1
|
Weng J, Shan Y, Chang Q, Cao C, Liu X. Research Progress on N 6-Methyladenosine Modification in Angiogenesis, Vasculogenic Mimicry, and Therapeutic Implications in Breast Cancer. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024:S0079-6107(24)00114-7. [PMID: 39710080 DOI: 10.1016/j.pbiomolbio.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
N6-methyladenosine (m6A) modification is the most common epitranscriptomic modification in eukaryotic RNA and has garnered extensive attention in the context of breast cancer research. The m6A modification significantly impacts tumorigenesis and tumor progression by regulating RNA stability, splicing, translation, and degradation. In this review we summarize recent advances in understanding the roles of m6A modification in the mechanisms underlying angiogenesis and vasculogenic mimicry in breast cancer. We review how m6A modification and associated transcripts influence relevant factors by affecting key factors and signaling pathways, highlighting the interactions among m6A "writers," "erasers," and "readers," and their overall impact on tumor angiogenesis and vasculogenic mimicry, as well as potential new therapeutic targets.
Collapse
Affiliation(s)
- Jiachen Weng
- Zhangjiagang Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Suzhou City, Jiangsu, 215600, China
| | - Yisi Shan
- Zhangjiagang Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Suzhou City, Jiangsu, 215600, China
| | - Qingyu Chang
- Zhangjiagang Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Suzhou City, Jiangsu, 215600, China
| | - Chenyan Cao
- Zhangjiagang Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Suzhou City, Jiangsu, 215600, China
| | - Xuemin Liu
- Zhangjiagang Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Suzhou City, Jiangsu, 215600, China.
| |
Collapse
|
2
|
Kleeblatt E, Lazki-Hagenbach P, Nabet E, Cohen R, Bahri R, Rogers N, Langton A, Bulfone-Paus S, Frenkel D, Sagi-Eisenberg R. p16 Ink4a-induced senescence in cultured mast cells as a model for ageing reveals significant morphological and functional changes. Immun Ageing 2024; 21:77. [PMID: 39529115 PMCID: PMC11552350 DOI: 10.1186/s12979-024-00478-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Mast cells (MCs) are tissue resident cells of the immune system, mainly known for their role in allergy. However, mounting evidence indicates their involvement in the pathology of age-related diseases, such as Alzheimer's disease, Parkinson's disease, and cancer. MC numbers increase in aged tissues, but how ageing affects MCs is poorly understood. RESULTS We show that MC ageing is associated with the increased expression of the cell cycle inhibitor p16 Ink4a, a marker and inducer of cellular senescence. Relying on this observation and the tight association of ageing with senescence, we developed a model of inducible senescence based on doxycycline-induced expression of p16Ink4a in cultured bone marrow derived MCs (BMMCs). Using this model, we show that senescent MCs upregulate IL-1β, TNF-α and VEGF-A. We also demonstrate that senescence causes marked morphological changes that impact MC function. Senescent MCs are larger, contain a larger number of secretory granules (SGs) and have less membrane protrusions. Particularly striking are the changes in their SGs, reflected in a significant reduction in the number of electron dense SGs with a concomitant increase in lucent SGs containing intraluminal vesicles. The changes in SG morphology are accompanied by changes in MC degranulation, including a significant increase in receptor-triggered release of CD63-positive extracellular vesicles (EVs) and the exteriorisation of proteoglycans, as opposed to a gradual inhibition of the release of β-hexosaminidase. CONCLUSIONS The inducible expression of p16Ink4a imposes MC senescence, providing a model for tracking the autonomous changes that occur in MCs during ageing. These changes include both morphological and functional alterations. In particular, the increased release of small EVs by senescent MCs suggests an enhanced ability to modulate neighbouring cells.
Collapse
Affiliation(s)
- Elisabeth Kleeblatt
- Department of Cell and Developmental Biology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Pia Lazki-Hagenbach
- Department of Cell and Developmental Biology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ellon Nabet
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Reli Cohen
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Rajia Bahri
- Lydia Becker Institute of Immunology and Inflammation, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Nicholas Rogers
- Department of Environmental Studies, School of Mechanical Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Abigail Langton
- Lydia Becker Institute of Immunology and Inflammation, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Silvia Bulfone-Paus
- Lydia Becker Institute of Immunology and Inflammation, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Dan Frenkel
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel.
| | - Ronit Sagi-Eisenberg
- Department of Cell and Developmental Biology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, 69978, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
3
|
Fan G, Li D, Liu J, Tao N, Meng C, Cui J, Cai J, Sun T. HNRNPD is a prognostic biomarker in non-small cell lung cancer and affects tumor growth and metastasis via the PI3K-AKT pathway. Biotechnol Genet Eng Rev 2024; 40:1571-1590. [PMID: 36971333 DOI: 10.1080/02648725.2023.2196155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
Heterogeneous nuclear ribonucleoprotein D (HNRNPD) can regulate expression of key proteins in various cancers. However, the prognostic predictive value and biology function of HNRNPD in non-small cell lung cancer (NSCLC) is unknown. First, we used the TCGA and GEO datasets to determine that HNRNPD predicts the prognosis of NSCLC patients. Following that, we knocked down HNRNPD in NSCLC cell lines in vitro and validated its biological function using CCK-8, transwell assays, wound healing tests, and Western blotting. Finally, we constructed tissue microarrays (TMAs) from 174 NSCLC patients and verified our findings using immunohistochemistry staining for HNRNPD from public databases. In both the public datasets, NSCLC tissues with elevated HNRNPD expression had shorter overall survival (OS). In addition, HNRNPD knockdown NSCLC cell lines showed significantly reduced proliferation, invasion, and metastatic capacity via the PI3K-AKT pathway. Finally, elevated HNRNPD expression in NSCLC TMAs was linked to a poorer prognosis and decreased PD-L1 expression levels. HNRNPD is associated with a poorer prognosis in NSCLC and affects tumor growth and metastasis via the PI3K-AKT pathway.
Collapse
Affiliation(s)
- Guoqing Fan
- Department of Respiratory Medicine and Critical Care, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
- Graduate School of Peking Union Medical College, Beijing, People's Republic of China
| | - Danni Li
- Department of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, People's Republic of China
| | - Jingjing Liu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Ningning Tao
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Chao Meng
- Department of Respiratory Medicine and Critical Care, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
- Graduate School of Peking Union Medical College, Beijing, People's Republic of China
| | - Ju Cui
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, People's Republic of China
| | - Jianping Cai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, People's Republic of China
| | - Tieying Sun
- Department of Respiratory Medicine and Critical Care, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
- Graduate School of Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
4
|
Sabit H, Arneth B, Abdel-Ghany S, Madyan EF, Ghaleb AH, Selvaraj P, Shin DM, Bommireddy R, Elhashash A. Beyond Cancer Cells: How the Tumor Microenvironment Drives Cancer Progression. Cells 2024; 13:1666. [PMID: 39404428 PMCID: PMC11475877 DOI: 10.3390/cells13191666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/19/2024] Open
Abstract
Liver cancer represents a substantial global health challenge, contributing significantly to worldwide morbidity and mortality. It has long been understood that tumors are not composed solely of cancerous cells, but also include a variety of normal cells within their structure. These tumor-associated normal cells encompass vascular endothelial cells, fibroblasts, and various inflammatory cells, including neutrophils, monocytes, macrophages, mast cells, eosinophils, and lymphocytes. Additionally, tumor cells engage in complex interactions with stromal cells and elements of the extracellular matrix (ECM). Initially, the components of what is now known as the tumor microenvironment (TME) were thought to be passive bystanders in the processes of tumor proliferation and local invasion. However, recent research has significantly advanced our understanding of the TME's active role in tumor growth and metastasis. Tumor progression is now known to be driven by an intricate imbalance of positive and negative regulatory signals, primarily influenced by specific growth factors produced by both inflammatory and neoplastic cells. This review article explores the latest developments and future directions in understanding how the TME modulates liver cancer, with the aim of informing the design of novel therapies that target critical components of the TME.
Collapse
Affiliation(s)
- Hussein Sabit
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt; (H.S.); (E.F.M.)
| | - Borros Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Philipps University Marburg, Baldinger Str., 35043 Marburg, Germany
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Justus Liebig University Giessen, Feulgenstr. 12, 35392 Giessen, Germany
| | - Shaimaa Abdel-Ghany
- Department of Environmental Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt;
| | - Engy F. Madyan
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt; (H.S.); (E.F.M.)
| | - Ashraf H. Ghaleb
- Department of Surgery, College of Medicine, Misr University for Science and Technology, Giza P.O. Box 77, Egypt;
- Department of Surgery, College of Medicine, Cairo University, Giza 12613, Egypt
| | - Periasamy Selvaraj
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; (P.S.); (R.B.)
| | - Dong M. Shin
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Ramireddy Bommireddy
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; (P.S.); (R.B.)
| | - Ahmed Elhashash
- Department of Biology, Texas A&M University, 3258 TAMU I, College Station, TX 77843-3258, USA
| |
Collapse
|
5
|
Guo W, Tan J, Wang L, Egelston CA, Simons DL, Ochoa A, Lim MH, Wang L, Solomon S, Waisman J, Wei CH, Hoffmann C, Song J, Schmolze D, Lee PP. Tumor draining lymph nodes connected to cold triple-negative breast cancers are characterized by Th2-associated microenvironment. Nat Commun 2024; 15:8592. [PMID: 39366933 PMCID: PMC11452381 DOI: 10.1038/s41467-024-52577-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/10/2024] [Indexed: 10/06/2024] Open
Abstract
Tumor draining lymph nodes (TDLN) represent a key component of the tumor-immunity cycle. There are few studies describing how TDLNs impact lymphocyte infiltration into tumors. Here we directly compare tumor-free TDLNs draining "cold" and "hot" human triple negative breast cancers (TDLNCold and TDLNHot). Using machine-learning-based self-correlation analysis of immune gene expression, we find unbalanced intranodal regulations within TDLNCold. Two gene pairs (TBX21/GATA3-CXCR1) with opposite correlations suggest preferential priming of T helper 2 (Th2) cells by mature dendritic cells (DC) within TDLNCold. This is validated by multiplex immunofluorescent staining, identifying more mature-DC-Th2 spatial clusters within TDLNCold versus TDLNHot. Associated with this Th2 priming preference, more IL4 producing mast cells (MC) are found within sinus regions of TDLNCold. Downstream, Th2-associated fibrotic TME is found in paired cold tumors with increased Th2/T-helper-1-cell (Th1) ratio, upregulated fibrosis growth factors, and stromal enrichment of cancer associated fibroblasts. These findings are further confirmed in a validation cohort and public genomic data. Our results reveal a potential role of IL4+ MCs within TDLNs, associated with Th2 polarization and reduced immune infiltration into tumors.
Collapse
Affiliation(s)
- Weihua Guo
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Jiayi Tan
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA
- Irell & Manella Graduate School of Biological Sciences, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010, USA
| | - Lei Wang
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA
- International Cancer Center, Shenzhen University Medical School, 518060, Shenzhen, Guangdong, China
| | - Colt A Egelston
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Diana L Simons
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Aaron Ochoa
- Department of Surgery, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010, USA
| | - Min Hui Lim
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA
- Genomics Core, Cleveland Clinic, Cleveland, OH, 44106, USA
| | - Lu Wang
- Mork Family Department of Chemical Engineering & Material Science, University of Southern California, Los Angeles, CA, 90089, USA
| | - Shawn Solomon
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - James Waisman
- Department of Medical Oncology, City of Hope, Duarte, CA, 91010, USA
| | - Christina H Wei
- Department of Pathology, City of Hope, Duarte, CA, 91010, USA
- Pathology Laboratory Administration, Los Angeles General Medical Center, Los Angeles, CA, 90033, USA
| | - Caroline Hoffmann
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA
- Owkin, Inc., New York, NY, 10003, USA
| | - Joo Song
- Department of Pathology, City of Hope, Duarte, CA, 91010, USA
| | - Daniel Schmolze
- Department of Pathology, City of Hope, Duarte, CA, 91010, USA
| | - Peter P Lee
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA.
| |
Collapse
|
6
|
Xu J, Liu Z, Zhang S, Xiang J, Lan H, Bao Y. Anti-hepatoma immunotherapy of Pholiota adiposa polysaccharide-coated selenium nanoparticles by reversing M2-like tumor-associated macrophage polarization. Int J Biol Macromol 2024; 277:133667. [PMID: 38969038 DOI: 10.1016/j.ijbiomac.2024.133667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Targeting macrophages to regulate the tumor microenvironment is a promising strategy for treating cancer. This study developed a stable nano drug (PAP-SeNPs) using Se nanoparticles (SeNPs) and the Pholiota adiposa polysaccharide component (PAP-1a) and reported their physical stability, M2-like macrophages targeting efficacy and anti-hepatoma immunotherapy potential, as well as their molecular mechanisms. Furthermore, the zero-valent and well-dispersed spherical PAP-SeNPs were also successfully synthesized with an average size of 55.84 nm and a negative ζ-potential of -51.45 mV. Moreover, it was observed that the prepared PAP-SeNPs were stable for 28 days at 4 °C. Intravital imaging highlighted that PAP-SeNPs had the dual effect of targeting desirable immune organs and tumors. In vitro analyses showed that the PAP-SeNPs polarized M2-like macrophages towards the M1 phenotype to induce hepatoma cell death, triggered by the time-dependent lysosomal endocytosis in macrophages. Mechanistically, PAP-SeNPs significantly activated the Tlr4/Myd88/NF-κB axis to transform tumor-promoting macrophages into tumor-inhibiting macrophages and successfully initiated antitumor immunotherapy. Furthermore, PAP-SeNPs also enhanced CD3+CD4+ T cells and CD3+CD8+ T cells, thereby further stimulating anti-hepatoma immune responses. These results suggest that the developed PAP-SeNPs is a promising immunostimulant that can assist hepatoma therapy.
