33868990 PMCID: PMC8047479 DOI: 10.3389/fonc.2021.587479] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 03/15/2021] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of tumor-associated deaths worldwide. Despite great progress in early diagnosis and multidisciplinary tumor management, the long-term prognosis of HCC remains poor. Currently, metabolic reprogramming during tumor development is widely observed to support rapid growth and proliferation of cancer cells, and several metabolic targets that could be used as cancer biomarkers have been identified. The liver and mitochondria are the two centers of human metabolism at the whole organism and cellular levels, respectively. Thus, identification of prognostic biomarkers based on mitochondrial-related genes (Mito-RGs)—the coding-genes of proteins located in the mitochondria—that reflect metabolic changes associated with HCC could lead to better interventions for HCC patients. In the present study, we used HCC data from The Cancer Genome Atlas (TCGA) database to construct a classifier containing 10 Mito-RGs (ACOT7, ADPRHL2, ATAD3A, BSG, FAM72A, PDK3, PDSS1, RAD51C, TOMM34, and TRMU) for predicting the prognosis of HCC by using 10-fold Least Absolute Shrinkage and Selection Operation (LASSO) cross-validation Cox regression. Based on the risk score calculated by the classifier, the samples were divided into high- and low-risk groups. Gene set enrichment analysis (GSEA), gene set variation analysis (GSVA), t-distributed stochastic neighbor embedding (t-SNE), and consensus clusterPlus algorithms were used to identify metabolic pathways that were significantly different between the high- and low-risk groups. We further investigated the relationship between metabolic status and infiltration of immune cells into HCC tumor samples by using the Cell-type Identification By Estimating Relative Subsets Of RNA Transcripts (CIBERSORT) algorithm combined with the Tumor Immune Estimation Resource (TIMER) database. Our results showed that the classifier based on Mito-RGs could act as an independent biomarker for predicting survival of HCC patients. Repression of primary bile acid biosynthesis plays a vital role in the development and poor prognosis of HCC, which provides a potential approach to treatment. Our study revealed cross-talk between bile acid and infiltration of tumors by immune cells, which may provide novel insight into immunotherapy of HCC. Furthermore, our research may provide a novel method for HCC metabolic therapy based on modulation of mitochondrial function.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingli Nie
- Department of Dermatology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Gu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kailin Cai
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huili Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiliang Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Li C, Yu H, Sun Y, Zeng X, Zhang W. Identification of the hub genes in gastric cancer through weighted gene co-expression network analysis. PeerJ 2021; 9:e10682. [PMID: 33717664 PMCID: PMC7938783 DOI: 10.7717/peerj.10682] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/09/2020] [Indexed: 02/05/2023] Open
Abstract
Background Gastric cancer is one of the most lethal tumors and is characterized by poor prognosis and lack of effective diagnostic or therapeutic biomarkers. The aim of this study was to find hub genes serving as biomarkers in gastric cancer diagnosis and therapy. Methods GSE66229 from Gene Expression Omnibus (GEO) was used as training set. Genes bearing the top 25% standard deviations among all the samples in training set were performed to systematic weighted gene co-expression network analysis (WGCNA) to find candidate genes. Then, hub genes were further screened by using the “least absolute shrinkage and selection operator” (LASSO) logistic regression. Finally, hub genes were validated in the GSE54129 dataset from GEO by supervised learning method artificial neural network (ANN) algorithm. Results Twelve modules with strong preservation were identified by using WGCNA methods in training set. Of which, five modules significantly related to gastric cancer were selected as clinically significant modules, and 713 candidate genes were identified from these five modules. Then, ADIPOQ, ARHGAP39, ATAD3A, C1orf95, CWH43, GRIK3, INHBA, RDH12, SCNN1G, SIGLEC11 and LYVE1 were screened as the hub genes. These hub genes successfully differentiated the tumor samples from the healthy tissues in an independent testing set through artificial neural network algorithm with the area under the receiver operating characteristic curve at 0.946. Conclusions These hub genes bearing diagnostic and therapeutic values, and our results may provide a novel prospect for the diagnosis and treatment of gastric cancer in the future.
Collapse
Affiliation(s)
- Chunyang Li
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Cheng, China.,Medical Big Data Center, Sichuan University, Chengdu, China
| | - Haopeng Yu
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Cheng, China.,Medical Big Data Center, Sichuan University, Chengdu, China
| | - Yajing Sun
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Cheng, China.,Medical Big Data Center, Sichuan University, Chengdu, China
| | - Xiaoxi Zeng
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Cheng, China.,Medical Big Data Center, Sichuan University, Chengdu, China
| | - Wei Zhang
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Cheng, China.,Medical Big Data Center, Sichuan University, Chengdu, China
| |
Collapse
|