Collapse
Affiliation(s)
- Jie Xu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400060, China
| | - Zijing Liu
- Department of Gastroenterology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Sitong Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400060, China
| | - Junqi Xiang
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Haiyan Lan
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400060, China
| | - Yixi Bao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400060, China.
| |
Collapse
|
7
|
Pascal M, Bax HJ, Bergmann C, Bianchini R, Castells M, Chauhan J, De Las Vecillas L, Hartmann K, Álvarez EI, Jappe U, Jimenez-Rodriguez TW, Knol E, Levi-Schaffer F, Mayorga C, Poli A, Redegeld F, Santos AF, Jensen-Jarolim E, Karagiannis SN. Granulocytes and mast cells in AllergoOncology-Bridging allergy to cancer: An EAACI position paper. Allergy 2024; 79:2319-2345. [PMID: 39036854 DOI: 10.1111/all.16246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/23/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
Derived from the myeloid lineage, granulocytes, including basophils, eosinophils, and neutrophils, along with mast cells, play important, often disparate, roles across the allergic disease spectrum. While these cells and their mediators are commonly associated with allergic inflammation, they also exhibit several functions either promoting or restricting tumor growth. In this Position Paper we discuss common granulocyte and mast cell features relating to immunomodulatory functions in allergy and in cancer. We highlight key mechanisms which may inform cancer treatment and propose pertinent areas for future research. We suggest areas where understanding the communication between granulocytes, mast cells, and the tumor microenvironment, will be crucial for identifying immune mechanisms that may be harnessed to counteract tumor development. For example, a comprehensive understanding of allergic and immune factors driving distinct neutrophil states and those mechanisms that link mast cells with immunotherapy resistance, might enable targeted manipulation of specific subpopulations, leading to precision immunotherapy in cancer. We recommend specific areas of investigation in AllergoOncology and knowledge exchange across disease contexts to uncover pertinent reciprocal functions in allergy and cancer and allow therapeutic manipulation of these powerful cell populations. These will help address the unmet needs in stratifying and managing patients with allergic diseases and cancer.
Collapse
Affiliation(s)
- Mariona Pascal
- Immunology Department, CDB, Hospital Clínic de Barcelona; Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
- Department of Medicine, Universitat de Barcelona, Barcelona, Spain
- RETICS Asma, reacciones adversas y alérgicas (ARADYAL) and RICORS Red De Enfermedades Inflamatorias (REI), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Heather J Bax
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, London, UK
| | - Christoph Bergmann
- Department of Otorhinolaryngology, RKM740 Interdisciplinary Clinics, Düsseldorf, Germany
| | - Rodolfo Bianchini
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University Vienna, Vienna, Austria
- The interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, Vienna, Austria
| | - Mariana Castells
- Division of Allergy and Clinical Immunology, Drug Hypersensitivity and Desensitization Center, Mastocytosis Center, Brigham and Women's Hospital; Harvard Medical School, Boston, USA
| | - Jitesh Chauhan
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, London, UK
| | | | - Karin Hartmann
- Division of Allergy, Department of Dermatology, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Elena Izquierdo Álvarez
- Department of Basic Medical Sciences, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Institute of Applied Molecular Medicine Instituto de Medicina Molecular Aplicada Nemesio Díez (IMMA), Madrid, Spain
| | - Uta Jappe
- Division of Clinical and Molecular Allergology, Priority Research Area Chronic Lung Diseases, Research Center Borstel, Leibniz Lung Center, German Center for Lung Research (DZL), Airway Research Center North (ARCN), Borstel, Germany
- Interdisciplinary Allergy Outpatient Clinic, Department of Pneumology, University of Luebeck, Luebeck, Germany
| | | | - Edward Knol
- Departments Center of Translational Immunology and Dermatology/Allergology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine. The Hebrew University of Jerusalem, Ein Kerem Campus, Jerusalem, Israel
| | - Cristobalina Mayorga
- RETICS Asma, reacciones adversas y alérgicas (ARADYAL) and RICORS Red De Enfermedades Inflamatorias (REI), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Allergy Unit and Research Laboratory, Hospital Regional Universitario de Málaga-HRUM, Instituto de investigación Biomédica de Málaga -IBIMA-Plataforma BIONAND, Málaga, Spain
| | - Aurélie Poli
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Frank Redegeld
- Division of Pharmacology, Utrecht Institute of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Alexandra F Santos
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
- Children's Allergy Service, Evelina London Children's Hospital, Guy's and St Thomas' Hospital, London, UK
| | - Erika Jensen-Jarolim
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University Vienna, Vienna, Austria
- The interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, Vienna, Austria
| | - Sophia N Karagiannis
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, London, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, UK
| |
Collapse
|
8
|
Bharadwaj D, Mandal M. Tumor microenvironment: A playground for cells from multiple diverse origins. Biochim Biophys Acta Rev Cancer 2024; 1879:189158. [PMID: 39032537 DOI: 10.1016/j.bbcan.2024.189158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Tumor microenvironment is formed by various cellular and non-cellular components which interact with one another and form a complex network of interactions. Some of these cellular components also attain a secretory phenotype and release growth factors, cytokines, chemokines etc. in the surroundings which are capable of inducing even greater number of signalling networks. All these interactions play a decisive role in determining the course of tumorigenesis. The treatment strategies against cancer also exert their impact on the local microenvironment. Such interactions and anticancer therapies have been found to induce more deleterious outcomes like immunosuppression and chemoresistance in the process of tumor progression. Hence, understanding the tumor microenvironment is crucial for dealing with cancer and chemoresistance. This review is an attempt to develop some understanding about the tumor microenvironment and different factors which modulate it, thereby contributing to tumorigenesis. Along with summarising the major components of tumor microenvironment and various interactions taking place between them, it also throws some light on how the existing and potential therapies exert their impact on these dynamics.
Collapse
Affiliation(s)
- Deblina Bharadwaj
- Department of Biotechnology, KIT-Kalaignarkarunanidhi Institute of Technology, Coimbatore, Tamil Nadu, India.
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal, India.
| |
Collapse
|
9
|
Liu T, Xu J, Zhang QX, Huang YJ, Wang W, Fu Z. Inhibiting the expression of spindle appendix cooled coil protein 1 can suppress tumor cell growth and metastasis and is associated with cancer immune cells in esophageal squamous cell carcinoma. PLoS One 2024; 19:e0302312. [PMID: 39196978 PMCID: PMC11356440 DOI: 10.1371/journal.pone.0302312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 04/01/2024] [Indexed: 08/30/2024] Open
Abstract
Inhibiting the expression of spindle appendix cooled coil protein 1 (SPDL1) can slow down disease progression and is related to poor prognosis in patients with esophageal cancer. However, the specific roles and molecular mechanisms of SPDL1 in esophageal squamous cell carcinoma (ESCC) have not been explored yet. The current study aimed to investigate the expression levels of SPDL1 in ESCC via transcriptome analysis using data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus databases. Moreover, the biological roles, molecular mechanisms, and protein networks involved in SPDL1 were identified using machine learning and bioinformatics. The cell counting kit-8 assay, EdU staining, and transwell assay were used to investigate the effects of inhibiting SPDL1 expression on ESCC cell proliferation, migration, and invasion. Finally, the correlation between the SPDL1 expression and cancer immune infiltrating cells was evaluated by analyzing data from the TCGA database. Results showed that SPDL1 was overexpressed in the ESCC tissues. The SPDL1 expression was related to age in patients with ESCC. The SPDL1 co-expressed genes included those involved in cell division, cell cycle, DNA repair and replication, cell aging, and other processes. The high-risk scores of SPDL1-related long non-coding RNAs were significantly correlated with overall survival and cancer progression in patients with ESCC (P < 0.05). Inhibiting the SPDL1 expression was effective in suppressing the proliferation, migration, and invasion of ESCC TE-1 cells (P < 0.05). The overexpression of SPDL1 was positively correlated with the levels of Th2 and T-helper cells, and was negatively correlated with the levels of plasmacytoid dendritic cells and mast cells. In conclusion, SPDL1 was overexpressed in ESCC and was associated with immune cells. Further, inhibiting the SPDL1 expression could effectively slow down cancer cell growth and migration. SPDL1 is a promising biomarker for treating patients with ESCC.
Collapse
Affiliation(s)
- Tao Liu
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan City, China
| | - Juan Xu
- Operating Room, Taihe Hospital, Hubei University of Medicine, Shiyan City, China
| | - Qun-Xian Zhang
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan City, China
| | - Yan-Jiao Huang
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan City, China
| | - Wei Wang
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan City, China
| | - Zhu Fu
- Department of Pediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan City, China
| |
Collapse
|
10
|
Gomathinayagam S, Srinivasan R, Gomathi A, Jayaraj R, Vasconcelos V, Sudhakaran R, Easwaran N, Meivelu Moovendhan, Kodiveri Muthukaliannan G. Oral Administration of Carotenoid-Rich Dunaliella salina Powder Inhibits Colon Carcinogenesis via Modulation of Wnt/β-catenin Signaling Cascades in a Rat Model. Appl Biochem Biotechnol 2024:10.1007/s12010-024-05024-z. [PMID: 39106028 DOI: 10.1007/s12010-024-05024-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/07/2024]
Abstract
The present study aims to investigate the oral therapeutic and molecular role of carotenoid-rich Dunaliella salina powder (DSP) against 1,2-dimethylhydrazine (DMH)-triggered colon carcinogenesis. In this study, thirty six male Wistar rats were categorized into six distinct groups (G1-G6): G1 group with no intervention, G2 group received only DSP (1000 mg/kg), G3 group received only DMH carcinogen (20 mg/kg), and G4-G6 group received both DMH and DSP at various phases (pre-initiation, post-initiation and entire phases) for 32 weeks. Body weight, tumor incidence, tumor volume, histopathological examination, antioxidants, and detoxification enzymes activities were analyzed in the experimental rats. In addition, the protein expression profile of components involved in the Wnt/β-catenin signaling pathway was determined by western blot analysis. Matrix metalloproteinases (MMP-7 and MMP-9), proliferation marker (PCNA), and pro-apoptotic (Bcl-2 and Bax) proteins were analyzed using immunohistochemistry. Colorimetric assay was used to determine the levels of anti-inflammatory (iNOS and COX-2) and apoptotic proteins (Caspase-3 and Caspase-9). Results showed that concomitant administration of DSP with DMH significantly reduced tumor progression and prevented colon carcinogenesis in rats. However, treatment with DSP before or after DMH exposure did not significantly prevent colon carcinogenesis. DMH and DSP treatment group showed increased activities of antioxidant enzymes with significant reduction in the oxidative stress. Additionally, the detoxification enzymes and colonic histopathology of those rats were restored to that of control rats. The administration of DSP to rats exposed to DMH exhibited antitumor effects via inhibition of the Wnt/β-catenin signaling pathway with induced apoptosis through the Bcl-2/Bax/caspases signaling cascades. Moreover, the same group also showed significant anti-inflammatory activity via regulating iNOS and COX-2 biomarkers. Our findings revealed molecular chemopreventive activity of carotenoid-rich DSP through regulating Wnt/beta-catenin and intrinsic apoptotic pathways. Thus, DSP is propound to function as a potent antioxidant, anti-proliferative, and anti-inflammatory therapeutic agent against colon carcinogenesis.
Collapse
Affiliation(s)
| | - Ramachandran Srinivasan
- Centre for Ocean Research (DST-FIST Sponsored Centre), MoES - Earth Science & Technology Cell, Sathyabama Research Park, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - Ajitha Gomathi
- School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Rama Jayaraj
- Jindal Institute of Behavioral Sciences, Jindal Global Institution of Eminence Deemed to Be University, Sonipat, 131001, India
- Director of Clinical Sciences, Northern Territory Institute of Research and Training, Darwin, NT, 0909, Australia
| | - Vitor Vasconcelos
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, 4450-208, Matosinhos, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, 4069-007, Porto, Portugal
| | - Raja Sudhakaran
- School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Nalini Easwaran
- School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Meivelu Moovendhan
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Thandalam, Chennai, Tamil Nadu, 602105, India
| | | |
Collapse
|
11
|
Alashkar Alhamwe B, Ponath V, Alhamdan F, Dörsam B, Landwehr C, Linder M, Pauck K, Miethe S, Garn H, Finkernagel F, Brichkina A, Lauth M, Tiwari DK, Buchholz M, Bachurski D, Elmshäuser S, Nist A, Stiewe T, Pogge von Strandmann L, Szymański W, Beutgen V, Graumann J, Teply-Szymanski J, Keber C, Denkert C, Jacob R, Preußer C, Pogge von Strandmann E. BAG6 restricts pancreatic cancer progression by suppressing the release of IL33-presenting extracellular vesicles and the activation of mast cells. Cell Mol Immunol 2024; 21:918-931. [PMID: 38942797 PMCID: PMC11291976 DOI: 10.1038/s41423-024-01195-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 06/08/2024] [Indexed: 06/30/2024] Open
Abstract
Recent studies reveal a critical role of tumor cell-released extracellular vesicles (EVs) in pancreatic cancer (PC) progression. However, driver genes that direct EV function, the EV-recipient cells, and their cellular response to EV uptake remain to be identified. Therefore, we studied the role of Bcl-2-associated-anthanogene 6 (BAG6), a regulator of EV biogenesis for cancer progression. We used a Cre recombinase/LoxP-based reporter system in combination with single-cell RNA sequencing to monitor in vivo EV uptake and tumor microenvironment (TME) changes in mouse models for pancreatic ductal adenocarcinoma (PDAC) in a Bag6 pro- or deficient background. In vivo data were validated using mouse and human organoids and patient samples. Our data demonstrated that Bag6-deficient subcutaneous and orthotopic PDAC tumors accelerated tumor growth dependent on EV release. Mechanistically, this was attributed to mast cell (MC) activation via EV-associated IL33. Activated MCs promoted tumor cell proliferation and altered the composition of the TME affecting fibroblast polarization and immune cell infiltration. Tumor cell proliferation and fibroblast polarization were mediated via the MC secretome containing high levels of PDGF and CD73. Patients with high BAG6 gene expression and high protein plasma level have a longer overall survival indicating clinical relevance. The current study revealed a so far unknown tumor-suppressing activity of BAG6 in PDAC. Bag6-deficiency allowed the release of EV-associated IL33 which modulate the TME via MC activation promoting aggressive tumor growth. MC depletion using imatinib diminished tumor growth providing a scientific rationale to consider imatinib for patients stratified with low BAG6 expression and high MC infiltration. EVs derived from BAG6-deficient pancreatic cancer cells induce MC activation via IL33/Il1rl1. The secretome of activated MCs induces tumor proliferation and changes in the TME, particularly shifting fibroblasts into an inflammatory cancer-associated fibroblast (iCAF) phenotype. Blocking EVs or depleting MCs restricts tumor growth.
Collapse
Affiliation(s)
- Bilal Alashkar Alhamwe
- Institute for Tumor Immunology, Philipps-University, 35043, Marburg, Germany
- Core Facility Extracellular Vesicles, Philipps-University, 35043, Marburg, Germany
| | - Viviane Ponath
- Institute for Tumor Immunology, Philipps-University, 35043, Marburg, Germany
- Core Facility Extracellular Vesicles, Philipps-University, 35043, Marburg, Germany
| | - Fahd Alhamdan
- Department of Anesthesiology, Critical Care, and Pain Medicine, Cardiac Anesthesia Division, Boston Children's Hospital, Boston, USA
- Department of Immunology and Anaesthesia, Harvard Medical School, Boston, MA, USA
| | - Bastian Dörsam
- Institute for Tumor Immunology, Philipps-University, 35043, Marburg, Germany
- Core Facility Extracellular Vesicles, Philipps-University, 35043, Marburg, Germany
| | - Clara Landwehr
- Institute for Tumor Immunology, Philipps-University, 35043, Marburg, Germany
- Core Facility Extracellular Vesicles, Philipps-University, 35043, Marburg, Germany
| | - Manuel Linder
- Institute for Tumor Immunology, Philipps-University, 35043, Marburg, Germany
- Core Facility Extracellular Vesicles, Philipps-University, 35043, Marburg, Germany
| | - Kim Pauck
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Philipps-University, 35043, Marburg, Germany
| | - Sarah Miethe
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Philipps-University, 35043, Marburg, Germany
| | - Holger Garn
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Philipps-University, 35043, Marburg, Germany
| | - Florian Finkernagel
- Institute for Tumor Immunology, Philipps-University, 35043, Marburg, Germany
- Core Facility Bioinformatics, Philipps-University, 35043, Marburg, Germany
| | - Anna Brichkina
- Clinic for Gastroenterology, Endocrinology and Metabolism; Center for Tumor and Immune Biology, Philipps-University, 35043, Marburg, Germany
- Institute of Systems Immunology, Philipps-University, 35043, Marburg, Germany
| | - Matthias Lauth
- Clinic for Gastroenterology, Endocrinology and Metabolism; Center for Tumor and Immune Biology, Philipps-University, 35043, Marburg, Germany
| | - Dinesh Kumar Tiwari
- Clinic for Gastroenterology, Endocrinology and Metabolism; Center for Tumor and Immune Biology, Philipps-University, 35043, Marburg, Germany
| | - Malte Buchholz
- Clinic for Gastroenterology, Endocrinology and Metabolism; Center for Tumor and Immune Biology, Philipps-University, 35043, Marburg, Germany
| | - Daniel Bachurski
- Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Sabrina Elmshäuser
- Institute of Molecular Oncology and Genomics Core Facility, Member of the German Center for Lung Research (DZL), Philipps-University, 35043, Marburg, Germany
| | - Andrea Nist
- Institute of Molecular Oncology and Genomics Core Facility, Member of the German Center for Lung Research (DZL), Philipps-University, 35043, Marburg, Germany
| | - Thorsten Stiewe
- Institute of Molecular Oncology and Genomics Core Facility, Member of the German Center for Lung Research (DZL), Philipps-University, 35043, Marburg, Germany
- Institute of Lung Health, Justus Liebig University, 35392, Giessen, Germany
| | - Lisa Pogge von Strandmann
- Institute for Tumor Immunology, Philipps-University, 35043, Marburg, Germany
- Core Facility Extracellular Vesicles, Philipps-University, 35043, Marburg, Germany
| | - Witold Szymański
- Institute of Translational Proteomics & Core Facility Translational Proteomics, Biochemical/Pharmacological Centre, Philipps-University, 35043, Marburg, Germany
| | - Vanessa Beutgen
- Institute of Translational Proteomics & Core Facility Translational Proteomics, Biochemical/Pharmacological Centre, Philipps-University, 35043, Marburg, Germany
| | - Johannes Graumann
- Institute of Translational Proteomics & Core Facility Translational Proteomics, Biochemical/Pharmacological Centre, Philipps-University, 35043, Marburg, Germany
| | - Julia Teply-Szymanski
- Institute of Pathology, Philipps-University Marburg and University Hospital Marburg (UKGM), Marburg, Germany
| | - Corinna Keber
- Institute of Pathology, Philipps-University Marburg and University Hospital Marburg (UKGM), Marburg, Germany
| | - Carsten Denkert
- Institute of Pathology, Philipps-University Marburg and University Hospital Marburg (UKGM), Marburg, Germany
| | - Ralf Jacob
- Department of Cell Biology and Cell Pathology, Philipps-University, 35043, Marburg, Germany
| | - Christian Preußer
- Institute for Tumor Immunology, Philipps-University, 35043, Marburg, Germany
- Core Facility Extracellular Vesicles, Philipps-University, 35043, Marburg, Germany
| | - Elke Pogge von Strandmann
- Institute for Tumor Immunology, Philipps-University, 35043, Marburg, Germany.
- Core Facility Extracellular Vesicles, Philipps-University, 35043, Marburg, Germany.
| |
Collapse
|
12
|
Shi A, Liu Z, Fan Z, Li K, Liu X, Tang Y, Hu J, Li X, Shu L, Zhao L, Huang L, Zhang Z, Lv G, Zhang Z, Xu Y. Function of mast cell and bile-cholangiocarcinoma interplay in cholangiocarcinoma microenvironment. Gut 2024; 73:1350-1363. [PMID: 38458750 DOI: 10.1136/gutjnl-2023-331715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/25/2024] [Indexed: 03/10/2024]
Abstract
OBJECTIVE The correlation between cholangiocarcinoma (CCA) progression and bile is rarely studied. Here, we aimed to identify differential metabolites in benign and malignant bile ducts and elucidate the generation, function and degradation of bile metabolites. DESIGN Differential metabolites in the bile from CCA and benign biliary stenosis were identified by metabonomics. Biliary molecules able to induce mast cell (MC) degranulation were revealed by in vitro and in vivo experiments, including liquid chromatography-mass spectrometry (MS)/MS and bioluminescence resonance energy transfer assays. Histamine (HA) receptor expression in CCA was mapped using a single-cell mRNA sequence. HA receptor functions were elucidated by patient-derived xenografts (PDX) in humanised mice and orthotopic models in MC-deficient mice. Genes involved in HA-induced proliferation were screened by CRISPR/Cas9. RESULTS Bile HA was elevated in CCA and indicated poorer prognoses. Cancer-associated fibroblasts (CAFs)-derived stem cell factor (SCF) recruited MCs, and bile N,N-dimethyl-1,4-phenylenediamine (DMPD) stimulated MCs to release HA through G protein-coupled receptor subtype 2 (MRGPRX2)-Gαq signalling. Bile-induced MCs released platelet-derived growth factor subunit B (PDGF-B) and angiopoietin 1/2 (ANGPT1/2), which enhanced CCA angiogenesis and lymphangiogenesis. Histamine receptor H1 (HRH1) and HRH2 were predominantly expressed in CCA cells and CAFs, respectively. HA promoted CCA cell proliferation by activating HRH1-Gαq signalling and hastened CAFs to secrete hepatocyte growth factor by stimulating HRH2-Gαs signalling. Solute carrier family 22 member 3 (SLC22A3) inhibited HA-induced CCA proliferation by importing bile HA into cells for degradation, and SLC22A3 deletion resulted in HA accumulation. CONCLUSION Bile HA is released from MCs through DMPD stimulation and degraded via SLC22A3 import. Different HA receptors exhibit a distinct expression profile in CCA and produce different oncogenic effects. MCs promote CCA progression in a CCA-bile interplay pattern.
Collapse
Affiliation(s)
- Anda Shi
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zengli Liu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of General Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhongqi Fan
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Kangshuai Li
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xingkai Liu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yongchang Tang
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jiaming Hu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xingyong Li
- Department of Hepatobiliary Surgery, Shandong University, Jinan, Shandong, China
| | - Lizhuang Shu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Liming Zhao
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lingling Huang
- Department of Pharmaceutics, Shandong University, Jinan, Shandong, China
| | - Zhiyue Zhang
- Department of Pharmaceutics, Shandong University, Jinan, Shandong, China
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Zongli Zhang
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yunfei Xu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
13
|
Wu J, Song L, Lu M, Gao Q, Xu S, Zhou P, Ma T. The multifaceted functions of DNA-PKcs: implications for the therapy of human diseases. MedComm (Beijing) 2024; 5:e613. [PMID: 38898995 PMCID: PMC11185949 DOI: 10.1002/mco2.613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 06/21/2024] Open
Abstract
The DNA-dependent protein kinase (DNA-PK), catalytic subunit, also known as DNA-PKcs, is complexed with the heterodimer Ku70/Ku80 to form DNA-PK holoenzyme, which is well recognized as initiator in the nonhomologous end joining (NHEJ) repair after double strand break (DSB). During NHEJ, DNA-PKcs is essential for both DNA end processing and end joining. Besides its classical function in DSB repair, DNA-PKcs also shows multifaceted functions in various biological activities such as class switch recombination (CSR) and variable (V) diversity (D) joining (J) recombination in B/T lymphocytes development, innate immunity through cGAS-STING pathway, transcription, alternative splicing, and so on, which are dependent on its function in NHEJ or not. Moreover, DNA-PKcs deficiency has been proven to be related with human diseases such as neurological pathogenesis, cancer, immunological disorder, and so on through different mechanisms. Therefore, it is imperative to summarize the latest findings about DNA-PKcs and diseases for better targeting DNA-PKcs, which have shown efficacy in cancer treatment in preclinical models. Here, we discuss the multifaceted roles of DNA-PKcs in human diseases, meanwhile, we discuss the progresses of DNA-PKcs inhibitors and their potential in clinical trials. The most updated review about DNA-PKcs will hopefully provide insights and ideas to understand DNA-PKcs associated diseases.
Collapse
Affiliation(s)
- Jinghong Wu
- Cancer Research CenterBeijing Chest HospitalCapital Medical University/Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
| | - Liwei Song
- Department of Thoracic SurgeryBeijing Chest HospitalCapital Medical University, Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
| | - Mingjun Lu
- Cancer Research CenterBeijing Chest HospitalCapital Medical University/Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
| | - Qing Gao
- Cancer Research CenterBeijing Chest HospitalCapital Medical University/Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
| | - Shaofa Xu
- Department of Thoracic SurgeryBeijing Chest HospitalCapital Medical University, Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
| | - Ping‐Kun Zhou
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Teng Ma
- Cancer Research CenterBeijing Chest HospitalCapital Medical University/Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
| |
Collapse
|
14
|
Rodríguez-Bejarano OH, Parra-López C, Patarroyo MA. A review concerning the breast cancer-related tumour microenvironment. Crit Rev Oncol Hematol 2024; 199:104389. [PMID: 38734280 DOI: 10.1016/j.critrevonc.2024.104389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024] Open
Abstract
Breast cancer (BC) is currently the most common malignant tumour in women and one of the leading causes of their death around the world. New and increasingly personalised diagnostic and therapeutic tools have been introduced over the last few decades, along with significant advances regarding the study and knowledge related to BC. The tumour microenvironment (TME) refers to the tumour cell-associated cellular and molecular environment which can influence conditions affecting tumour development and progression. The TME is composed of immune cells, stromal cells, extracellular matrix (ECM) and signalling molecules secreted by these different cell types. Ever deeper understanding of TME composition changes during tumour development and progression will enable new and more innovative therapeutic strategies to become developed for targeting tumours during specific stages of its evolution. This review summarises the role of BC-related TME components and their influence on tumour progression and the development of resistance to therapy. In addition, an account on the modifications in BC-related TME components associated with therapy is given, and the completed or ongoing clinical trials related to this topic are presented.
Collapse
Affiliation(s)
- Oscar Hernán Rodríguez-Bejarano
- Health Sciences Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Calle 222#55-37, Bogotá 111166, Colombia; Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá 111321, Colombia; PhD Programme in Biotechnology, Faculty of Sciences, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá 111321, Colombia
| | - Carlos Parra-López
- Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá 111321, Colombia.
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá 111321, Colombia; Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá 111321, Colombia.
| |
Collapse
|
15
|
Ding J, Chen K, Wu X. Identification of lung adenocarcinoma subtypes based on mitochondrial energy metabolism-related genes. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-19. [PMID: 38920027 DOI: 10.1080/15257770.2024.2369093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 06/12/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Identifying subtypes of lung adenocarcinoma (LUAD) patients based on mitochondrial energy metabolism and immunotherapy sensitivity is essential for precision cancer treatment. METHODS LUAD subtypes were identified using unsupervised consensus clustering, and results were subjected to immune and tumor mutation analyses. DEGs between subtypes were identified by differential analysis. Functional enrichment and PPI network analyses were conducted. Patients were classified into high and low expression groups based on the expression of the top 10 hub genes, and survival analysis was performed. Drugs sensitive to feature genes were screened based on the correlation between hub gene expression and drug IC50 value. qRT-PCR and western blot were used for gene expression detection, and CCK-8 and flow cytometry were for cell viability and apoptosis analysis. RESULTS Cluster-1 had significantly higher overall survival and a higher degree of immunoinfiltration and immunophenotypic score, but a lower TIDE score, DEPTH score, and TMB. Enrichment analysis showed that pathways and functions of DEGs between two clusters were mainly related to the interaction of receptor ligands with intracellular proteases. High expression of hub genes corresponded to lower patient survival rates. The predicted drugs with high sensitivity to feature genes were CDK1: Ribavirin (0.476), CCNB2: Hydroxyurea (0.474), Chelerythrine (0.470), and KIF11: Ribavirin (0.471). KIF11 and CCNB2 were highly expressed in LUAD cells and promoted cell viability and inhibited cell apoptosis. CONCLUSION This study identified two subtypes of LUAD, with cluster-1 being more suitable for immunotherapy. These results provided a reference for the development of precision immunotherapy for LUAD patients.
Collapse
Affiliation(s)
- Jianyang Ding
- Department of Cardiothoracic Surgery, Lishui People's Hospital, the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Keng Chen
- Medical College of Hangzhou Normal University, Hangzhou, China
| | - Xuhui Wu
- Department of Cardiothoracic Surgery, Lishui People's Hospital, the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| |
Collapse
|
16
|
Zhou T, Fang YL, Tian TT, Wang GX. Pathological mechanism of immune disorders in diabetic kidney disease and intervention strategies. World J Diabetes 2024; 15:1111-1121. [PMID: 38983817 PMCID: PMC11229953 DOI: 10.4239/wjd.v15.i6.1111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/29/2024] [Accepted: 04/15/2024] [Indexed: 06/11/2024] Open
Abstract
Diabetic kidney disease is one of the most severe chronic microvascular complications of diabetes and a primary cause of end-stage renal disease. Clinical studies have shown that renal inflammation is a key factor determining kidney damage during diabetes. With the development of immunological technology, many studies have shown that diabetic nephropathy is an immune complex disease, and that most patients have immune dysfunction. However, the immune response associated with diabetic nephropathy and autoimmune kidney disease, or caused by ischemia or infection with acute renal injury, is different, and has a com-plicated pathological mechanism. In this review, we discuss the pathogenesis of diabetic nephropathy in immune disorders and the intervention mechanism, to provide guidance and advice for early intervention and treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Tong Zhou
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun 130021, Jilin Province, China
| | - Yi-Lin Fang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun 130021, Jilin Province, China
| | - Tian-Tian Tian
- School of Public Health, Jilin University, Changchun 130021, Jilin Province, China
| | - Gui-Xia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| |
Collapse
|
17
|
Wang J, Li X, Qiang X, Yin X, Guo L. Analyzing the expression and clinical significance of CENPE in gastric cancer. BMC Med Genomics 2024; 17:119. [PMID: 38702677 PMCID: PMC11067209 DOI: 10.1186/s12920-024-01887-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is a prevalent type of malignant gastrointestinal tumor. Many studies have shown that CENPE acts as an oncogene in some cancers. However, its expression level and clinical value in GC are not clear. METHODS Obtaining clinical data information on gastric adenocarcinoma from TCGA and GEO databases. The gene expression profiling interaction analysis (GEPIA) was used to evaluate the relationship between prognosis and CENPE expression in gastric cancer patients. Utilizing the UALCAN platform, the correlation between CENPE expression and clinical parameters was examined. Functions and signaling pathways of CENPE were analyzed using the Gene Ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA). The association between immunological infiltrating cells and CENPE expression was examined using TIMER2.0. Validation was performed by real-time quantitative PCR (qPT-PCR) and immunohistochemical analysis. RESULTS According to the analysis of the GEPIA database, the expression of CENPE is increased in gastric cancer tissues compared to normal tissues. It was also found to have an important relationship with the prognosis of the patient (p<0.05). The prognosis was worse and overall survival was lower in individuals with increased expression of CENPE. In line with the findings of the GEPIA, real-time fluorescence quantitative PCR (qPT-PCR) confirmed that CENPE was overexpressed in gastric cancer cells. Furthermore, It was discovered that H. pylori infection status and tumor grade were related to CENPE expression. Enrichment analysis revealed that CENPE expression was linked to multiple biological functions and tumor-associated pathways. CENPE expression also correlated with immune-infiltrating cells in the gastric cancer microenvironment and was positively connected to NK cells and mast cells. According to immunohistochemical examination, paracancerous tissues had minimal expression of CENPE, but gastric cancer showed significant expression of the protein. CONCLUSIONS According to our findings, CENPE is substantially expressed in GC and may perhaps contribute to its growth. CENPE might be a target for gastric cancer therapy and a predictor of a bad prognosis.
Collapse
Affiliation(s)
- Jing Wang
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Xiaofei Li
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Xihui Qiang
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Xueqing Yin
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Lianyi Guo
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China.
| |
Collapse
|
18
|
Okcu O, Öztürk Ç, Yalçın N, Yalçın AC, Şen B, Aydın E, Öztürk AE. Effect of tumor-infiltrating immune cells (mast cells, neutrophils and lymphocytes) on neoadjuvant chemotherapy response in breast carcinomas. Ann Diagn Pathol 2024; 70:152301. [PMID: 38581761 DOI: 10.1016/j.anndiagpath.2024.152301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
INTRODUCTION Despite screening, the incidence of breast cancer is increasing worldwide. Neoadjuvant chemotherapy (NAC) response is one of the most important parameters taken into consideration in surgery, optimal adjuvant chemotherapy planning and prognosis prediction. Research on predictive markers for the response to NAC is still ongoing. In our study, we investigated the relationship between tumor-infiltrating neutrophils/mast cells/lymphocytes and NAC response in breast carcinomas. MATERIAL AND METHOD Study included 117 patients who were diagnosed with invasive breast carcinoma using core needle biopsy. In these biopsies tumor-infiltrating neutrophils/mast cells/lymphocytes were evaluated and Miller Payne Score was used for NAC response. RESULT 53 patients exhibited high TILs, 36 had high TINs, and 46 showed high TIMs. While pathological complete response was 27 % in all patients, it was 38 % in high TINs patients, 35 % in high TILs patients, and 28 % in high TIMs patients. High TIMs were observed to be statistically associated with survival. TILs, TINs, nuclear grade, ER, PR and HER2 expression, Ki-67 proliferation index were found to be associated with the Miller - Payne score. In multivariate analysis, TINs, nuclear grade, pathological stage, and molecular subtype were found to be independent risk factors for treatment response. CONCLUSION TINs have better prognostic value to predict neoadjuvant treatment than TILs. High TIMs are associated with increased overall survival. The inclusion of TINs in NAC response and TIMs in overall survival in pathology reports and treatment planning is promising in breast carcinomas as they are simple to use and reproducible markers.
Collapse
Affiliation(s)
- Oğuzhan Okcu
- Recep Tayyip Erdoğan University, Faculty of Medicine, Department of Pathology, Rize, Turkey.
| | - Çiğdem Öztürk
- Recep Tayyip Erdoğan University Training and Research Hospital, Department of Pathology, Rize, Turkey
| | - Nazlıcan Yalçın
- Recep Tayyip Erdoğan University, Faculty of Medicine, Department of Pathology, Rize, Turkey
| | - Anıl Can Yalçın
- Recep Tayyip Erdoğan University, Faculty of Medicine, Department of Pathology, Rize, Turkey
| | - Bayram Şen
- Recep Tayyip Erdoğan University Training and Research Hospital, Department of Biochemistry, Rize, Turkey
| | - Esra Aydın
- Recep Tayyip Erdoğan University Training and Research Hospital, Department of Oncology, Rize, Turkey
| | - Ahmet Emin Öztürk
- University of Health Sciences, Prof Dr. Cemil Tascioglu City Hospital, Department of Medical Oncology, Istanbul, Turkey
| |
Collapse
|
19
|
Akinsipe T, Mohamedelhassan R, Akinpelu A, Pondugula SR, Mistriotis P, Avila LA, Suryawanshi A. Cellular interactions in tumor microenvironment during breast cancer progression: new frontiers and implications for novel therapeutics. Front Immunol 2024; 15:1302587. [PMID: 38533507 PMCID: PMC10963559 DOI: 10.3389/fimmu.2024.1302587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/16/2024] [Indexed: 03/28/2024] Open
Abstract
The breast cancer tumor microenvironment (TME) is dynamic, with various immune and non-immune cells interacting to regulate tumor progression and anti-tumor immunity. It is now evident that the cells within the TME significantly contribute to breast cancer progression and resistance to various conventional and newly developed anti-tumor therapies. Both immune and non-immune cells in the TME play critical roles in tumor onset, uncontrolled proliferation, metastasis, immune evasion, and resistance to anti-tumor therapies. Consequently, molecular and cellular components of breast TME have emerged as promising therapeutic targets for developing novel treatments. The breast TME primarily comprises cancer cells, stromal cells, vasculature, and infiltrating immune cells. Currently, numerous clinical trials targeting specific TME components of breast cancer are underway. However, the complexity of the TME and its impact on the evasion of anti-tumor immunity necessitate further research to develop novel and improved breast cancer therapies. The multifaceted nature of breast TME cells arises from their phenotypic and functional plasticity, which endows them with both pro and anti-tumor roles during tumor progression. In this review, we discuss current understanding and recent advances in the pro and anti-tumoral functions of TME cells and their implications for developing safe and effective therapies to control breast cancer progress.
Collapse
Affiliation(s)
- Tosin Akinsipe
- Department of Biological Sciences, College of Science and Mathematics, Auburn University, Auburn, AL, United States
| | - Rania Mohamedelhassan
- Department of Chemical Engineering, College of Engineering, Auburn University, Auburn, AL, United States
| | - Ayuba Akinpelu
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Satyanarayana R. Pondugula
- Department of Chemical Engineering, College of Engineering, Auburn University, Auburn, AL, United States
| | - Panagiotis Mistriotis
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - L. Adriana Avila
- Department of Biological Sciences, College of Science and Mathematics, Auburn University, Auburn, AL, United States
| | - Amol Suryawanshi
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| |
Collapse
|
20
|
Jang Y, Na HW, Shin DY, Lee J, Han JP, Kim HS, Kim SJ, Choi EJ, Lee C, Hong YD, Kim HJ, Seo YR. Integrative analysis of RNA-sequencing and microarray for the identification of adverse effects of UVB exposure on human skin. Front Public Health 2024; 12:1328089. [PMID: 38444441 PMCID: PMC10913594 DOI: 10.3389/fpubh.2024.1328089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/15/2024] [Indexed: 03/07/2024] Open
Abstract
Background Ultraviolet B (UVB) from sunlight represents a major environmental factor that causes toxic effects resulting in structural and functional cutaneous abnormalities in most living organisms. Although numerous studies have indicated the biological mechanisms linking UVB exposure and cutaneous manifestations, they have typically originated from a single study performed under limited conditions. Methods We accessed all publicly accessible expression data of various skin cell types exposed to UVB, including skin biopsies, keratinocytes, and fibroblasts. We performed biological network analysis to identify the molecular mechanisms and identify genetic biomarkers. Results We interpreted the inflammatory response and carcinogenesis as major UVB-induced signaling alternations and identified three candidate biomarkers (IL1B, CCL2, and LIF). Moreover, we confirmed that these three biomarkers contribute to the survival probability of patients with cutaneous melanoma, the most aggressive and lethal form of skin cancer. Conclusion Our findings will aid the understanding of UVB-induced cutaneous toxicity and the accompanying molecular mechanisms. In addition, the three candidate biomarkers that change molecular signals due to UVB exposure of skin might be related to the survival rate of patients with cutaneous melanoma.
Collapse
Affiliation(s)
- Yujin Jang
- Department of Life Science, Institute of Environmental Medicine for Green Chemistry, Dongguk University Biomedi Campus, Gyeonggi-do, Republic of Korea
| | - Hye-Won Na
- Research and Innovation Center, Amorepacific, Gyeonggi-do, Republic of Korea
| | - Dong Yeop Shin
- Department of Life Science, Institute of Environmental Medicine for Green Chemistry, Dongguk University Biomedi Campus, Gyeonggi-do, Republic of Korea
| | - Jun Lee
- Department of Life Science, Institute of Environmental Medicine for Green Chemistry, Dongguk University Biomedi Campus, Gyeonggi-do, Republic of Korea
| | - Jun Pyo Han
- Department of Life Science, Institute of Environmental Medicine for Green Chemistry, Dongguk University Biomedi Campus, Gyeonggi-do, Republic of Korea
| | - Hyun Soo Kim
- Department of Life Science, Institute of Environmental Medicine for Green Chemistry, Dongguk University Biomedi Campus, Gyeonggi-do, Republic of Korea
- National Institute of Environmental Research, Incheon, Republic of Korea
| | - Su Ji Kim
- Department of Life Science, Institute of Environmental Medicine for Green Chemistry, Dongguk University Biomedi Campus, Gyeonggi-do, Republic of Korea
| | - Eun-Jeong Choi
- Research and Innovation Center, Amorepacific, Gyeonggi-do, Republic of Korea
| | - Charles Lee
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | - Yong Deog Hong
- Research and Innovation Center, Amorepacific, Gyeonggi-do, Republic of Korea
| | - Hyoung-June Kim
- Research and Innovation Center, Amorepacific, Gyeonggi-do, Republic of Korea
| | - Young Rok Seo
- Department of Life Science, Institute of Environmental Medicine for Green Chemistry, Dongguk University Biomedi Campus, Gyeonggi-do, Republic of Korea
| |
Collapse
|
21
|
Wang J, Liu K, Li J, Zhang H, Gong X, Song X, Wei M, Hu Y, Li J. Constructing and Evaluating a Mitophagy-Related Gene Prognostic Model: Implications for Immune Landscape and Tumor Biology in Lung Adenocarcinoma. Biomolecules 2024; 14:228. [PMID: 38397465 PMCID: PMC10886790 DOI: 10.3390/biom14020228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Mitophagy, a conserved cellular mechanism, is crucial for cellular homeostasis through the selective clearance of impaired mitochondria. Its emerging role in cancer development has sparked interest, particularly in lung adenocarcinoma (LUAD). Our study aimed to construct a risk model based on mitophagy-related genes (MRGs) to predict survival outcomes, immune response, and chemotherapy sensitivity in LUAD patients. We mined the GeneCards database to identify MRGs and applied LASSO/Cox regression to formulate a prognostic model. Validation was performed using two independent Gene Expression Omnibus (GEO) cohorts. Patients were divided into high- and low-risk categories according to the median risk score. The high-risk group demonstrated significantly reduced survival. Multivariate Cox analysis confirmed the risk score as an independent predictor of prognosis, and a corresponding nomogram was developed to facilitate clinical assessments. Intriguingly, the risk score correlated with immune infiltration levels, oncogenic expression profiles, and sensitivity to anticancer agents. Enrichment analyses linked the risk score with key oncological pathways and biological processes. Within the model, MTERF3 emerged as a critical regulator of lung cancer progression. Functional studies indicated that the MTERF3 knockdown suppressed the lung cancer cell proliferation and migration, enhanced mitophagy, and increased the mitochondrial superoxide production. Our novel prognostic model, grounded in MRGs, promises to refine therapeutic strategies and prognostication in lung cancer management.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jianxiang Li
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou 215123, China; (J.W.); (K.L.); (J.L.); (H.Z.); (X.G.); (X.S.); (M.W.); (Y.H.)
| |
Collapse
|
22
|
Sheng L, Shan Y, Dai H, Yu M, Sun J, Huang L, Wang F, Sheng M. Intercellular communication in peritoneal dialysis. Front Physiol 2024; 15:1331976. [PMID: 38390449 PMCID: PMC10882094 DOI: 10.3389/fphys.2024.1331976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Long-term peritoneal dialysis (PD) causes structural and functional alterations of the peritoneal membrane. Peritoneal deterioration and fibrosis are multicellular and multimolecular processes. Under stimulation by deleterious factors such as non-biocompatibility of PD solution, various cells in the abdominal cavity show differing characteristics, such as the secretion of different cytokines, varying protein expression levels, and transdifferentiation into other cells. In this review, we discuss the role of various cells in the abdominal cavity and their interactions in the pathogenesis of PD. An in-depth understanding of intercellular communication and inter-organ communication in PD will lead to a better understanding of the pathogenesis of this disease, enabling the development of novel therapeutic targets.
Collapse
Affiliation(s)
- Li Sheng
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- First Clinic Medical School, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yun Shan
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Huibo Dai
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- First Clinic Medical School, Nanjing University of Chinese Medicine, Nanjing, China
| | - Manshu Yu
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinyi Sun
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- First Clinic Medical School, Nanjing University of Chinese Medicine, Nanjing, China
| | - Liyan Huang
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- First Clinic Medical School, Nanjing University of Chinese Medicine, Nanjing, China
| | - Funing Wang
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- First Clinic Medical School, Nanjing University of Chinese Medicine, Nanjing, China
| | - Meixiao Sheng
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
23
|
Qi D, Liu C, Zhang Z, Liu X, Kang P. Construction of a Lung Adenocarcinoma Prognostic Model Utilizing Serine and Glycine Metabolism-Related Genes. J Proteome Res 2024; 23:797-808. [PMID: 38212294 DOI: 10.1021/acs.jproteome.3c00700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
The objective of this study was to construct a prognostic model by utilizing serine/glycine metabolism-related genes (SGMGs), thus establishing a risk score for lung adenocarcinoma (LUAD). Based on the TCGA-LUAD and SGMG data set, two subtypes with different SGMG expression levels were identified by clustering analysis. Thirteen differential expression genes were used to construct RiskScore by Cox regression. GSE72094 data set was used for validation. The survival characteristics, immune features, and potential benefits of chemotherapy drugs were analyzed for two risk groups. RiskScore was constructed based on the genes ABCC12, RIC3, CYP4B1, SFTPB, CACNA2D2, IGF2BP1, NTSR1, DKK1, CREG2, PITX3, RGS20, FETUB, and IGFBP1. Patients in the low-risk (LR) group exhibited a superior overall survival. In addition, aDCs, iDSs, mast cells, neutrophils, HLA, and type II IFN were more abundant in the LR group with higher IPS scores and lower TIDE scores. In contrast, NK cells, APC coinhibition, and MHC-I were more common in the high-risk (HR) group, which may be more sensitive to chemotherapy drugs such as cisplatin, oxaliplatin, and nilotinib. RiskScore was a promising biomarker that can be used to distinguish LUAD prognosis, immune features, and sensitivity to chemotherapy drugs.
Collapse
Affiliation(s)
- Dongdong Qi
- Department of Thoracic Surgery, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Chengjun Liu
- Department of Thoracic Surgery, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Zuwang Zhang
- Department of Thoracic Surgery, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Xun Liu
- Department of Thoracic Surgery, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Poming Kang
- Department of Thoracic Surgery, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| |
Collapse
|
24
|
Shu L, Li X, Liu Z, Li K, Shi A, Tang Y, Zhao L, Huang L, Zhang Z, Zhang D, Huang S, Lian S, Sheng G, Yan Z, Zhang Z, Xu Y. Bile exosomal miR-182/183-5p increases cholangiocarcinoma stemness and progression by targeting HPGD and increasing PGE2 generation. Hepatology 2024; 79:307-322. [PMID: 37140231 DOI: 10.1097/hep.0000000000000437] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/22/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND AIMS Cholangiocarcinoma (CCA) is a highly lethal malignancy originating from the biliary ducts. Current CCA diagnostic and prognostic assessments cannot satisfy the clinical requirement. Bile detection is rarely performed, and herein, we aim to estimate the clinical significance of bile liquid biopsy by assessing bile exosomal concentrations and components. APPROACH RESULTS Exosomes in bile and sera from CCA, pancreatic cancer, and common bile duct stone were identified and quantified by transmission electronmicroscopy, nanoparticle tracking analysis, and nanoFCM. Exosomal components were assessed by liquid chromatography with tandem mass spectrometry and microRNA sequencing (miRNA-seq). Bile exosomal concentration in different diseases had no significant difference, but miR-182-5p and miR-183-5p were ectopically upregulated in CCA bile exosomes. High miR-182/183-5p in both CCA tissues and bile indicates a poor prognosis. Bile exosomal miR-182/183-5p is secreted by CCA cells and can be absorbed by biliary epithelium or CCA cells. With xenografts in humanized mice, we showed that bile exosomal miR-182/183-5p promotes CCA proliferation, invasion, and epithelial-mesenchymal transition (EMT) by targeting hydroxyprostaglandin dehydrogenase in CCA cells and mast cells (MCs), and increasing prostaglandin E2 generation, which stimulates PTGER1 and increases CCA stemness. In single-cell mRNA-seq, hydroxyprostaglandin dehydrogenase is predominantly expressed in MCs. miR-182/183-5p prompts MC to release VEGF-A release from MC by increasing VEGF-A expression, which facilitates angiogenesis. CONCLUSIONS CCA cells secret exosomal miR-182/183-5p into bile, which targets hydroxyprostaglandin dehydrogenase in CCA cells and MCs and increases prostaglandin E2 and VEGF-A release. Prostaglandin E2 promotes stemness by activating PTGER1. Our results reveal a type of CCA self-driven progression dependent on bile exosomal miR-182/183-5p and MCs, which is a new interplay pattern of CCA and bile.
Collapse
Affiliation(s)
- Lizhuang Shu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xingyong Li
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Hepatobiliary Surgery, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zengli Liu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of General Surgery, Qilu Hospital (Qingdao), Shandong University, Qingdao, Shandong, China
| | - Kangshuai Li
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Anda Shi
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yongchang Tang
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Liming Zhao
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lingling Huang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology(Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhiyue Zhang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology(Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Dong Zhang
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Shaohui Huang
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Shuo Lian
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Guoli Sheng
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhangdi Yan
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zongli Zhang
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yunfei Xu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
25
|
Yao P, Liang S, Liu Z, Xu C. A review of natural products targeting tumor immune microenvironments for the treatment of lung cancer. Front Immunol 2024; 15:1343316. [PMID: 38361933 PMCID: PMC10867126 DOI: 10.3389/fimmu.2024.1343316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024] Open
Abstract
Lung cancer (LC) produces some of the most malignant tumors in the world, with high morbidity and mortality. Tumor immune microenvironment (TIME), a component of the tumor microenvironment (TME), are critical in tumor development, immune escape, and drug resistance. The TIME is composed of various immune cells, immune cytokines, etc, which are important biological characteristics and determinants of tumor progression and outcomes. In this paper, we reviewed the recently published literature and discussed the potential uses of natural products in regulating TIME. We observed that a total of 37 natural compounds have been reported to exert anti-cancer effects by targeting the TIME. In different classes of natural products, terpenoids are the most frequently mentioned compounds. TAMs are one of the most investigated immune cells about therapies with natural products in TIME, with 9 natural products acting through it. 17 natural products exhibit anti-cancer properties in LC by modulating PD-1 and PD-L1 protein activity. These natural products have been extensively evaluated in animal and cellular LC models, but their clinical trials in LC patients are lacking. Based on the current review, we have revealed that the mechanisms of LC can be treated with natural products through TIME intervention, resulting in a new perspective and potential therapeutic drugs.
Collapse
Affiliation(s)
- Pengyu Yao
- Department of Traditional Chinese Medicine, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Su Liang
- Department of Traditional Chinese Medicine, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhenying Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cuiping Xu
- Department of Nursing, The First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qianfoshan Hospital), Jinan, China
| |
Collapse
|
26
|
Li Y, Gan X, Li F, Hu L. The Putative Effects of Neoadjuvant Chemotherapy on the Immune System of Advanced Epithelial Ovarian Carcinoma. Immunol Invest 2024; 53:91-114. [PMID: 37987679 DOI: 10.1080/08820139.2023.2284885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The epithelial ovarian carcinoma (EOC) is one of leading causes of cancer-related mortality in females. For some patients, complete resection cannot be achieved, thus neoadjuvant chemotherapy (NACT) following interval debulking surgery (IDS) could be an alternative choice. In general-held belief, cytotoxic chemotherapy is assumed to be immunosuppressive, because of its toxicity to dividing cells in the bone marrow and peripheral lymphoid tissues. However, increasing evidence highlighted that the anticancer activity of chemotherapy may also be related to its ability to act as an immune modulator. NACT not only changed the morphology of cancer cells, but also changed the transcriptomic and genomic profile of EOC, induced proliferation of cancer stem-like cells, gene mutation, and tumor-related adaptive immune response. This review will provide a comprehensive overview of recent studies evaluating the impact of NACT on cancer cells and immune system of advanced EOC and their relationship to clinical outcome. This information could help us understand the change of immune system during NACT, which might provide new strategies in future investigation of immuno-therapy for maintenance treatment of EOC.
Collapse
Affiliation(s)
- Yunyun Li
- Department of Gynecology and Obstetrics, The Yongchuan Hospital of Chongqing Medical University, Yongchuan District, Chongqing, PR China
- Department of Gynecology, Second Affiliated Hospital of Chongqing Medical University, Nanan District, Chongqing, PR China
| | - Xiaoling Gan
- Department of Gynecology, Second Affiliated Hospital of Chongqing Medical University, Nanan District, Chongqing, PR China
| | - Fei Li
- Department of Gynecology and Obstetrics, The Yongchuan Hospital of Chongqing Medical University, Yongchuan District, Chongqing, PR China
| | - Lina Hu
- Department of Gynecology, Second Affiliated Hospital of Chongqing Medical University, Nanan District, Chongqing, PR China
| |
Collapse
|
27
|
Deng Y, Zeng K, Wu D, Ling Y, Tian Y, Zheng Y, Fang S, Jiang X, Zhu G, Tu Y. FBLIM1 mRNA is a novel prognostic biomarker and is associated with immune infiltrates in glioma. Open Med (Wars) 2023; 18:20230863. [PMID: 38152333 PMCID: PMC10751895 DOI: 10.1515/med-2023-0863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/28/2023] [Accepted: 11/15/2023] [Indexed: 12/29/2023] Open
Abstract
Glioma is the most common primary brain tumor. Filamin-binding LIM protein 1 (FBLIM1) has been identified in multiple cancers and is suspected of playing a part in the development of tumors. However, the potential function of FBLIM1 mRNA in glioma has not been investigated. In this study, the clinical information and transcriptome data of glioma patients were, respectively, retrieved from the TCGA and CGGA databases. The expression level of FBLIM1 mRNA was shown to be aberrant in a wide variety of malignancies. Significantly, when glioma samples were compared to normal brain samples, FBLIM1 expression was shown to be significantly elevated in the former. A poor prognosis was related to high FBLIM1 expression, which was linked to more advanced clinical stages. Notably, multivariate analyses demonstrated that FBLIM1 expression was an independent predictor for the overall survival of glioma patients. Immune infiltration analysis disclosed that FBLIM1 expression had relevance with many immune cells. The results of RT-PCR suggested that FBLIM1 expression was markedly elevated in glioma specimens. Functional experiments unveiled that the knockdown of FBLIM1 mRNA suppressed glioma cell proliferation. In general, we initially discovered that FBLIM1 mRNA might be a possible prognostic marker in glioma.
Collapse
Affiliation(s)
- Yifan Deng
- Department of Neurosurgery, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Kailiang Zeng
- Department of Neurosurgery, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Diancheng Wu
- Department of Neurosurgery, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Yunzhi Ling
- Research Center, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Yu Tian
- Department of Neurosurgery, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Yi Zheng
- Research Center, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Shumin Fang
- Research Center, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Xiaocong Jiang
- Department of Radiotherapy, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Gang Zhu
- Department of Neurosurgery, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Yanyang Tu
- Research Center, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| |
Collapse
|
28
|
Guo X, Sun M, Yang P, Meng X, Liu R. Role of mast cells activation in the tumor immune microenvironment and immunotherapy of cancers. Eur J Pharmacol 2023; 960:176103. [PMID: 37852570 DOI: 10.1016/j.ejphar.2023.176103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/25/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023]
Abstract
The mast cell is an important cellular component that plays a crucial role in the crosstalk between innate and adaptive immune responses within the tumor microenvironment (TME). Recently, numerous studies have indicated that mast cells related to tumors play a dual role in regulating cancers, with conflicting results seemingly determined by the degranulation medium. As such, mast cells are an ignored but very promising potential target for cancer immunotherapy based on their immunomodulatory function. In this review, we present a comprehensive overview of the roles and mechanisms of mast cells in diverse cancer types. Firstly, we evaluated the infiltration density and location of mast cells on tumor progression. Secondly, mast cells are activated by the TME and subsequently release a range of inflammatory mediators, cytokines, chemokines, and lipid products that modulate their pro-or anti-tumor functions. Thirdly, activated mast cells engage in intercellular communication with other immune or stromal cells to modulate the immune status or promote tumor development. Finally, we deliberated on the clinical significance of targeting mast cells as a therapeutic approach to restrict tumor initiation and progression. Overall, our review aims to provide insights for future research on the role of mast cells in tumors and their potential as therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
- Xinxin Guo
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China; Xiangnan University, Chenzhou, China
| | - Mingjun Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Peiyan Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Xingchen Meng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.
| |
Collapse
|
29
|
Yi M, Li T, Niu M, Mei Q, Zhao B, Chu Q, Dai Z, Wu K. Exploiting innate immunity for cancer immunotherapy. Mol Cancer 2023; 22:187. [PMID: 38008741 PMCID: PMC10680233 DOI: 10.1186/s12943-023-01885-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/23/2023] [Indexed: 11/28/2023] Open
Abstract
Immunotherapies have revolutionized the treatment paradigms of various types of cancers. However, most of these immunomodulatory strategies focus on harnessing adaptive immunity, mainly by inhibiting immunosuppressive signaling with immune checkpoint blockade, or enhancing immunostimulatory signaling with bispecific T cell engager and chimeric antigen receptor (CAR)-T cell. Although these agents have already achieved great success, only a tiny percentage of patients could benefit from immunotherapies. Actually, immunotherapy efficacy is determined by multiple components in the tumor microenvironment beyond adaptive immunity. Cells from the innate arm of the immune system, such as macrophages, dendritic cells, myeloid-derived suppressor cells, neutrophils, natural killer cells, and unconventional T cells, also participate in cancer immune evasion and surveillance. Considering that the innate arm is the cornerstone of the antitumor immune response, utilizing innate immunity provides potential therapeutic options for cancer control. Up to now, strategies exploiting innate immunity, such as agonists of stimulator of interferon genes, CAR-macrophage or -natural killer cell therapies, metabolic regulators, and novel immune checkpoint blockade, have exhibited potent antitumor activities in preclinical and clinical studies. Here, we summarize the latest insights into the potential roles of innate cells in antitumor immunity and discuss the advances in innate arm-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Ming Yi
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Tianye Li
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, People's Republic of China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Qi Mei
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China
| | - Bin Zhao
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| | - Zhijun Dai
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China.
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
30
|
Klabukov I, Atiakshin D, Kogan E, Ignatyuk M, Krasheninnikov M, Zharkov N, Yakimova A, Grinevich V, Pryanikov P, Parshin V, Sosin D, Kostin AA, Shegay P, Kaprin AD, Baranovskii D. Post-Implantation Inflammatory Responses to Xenogeneic Tissue-Engineered Cartilage Implanted in Rabbit Trachea: The Role of Cultured Chondrocytes in the Modification of Inflammation. Int J Mol Sci 2023; 24:16783. [PMID: 38069106 PMCID: PMC10706106 DOI: 10.3390/ijms242316783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
Immune responses to tissue-engineered grafts made of xenogeneic materials remain poorly studied. The scope of current investigations is limited by the lack of information on orthotopically implanted grafts. A deeper understanding of these processes is of great importance since innovative surgical approaches include the implantation of xenogeneic decellularized scaffolds seeded by cells. The purpose of our work is to study the immunological features of tracheal repair during the implantation of tissue-engineered constructs based on human xenogeneic scaffolds modified via laser radiation in rabbits. The samples were stained with hematoxylin and Safranin O, and they were immunostained with antibodies against tryptase, collagen II, vimentin, and CD34. Immunological and inflammatory responses were studied by counting immune cells and evaluating blood vessels and collagen. Leukocyte-based inflammation prevailed during the implantation of decellularized unseeded scaffolds; meanwhile, plasma cells were significantly more abundant in tissue-engineered constructs. Mast cells were insignificantly more abundant in tissue-engineered construct samples. Conclusions: The seeding of decellularized xenogeneic cartilage with chondrocytes resulted in a change in immunological reactions upon implantation, and it was associated with plasma cell infiltration. Tissue-engineered grafts widely differed in design, including the type of used cells. The question of immunological response depending on the tissue-engineered graft composition requires further investigation.
Collapse
Affiliation(s)
- Ilya Klabukov
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva St. 4, 249036 Obninsk, Russia; (A.Y.)
- Department of Urology and Operative Nephrology, Patrice Lumumba Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
- Obninsk Institute for Nuclear Power Engineering, National Research Nuclear University MEPhI, 249031 Obninsk, Russia
| | - Dmitri Atiakshin
- Scientific and Educational Resource Center for Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis, Patrice Lumumba Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Evgenia Kogan
- Strukov Department of Pathological Anatomy, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Michael Ignatyuk
- Scientific and Educational Resource Center for Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis, Patrice Lumumba Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Mikhail Krasheninnikov
- Department of Urology and Operative Nephrology, Patrice Lumumba Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Nickolay Zharkov
- Strukov Department of Pathological Anatomy, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Anna Yakimova
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva St. 4, 249036 Obninsk, Russia; (A.Y.)
| | - Vyacheslav Grinevich
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva St. 4, 249036 Obninsk, Russia; (A.Y.)
| | - Pavel Pryanikov
- Russian Child Clinical Hospital, Pirogov Russian National Research Medical University, 119571 Moscow, Russia
| | - Vladimir Parshin
- National Medical Research Center of Phthisiopulmonology and Infectious Diseases of the Ministry of Health of the Russian Federation, 127473 Moscow, Russia
| | - Dmitry Sosin
- Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, 119121 Moscow, Russia
| | - Andrey A. Kostin
- Department of Urology and Operative Nephrology, Patrice Lumumba Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Peter Shegay
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva St. 4, 249036 Obninsk, Russia; (A.Y.)
| | - Andrey D. Kaprin
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva St. 4, 249036 Obninsk, Russia; (A.Y.)
- Department of Urology and Operative Nephrology, Patrice Lumumba Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Denis Baranovskii
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva St. 4, 249036 Obninsk, Russia; (A.Y.)
- Department of Urology and Operative Nephrology, Patrice Lumumba Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
- Department of Biomedicine, University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| |
Collapse
|
31
|
Chen Q, Zhao H, Hu J. A robust six-gene prognostic signature based on two prognostic subtypes constructed by chromatin regulators is correlated with immunological features and therapeutic response in lung adenocarcinoma. Aging (Albany NY) 2023; 15:12330-12368. [PMID: 37938151 PMCID: PMC10683604 DOI: 10.18632/aging.205183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 10/02/2023] [Indexed: 11/09/2023]
Abstract
Accumulating evidence has demonstrated that chromatin regulators (CRs) regulate immune cell infiltration and are correlated with prognoses of patients in some cancers. However, the immunological and prognostic roles of CRs in lung adenocarcinoma (LUAD) are still unclear. Here, we systematically revealed the correlations of CRs with immunological features and the survival in LUAD patients based on a cohort of gene expression datasets from the public TCGA and GEO databases and real RNA-seq data by an integrative analysis using a comprehensive bioinformatics method. Totals of 160 differentially expressed CRs (DECRs) were identified between LUAD and normal lung tissues, and two molecular prognostic subtypes (MPSs) were constructed and evaluated based on 27 prognostic DECRs using five independent datasets (p =0.016, <0.0001, =0.008, =0.00038 and =0.00055, respectively). Six differentially expressed genes (DEGs) (CENPK, ANGPTL4, CCL20, CPS1, GJB3, TPSB2) between two MPSs had the most important prognostic feature and a six-gene prognostic model was established. LUAD patients in the low-risk subgroup showed a higher overall survival (OS) rate than those in the high-risk subgroup in nine independent datasets (p <0.0001, =0.021, =0.016, =0.0099, <0.0001, =0.0045, <0.0001, =0.0038 and =0.00013, respectively). Six-gene prognostic signature had the highest concordance index of 0.673 compared with 19 reported prognostic signatures. The risk score was significantly correlated with immunological features and activities of oncogenic signaling pathways. LUAD patients in the low-risk subgroup benefited more from immunotherapy and were less sensitive to conventional chemotherapy agents. This study provides novel insights into the prognostic and immunological roles of CRs in LUAD.
Collapse
Affiliation(s)
- Qiang Chen
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Hongbo Zhao
- Department of Laboratory Animal Science, Kunming Medical University, Kunming, China
| | - Jing Hu
- Department of Medical Oncology, First People’s Hospital of Yunnan Province, Kunming, China
- Department of Medical Oncology, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
32
|
Hazrati A, Malekpour K, Mirsanei Z, Khosrojerdi A, Rahmani-Kukia N, Heidari N, Abbasi A, Soudi S. Cancer-associated mesenchymal stem/stromal cells: role in progression and potential targets for therapeutic approaches. Front Immunol 2023; 14:1280601. [PMID: 38022534 PMCID: PMC10655012 DOI: 10.3389/fimmu.2023.1280601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Malignancies contain a relatively small number of Mesenchymal stem/stromal cells (MSCs), constituting a crucial tumor microenvironment (TME) component. These cells comprise approximately 0.01-5% of the total TME cell population. MSC differentiation potential and their interaction with the tumor environment enable these cells to affect tumor cells' growth, immune evasion, metastasis, drug resistance, and angiogenesis. This type of MSC, known as cancer-associated mesenchymal stem/stromal cells (CA-MSCs (interacts with tumor/non-tumor cells in the TME and affects their function by producing cytokines, chemokines, and various growth factors to facilitate tumor cell migration, survival, proliferation, and tumor progression. Considering that the effect of different cells on each other in the TME is a multi-faceted relationship, it is essential to discover the role of these relationships for targeting in tumor therapy. Due to the immunomodulatory role and the tissue repair characteristic of MSCs, these cells can help tumor growth from different aspects. CA-MSCs indirectly suppress antitumor immune response through several mechanisms, including decreasing dendritic cells (DCs) antigen presentation potential, disrupting natural killer (NK) cell differentiation, inducing immunoinhibitory subsets like tumor-associated macrophages (TAMs) and Treg cells, and immune checkpoint expression to reduce effector T cell antitumor responses. Therefore, if these cells can be targeted for treatment so that their population decreases, we can hope for the treatment and improvement of the tumor conditions. Also, various studies show that CA-MSCs in the TME can affect other vital aspects of a tumor, including cell proliferation, drug resistance, angiogenesis, and tumor cell invasion and metastasis. In this review article, we will discuss in detail some of the mechanisms by which CA-MSCs suppress the innate and adaptive immune systems and other mechanisms related to tumor progression.
Collapse
Affiliation(s)
- Ali Hazrati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kosar Malekpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Mirsanei
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arezou Khosrojerdi
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Nasim Rahmani-Kukia
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neda Heidari
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ardeshir Abbasi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
33
|
Chen Y, Xue W, Zhang Y, Gao Y, Wang Y. A novel disulfidptosis-related immune checkpoint genes signature: forecasting the prognosis of hepatocellular carcinoma. J Cancer Res Clin Oncol 2023; 149:12843-12854. [PMID: 37462769 PMCID: PMC10587022 DOI: 10.1007/s00432-023-05076-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/29/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND HCC is an extremely malignant tumor with a very poor prognosis. In 2023, a brand-new kind of cell death known as disulfidptosis was identified. Although, the prognosis as well as expression of immune checkpoints that are closely connected with it in HCC remain unknown. METHODS In this work, we identified 49 genes with abnormal expression in liver cancer and normal liver tissue, with 23 of them being differentially expressed genes. To create a signature, we classified all HCC cases into three subtypes and used the TCGA database to evaluate each relevant gene's prognostic value for survival. RESULTS Five gene signatures were identified using the LASSO Cox regression approach, while those diagnosed with HCC were split into either low- or high-risk groups. Patients having low-risk HCC showed a much greater likelihood of surviving than those with high risk (p < 0.05). Through immune cell infiltration analysis, it was found that immune-related genes were abundant in high-risk groups and had reduced immune status. CONCLUSION In conclusion, immune checkpoint genes highly associated with disulfidptosis contribute to tumor immunity and can be used to evaluate HCC prognosis. When it comes to predicting overall survival (OS) time in HCC, risk score has been set to be a separate predictor. Through immune cell infiltration analysis, it was found that immune-related genes were abundant in high-risk groups and had reduced immune status. It is possible to measure the prognosis of HCC based on immune checkpoints genes strongly linked to disulfidptosis.
Collapse
Affiliation(s)
- Yuxin Chen
- School of Life Science, Bengbu Medical College, Bengbu, Anhui, China
| | - Wanying Xue
- School of Life Science, Bengbu Medical College, Bengbu, Anhui, China
| | - Yuting Zhang
- School of Life Science, Bengbu Medical College, Bengbu, Anhui, China
| | - Yu Gao
- School of Life Science, Bengbu Medical College, Bengbu, Anhui, China
| | - Yuanyuan Wang
- School of Life Science, Bengbu Medical College, Bengbu, Anhui, China.
| |
Collapse
|
34
|
Zhang H, Yue X, Chen Z, Liu C, Wu W, Zhang N, Liu Z, Yang L, Jiang Q, Cheng Q, Luo P, Liu G. Define cancer-associated fibroblasts (CAFs) in the tumor microenvironment: new opportunities in cancer immunotherapy and advances in clinical trials. Mol Cancer 2023; 22:159. [PMID: 37784082 PMCID: PMC10544417 DOI: 10.1186/s12943-023-01860-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/13/2023] [Indexed: 10/04/2023] Open
Abstract
Despite centuries since the discovery and study of cancer, cancer is still a lethal and intractable health issue worldwide. Cancer-associated fibroblasts (CAFs) have gained much attention as a pivotal component of the tumor microenvironment. The versatility and sophisticated mechanisms of CAFs in facilitating cancer progression have been elucidated extensively, including promoting cancer angiogenesis and metastasis, inducing drug resistance, reshaping the extracellular matrix, and developing an immunosuppressive microenvironment. Owing to their robust tumor-promoting function, CAFs are considered a promising target for oncotherapy. However, CAFs are a highly heterogeneous group of cells. Some subpopulations exert an inhibitory role in tumor growth, which implies that CAF-targeting approaches must be more precise and individualized. This review comprehensively summarize the origin, phenotypical, and functional heterogeneity of CAFs. More importantly, we underscore advances in strategies and clinical trials to target CAF in various cancers, and we also summarize progressions of CAF in cancer immunotherapy.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xinghai Yue
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Department of Urology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zhe Chen
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Chao Liu
- Department of Neurosurgery, Central Hospital of Zhuzhou, Zhuzhou, China
| | - Wantao Wu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Nan Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liping Yang
- Department of Laboratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Qing Jiang
- Department of Urology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Peng Luo
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Guodong Liu
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
35
|
Cui P, Li J, Tao H, Li X, Wu L, Ma J, Wang H, Liu T, Zhang M, Hu Y. Deciphering pathogenic cellular module at single-cell resolution in checkpoint inhibitor-related pneumonitis. Oncogene 2023; 42:3098-3112. [PMID: 37653115 PMCID: PMC10575783 DOI: 10.1038/s41388-023-02805-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 07/26/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023]
Abstract
Checkpoint inhibitor pneumonitis (CIP) is the most common fatal immune-related adverse event; however, its pathophysiology remains largely unknown. Comprehensively dissecting the key cellular players and molecular pathways associated with CIP pathobiology is critical for precision diagnosis and develop novel therapy strategy of CIP. Herein, we performed a comprehensive single-cell transcriptome analysis to dissect the complexity of the immunological response in the bronchoalveolar lavage fluid (BALF) microenvironment. CIP was characterized by a dramatic accumulation of CXCL13+ T cells and hyperinflammatory CXCL9+ monocytes. T-cell receptor (TCR) analysis revealed that CXCL13+ T cells exhibited hyperexpanded- TCR clonotypes, and pseudotime analysis revealed a potential differentiation trajectory from naïve to cytotoxic effector status. Monocyte trajectories showed that LAMP3+ DCs derived from CXCL9+ monocytes possessed the potential to migrate from tumors to the BALF, whereas the differentiation trajectory to anti-inflammatory macrophages was blocked. Intercellular crosstalk analysis revealed the signaling pathways such as CXCL9/10/11-CXCR3, FASLG-FAS, and IFNGR1/2-IFNG were activated in CIP+ samples. We also proposed a novel immune signature with high diagnostic power to distinguish CIP+ from CIP- samples (AUC = 0.755). Our data highlighted key cellular players, signatures, and interactions involved in CIP pathogenesis.
Collapse
Affiliation(s)
- Pengfei Cui
- Department of Oncology, the Second Medical Center of Chinese PLA General Hospital, 100853, Beijing, China
- Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, 100853, Beijing, China
| | - Jinfeng Li
- Institute of oncology, Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, 100853, Beijing, China
| | - Haitao Tao
- Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, 100853, Beijing, China
| | - Xiaoyan Li
- Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, 100853, Beijing, China
| | - Liangliang Wu
- Institute of oncology, Senior Department of Oncology, the First Medical Center of PLA General Hospital, 100853, Beijing, China
| | - Junxun Ma
- Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, 100853, Beijing, China
| | - Huanhuan Wang
- Institute of oncology, Senior Department of Oncology, the First Medical Center of PLA General Hospital, 100853, Beijing, China
| | - Tingting Liu
- Department of Pulmonary and Critical Care Medicine, the Second Medical Center of Chinese PLA General Hospital, 100853, Beijing, China
| | - Min Zhang
- State Key Laboratory of Kidney Diseases, Department of Nephrology, the First Medical Center of Chinese PLA General Hospital, 100853, Beijing, China.
| | - Yi Hu
- Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, 100853, Beijing, China.
| |
Collapse
|
36
|
Sousa TC, de Souza LP, Ricardo MLS, Yoshigae AY, Hinokuma KD, Gorzoni ABR, de Aquino AM, Scarano WR, de Sousa Castillho AC, Tavares MEA, Veras ASC, Teixeira GR, Nai GA, de Oliveira Mendes L. Long exposure to a mixture of endocrine disruptors prediposes the ventral prostate of rats to preneoplastic lesions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:104015-104028. [PMID: 37697193 DOI: 10.1007/s11356-023-29768-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023]
Abstract
Endocrine disruptors (ED) are compounds dispersed in the environment that modify hormone biosynthesis, affecting hormone-dependent organs such as the prostate. Studies have only focused on evaluating the effects of ED alone or in small groups and short intervals and have not adequately portrayed human exposure. Therefore, we characterized the prostate histoarchitecture of rats exposed to an ED mixture (ED Mix) mimicking human exposure. Pregnant females of the Sprague-Dawley strain were randomly distributed into two experimental groups: Control group (vehicle: corn oil, by gavage) and ED Mix group: received 32.11 mg/kg/day of the ED mixture diluted in corn oil (2 ml/kg), by gavage, from gestational day 7 (DG7) to post-natal day 21 (DPN21). After weaning at DPN22, the male pups continued to receive the complete DE mixture until they were 220 days old when they were euthanized. The ED Mix decreased the epithelial compartment, increased the fractal dimension, and decreased glandular dilation. In addition, low-grade prostatic intraepithelial neoplasia was observed in addition to regions of epithelial atrophy in the group exposed to the ED Mix. Exposure to the mixture decreased both types I and III collagen area in the stroma. We concluded that the ED Mix was able to cause alterations in the prostatic histoarchitecture and induce the appearance of preneoplastic lesions.
Collapse
Affiliation(s)
- Thaina Cavalleri Sousa
- Graduate Program in Animal Science, Western São Paulo University (UNOESTE), Rodovia Raposo Tavares, Km 572 - Bairro Do Limoeiro, Presidente Prudente, SP, Brazil
| | - Letícia Pereira de Souza
- Faculty of Healthy Sciences, Western São Paulo University (UNOESTE), R. José Bongiovani, 700 - Cidade Universitária, Presidente Prudente, SP, Brazil
| | - Maria Luiza Silva Ricardo
- Graduate Program in Animal Science, Western São Paulo University (UNOESTE), Rodovia Raposo Tavares, Km 572 - Bairro Do Limoeiro, Presidente Prudente, SP, Brazil
| | - Andreia Yuri Yoshigae
- Graduate Program in Animal Science, Western São Paulo University (UNOESTE), Rodovia Raposo Tavares, Km 572 - Bairro Do Limoeiro, Presidente Prudente, SP, Brazil
| | - Karianne Delalibera Hinokuma
- Graduate Program in Animal Science, Western São Paulo University (UNOESTE), Rodovia Raposo Tavares, Km 572 - Bairro Do Limoeiro, Presidente Prudente, SP, Brazil
| | - Ana Beatriz Ratto Gorzoni
- Graduate Program in Animal Science, Western São Paulo University (UNOESTE), Rodovia Raposo Tavares, Km 572 - Bairro Do Limoeiro, Presidente Prudente, SP, Brazil
| | | | | | - Anthony César de Sousa Castillho
- Graduate Program in Animal Science, Western São Paulo University (UNOESTE), Rodovia Raposo Tavares, Km 572 - Bairro Do Limoeiro, Presidente Prudente, SP, Brazil
| | - Maria Eduarda Almeida Tavares
- Experimental Laboratory of Exercise Biology (LEBioEx), São Paulo State University (UNESP), Presidente Prudente, SP, Brazil
| | - Alice Santos Cruz Veras
- Experimental Laboratory of Exercise Biology (LEBioEx), São Paulo State University (UNESP), Presidente Prudente, SP, Brazil
| | - Giovana Rampazzo Teixeira
- Experimental Laboratory of Exercise Biology (LEBioEx), São Paulo State University (UNESP), Presidente Prudente, SP, Brazil
| | - Gisele Alborghetti Nai
- Graduate Program in Animal Science, Western São Paulo University (UNOESTE), Rodovia Raposo Tavares, Km 572 - Bairro Do Limoeiro, Presidente Prudente, SP, Brazil
- Graduate Program in Health Science, Western São Paulo University (UNOESTE), Rodovia Raposo Tavares, km 572 - Bairro do Limoeiro, Presidente Prudente, SP, CEP 19067-175, Brazil
| | - Leonardo de Oliveira Mendes
- Graduate Program in Animal Science, Western São Paulo University (UNOESTE), Rodovia Raposo Tavares, Km 572 - Bairro Do Limoeiro, Presidente Prudente, SP, Brazil.
- Graduate Program in Health Science, Western São Paulo University (UNOESTE), Rodovia Raposo Tavares, km 572 - Bairro do Limoeiro, Presidente Prudente, SP, CEP 19067-175, Brazil.
| |
Collapse
|
37
|
Li X, Sun Z, Wang L, Wang Q, Wang M, Guo J, Li H, Chen M, Cao G, Yu Y, Zhong H, Zou H, Ma K, Zhang B, Wang G, Feng Y. ROR1-AS1 might promote in vivo and in vitro proliferation and invasion of cholangiocarcinoma cells. BMC Cancer 2023; 23:912. [PMID: 37770853 PMCID: PMC10536779 DOI: 10.1186/s12885-023-11412-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/16/2023] [Indexed: 09/30/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play important roles in many pathophysiological processes, including cancer progression. Namely, lncRNA Receptor-tyrosine-kinase-like orphan receptor-1 antisense 1 (ROR1-AS1) is crucial for cancer occurrence and progression in organs such as the liver or bladder. However, its expression and role in cholangiocarcinoma (CCA) have not been thoroughly explored.Firstly, we assessed cell viability, proliferation, invasion, and migration using three cell lines (HuCCT-1, QBC399, and RBE) to explore the biological characteristics of ROR1-AS1 in CCA. Secondly, to determine the in vivo effect of ROR1-AS1 on tumor growth, ROR1-AS1 knockdown (KD) HuCCT-1 cells were subcutaneously injected into nude mice to evaluate tumor growth. Finally, we conducted a bioinformatic analysis to confirm the role of ROR1-AS1 in the prognosis and immunity of CCA.In this study, we found that lncRNA ROR1-AS1 was increased in CCA samples and patients with higher ROR1-AS1 expression had a shorter overall survival period. siRNA-mediated KD of ROR1-AS1 significantly reduced cell proliferation and inhibited the migration of CCA cells. In addition, ROR1-AS1 KD HuCCT-1 cells injected into nude mice grew slower than normal CCA cells.In summary, our results show that ROR1-AS1 can promote CCA progression and might serve as a new target for diagnosis and treatment of CCA.
Collapse
Affiliation(s)
- Xueliang Li
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao City, Shandong Province, 266003, China
- Department of Hepatobiliary and Pancreatic Surgery, HuiKang Hospital of the Affiliated Hospital of Qingdao University of Qingdao, Qingdao City, Shandong Province, 266520, China
| | - Zhaowei Sun
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao City, Shandong Province, 266003, China
| | - Li Wang
- Department of operating theater, the Affiliated Hospital of Qingdao University, Qingdao City, Shandong Province, 266003, China
| | - Qinlei Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao City, Shandong Province, 266003, China
| | - Maobing Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao City, Shandong Province, 266003, China
| | - Jingyun Guo
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao City, Shandong Province, 266003, China
| | - Haoran Li
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao City, Shandong Province, 266003, China
| | - MenShou Chen
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao City, Shandong Province, 266003, China
| | - Guanghua Cao
- Department of Hepatobiliary and Pancreatic Surgery, HuiKang Hospital of the Affiliated Hospital of Qingdao University of Qingdao, Qingdao City, Shandong Province, 266520, China
| | - Yanan Yu
- Department of Internal Medicine-Cardiovascular, The Affiliated Hospital of Qingdao University, Qingdao City, Shandong Province, 266003, China
| | - Haochen Zhong
- Department of Hepatobiliary and Pancreatic Surgery, HuiKang Hospital of the Affiliated Hospital of Qingdao University of Qingdao, Qingdao City, Shandong Province, 266520, China
| | - Hao Zou
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao City, Shandong Province, 266003, China
| | - Kai Ma
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao City, Shandong Province, 266003, China
| | - Bingyuan Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao City, Shandong Province, 266003, China
| | - Guolei Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao City, Shandong Province, 266003, China
| | - Yujie Feng
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao City, Shandong Province, 266003, China
| |
Collapse
|
38
|
Jia Z, Kong Y, Wang C, Fu Z, Tian Z, Sun Y, Lin Y, Huang Y. OCLN as a novel biomarker for prognosis and immune infiltrates in kidney renal clear cell carcinoma: an integrative computational and experimental characterization. Front Immunol 2023; 14:1224904. [PMID: 37809090 PMCID: PMC10556524 DOI: 10.3389/fimmu.2023.1224904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023] Open
Abstract
Background Occludin (OCLN) is an important tight junction protein and has been reported to be abnormally expressed in the development of malignant tumors. However, its biomarker and carcinogenic roles in kidney renal clear cell carcinoma (KIRC) are less investigated. Methods The Cancer Genome Atlas database and Human Protein Atlas database were used to analyze the expression of OCLN in KIRC. UALCAN database and methylation-specific PCR assay were used to evaluate the methylation level of OCLN in KIRC. Univariate and multivariate Cox regression analyses were performed to model the prognostic significance of OCLN in KIRC patient cohorts. The correlation between OCLN expression and the immune cell infiltration, immune-related function and immune checkpoints were explored. Finally, EdU, scratch assay and transwell experiments were conducted to validate the role of OCLN in KIRC development. Results The expression of OCLN was significantly downregulated in KIRC, compared with normal renal tissues (p<0.001). Patients with low OCLN expression showed a worse prognosis and poorer clinicopathological characteristics. Functional enrichment analysis revealed that OCLN was mainly involved in biological processes such as immune response, immunoglobulin complex circulating and cytokine and chemokine receptor to mediate KIRC development. Immune-related analysis indicated that OCLN could potentially serve as a candidate target for KIRC immunotherapy. OCLN overexpression inhibited proliferation, migration and invasion of KIRC cells in vitro. Conclusion OCLN was validated as a candidate prognostic biomarker and therapeutic target of KIRC based both on computational and experimental approaches. More in vivo experiments will be conducted to decode its molecular mechanism in KIRC carcinogenesis in the future work.
Collapse
Affiliation(s)
- Zongming Jia
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ying Kong
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chengyu Wang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhenyu Fu
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhen Tian
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yizhang Sun
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuxin Lin
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Yuhua Huang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
39
|
Fang J, Lu Y, Zheng J, Jiang X, Shen H, Shang X, Lu Y, Fu P. Exploring the crosstalk between endothelial cells, immune cells, and immune checkpoints in the tumor microenvironment: new insights and therapeutic implications. Cell Death Dis 2023; 14:586. [PMID: 37666809 PMCID: PMC10477350 DOI: 10.1038/s41419-023-06119-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/06/2023]
Abstract
The tumor microenvironment (TME) is a highly intricate milieu, comprising a multitude of components, including immune cells and stromal cells, that exert a profound influence on tumor initiation and progression. Within the TME, angiogenesis is predominantly orchestrated by endothelial cells (ECs), which foster the proliferation and metastasis of malignant cells. The interplay between tumor and immune cells with ECs is complex and can either bolster or hinder the immune system. Thus, a comprehensive understanding of the intricate crosstalk between ECs and immune cells is essential to advance the development of immunotherapeutic interventions. Despite recent progress, the underlying molecular mechanisms that govern the interplay between ECs and immune cells remain elusive. Nevertheless, the immunomodulatory function of ECs has emerged as a pivotal determinant of the immune response. In light of this, the study of the relationship between ECs and immune checkpoints has garnered considerable attention in the field of immunotherapy. By targeting specific molecular pathways and signaling molecules associated with ECs in the TME, novel immunotherapeutic strategies may be devised to enhance the efficacy of current treatments. In this vein, we sought to elucidate the relationship between ECs, immune cells, and immune checkpoints in the TME, with the ultimate goal of identifying novel therapeutic targets and charting new avenues for immunotherapy.
Collapse
Affiliation(s)
- Jianwen Fang
- Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
| | - Yue Lu
- Department of Breast and Thyroid Surgery, First Affiliated Hospital of Huzhou University, 313000, Huzhou, China
| | - Jingyan Zheng
- Department of Breast and Thyroid Surgery, Lishui People's Hospital, The Six Affiliated Hospital of Wenzhou Medical University, 323000, Lishui, China
| | - Xiaocong Jiang
- Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
| | - Haixing Shen
- Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
- Department of Breast and Thyroid Surgery, Cixi People's Hospital, 315300, Cixi, China
| | - Xi Shang
- Department of Breast and Thyroid Surgery, Taizhou Hospital, Zhejiang University, 318000, Taizhou, China
| | - Yuexin Lu
- Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
| | - Peifen Fu
- Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China.
| |
Collapse
|
40
|
Liu X, Li X, Wei H, Liu Y, Li N. Mast cells in colorectal cancer tumour progression, angiogenesis, and lymphangiogenesis. Front Immunol 2023; 14:1209056. [PMID: 37497234 PMCID: PMC10366593 DOI: 10.3389/fimmu.2023.1209056] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/27/2023] [Indexed: 07/28/2023] Open
Abstract
The characteristics of the tumour cells, as well as how tumour cells interact with their surroundings, affect the prognosis of cancer patients. The resident cells in the tumour microenvironment are mast cells (MCs), which are known for their functions in allergic responses, but their functions in the cancer milieu have been hotly contested. Several studies have revealed a link between MCs and the development of tumours. Mast cell proliferation in colorectal cancer (CRC) is correlated with angiogenesis, the number of lymph nodes to which the malignancy has spread, and patient prognosis. By releasing angiogenic factors (VEGF-A, CXCL 8, MMP-9, etc.) and lymphangiogenic factors (VEGF-C, VEGF-D, etc.) stored in granules, mast cells play a significant role in the development of CRC. On the other hand, MCs can actively encourage tumour development via pathways including the c-kit/SCF-dependent signaling cascade and histamine production. The impact of MC-derived mediators on tumour growth, the prognostic importance of MCs in patients with various stages of colorectal cancer, and crosstalk between MCs and CRC cells in the tumour microenvironment are discussed in this article. We acknowledge the need for a deeper comprehension of the function of MCs in CRC and the possibility that targeting MCs might be a useful therapeutic approach in the future.
Collapse
Affiliation(s)
- Xiaoxin Liu
- Department of Nephrology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xinyu Li
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Haotian Wei
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yanyan Liu
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ningxu Li
- Department of Nephrology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
41
|
Kumar V, Bauer C, Stewart JH. TIME Is Ticking for Cervical Cancer. BIOLOGY 2023; 12:941. [PMID: 37508372 PMCID: PMC10376148 DOI: 10.3390/biology12070941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023]
Abstract
Cervical cancer (CC) is a major health problem among reproductive-age females and comprises a leading cause of cancer-related deaths. Human papillomavirus (HPV) is the major risk factor associated with CC incidence. However, lifestyle is also a critical factor in CC pathogenesis. Despite HPV vaccination introduction, the incidence of CC is increasing worldwide. Therefore, it becomes critical to understand the CC tumor immune microenvironment (TIME) to develop immune cell-based vaccination and immunotherapeutic approaches. The current article discusses the immune environment in the normal cervix of adult females and its role in HPV infection. The subsequent sections discuss the alteration of different immune cells comprising CC TIME and their targeting as future therapeutic approaches.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA 70012, USA
| | - Caitlin Bauer
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA 70012, USA
| | - John H Stewart
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA 70012, USA
- Louisiana Children's Medical Center Cancer Center, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA 70012, USA
| |
Collapse
|
42
|
Costanzo G, Costanzo GAML, Del Moro L, Nappi E, Pelaia C, Puggioni F, Canonica GW, Heffler E, Paoletti G. Mast Cells in Upper and Lower Airway Diseases: Sentinels in the Front Line. Int J Mol Sci 2023; 24:ijms24119771. [PMID: 37298721 DOI: 10.3390/ijms24119771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023] Open
Abstract
Mast cells (MCs) are fascinating cells of the innate immune system involved not only in allergic reaction but also in tissue homeostasis, response to infection, wound healing, protection against kidney injury, the effects of pollution and, in some circumstances, cancer. Indeed, exploring their role in respiratory allergic diseases would give us, perhaps, novel therapy targets. Based on this, there is currently a great demand for therapeutic regimens to enfeeble the damaging impact of MCs in these pathological conditions. Several strategies can accomplish this at different levels in response to MC activation, including targeting individual mediators released by MCs, blockade of receptors for MC-released compounds, inhibition of MC activation, limiting mast cell growth, or inducing mast cell apoptosis. The current work focuses on and summarizes the mast cells' role in pathogenesis and as a personalized treatment target in allergic rhinitis and asthma; even these supposed treatments are still at the preclinical stage.
Collapse
Affiliation(s)
- Giovanni Costanzo
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | | | - Lorenzo Del Moro
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Department of Experimental and Clinical Medicine, University of Florence, 50121 Florence, Italy
| | - Emanuele Nappi
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Corrado Pelaia
- Department of Health Sciences, University 'Magna Græcia' of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Puggioni
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Giorgio Walter Canonica
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
| | - Enrico Heffler
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
| | - Giovanni Paoletti
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
| |
Collapse
|
43
|
Gu X, Ma X, Chen C, Guan J, Wang J, Wu S, Zhu H. Vital roles of m 5C RNA modification in cancer and immune cell biology. Front Immunol 2023; 14:1207371. [PMID: 37325635 PMCID: PMC10264696 DOI: 10.3389/fimmu.2023.1207371] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
RNA modification plays an important role in epigenetics at the posttranscriptional level, and 5-methylcytosine (m5C) has attracted increasing attention in recent years due to the improvement in RNA m5C site detection methods. By influencing transcription, transportation and translation, m5C modification of mRNA, tRNA, rRNA, lncRNA and other RNAs has been proven to affect gene expression and metabolism and is associated with a wide range of diseases, including malignant cancers. RNA m5C modifications also substantially impact the tumor microenvironment (TME) by targeting different groups of immune cells, including B cells, T cells, macrophages, granulocytes, NK cells, dendritic cells and mast cells. Alterations in immune cell expression, infiltration and activation are highly linked to tumor malignancy and patient prognosis. This review provides a novel and holistic examination of m5C-mediated cancer development by examining the exact mechanisms underlying the oncogenicity of m5C RNA modification and summarizing the biological effects of m5C RNA modification on tumor cells as well as immune cells. Understanding methylation-related tumorigenesis can provide useful insights for the diagnosis as well as the treatment of cancer.
Collapse
Affiliation(s)
- Xinyu Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Ma
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chao Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Guan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shanshan Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haihong Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
44
|
Zhao M, Huang H, He F, Fu X. Current insights into the hepatic microenvironment and advances in immunotherapy for hepatocellular carcinoma. Front Immunol 2023; 14:1188277. [PMID: 37275909 PMCID: PMC10233045 DOI: 10.3389/fimmu.2023.1188277] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/04/2023] [Indexed: 06/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and shows high global incidence and mortality rates. The liver is an immune-tolerated organ with a specific immune microenvironment that causes traditional therapeutic approaches to HCC, such as chemotherapy, radiotherapy, and molecular targeted therapy, to have limited efficacy. The dramatic advances in immuno-oncology in the past few decades have modified the paradigm of cancer therapy, ushering in the era of immunotherapy. Currently, despite the rapid integration of cancer immunotherapy into clinical practice, some patients still show no response to treatment. Therefore, a rational approach is to target the tumor microenvironment when developing the next generation of immunotherapy. This review aims to provide insights into the hepatic immune microenvironment in HCC and summarize the mechanisms of action and clinical usage of immunotherapeutic options for HCC, including immune checkpoint blockade, adoptive therapy, cytokine therapy, vaccine therapy, and oncolytic virus-based therapy.
Collapse
Affiliation(s)
| | | | - Feng He
- *Correspondence: Feng He, ; Xiangsheng Fu,
| | | |
Collapse
|
45
|
Zhang Y, Zhan L, Li J, Jiang X, Yin L. Insights into N6-methyladenosine (m6A) modification of noncoding RNA in tumor microenvironment. Aging (Albany NY) 2023; 15:3857-3889. [PMID: 37178254 PMCID: PMC10449301 DOI: 10.18632/aging.204679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 04/15/2023] [Indexed: 05/15/2023]
Abstract
N6-methyladenosine (m6A) is the most abundant RNA modification in eukaryotes, and it participates in the regulation of pathophysiological processes in various diseases, including malignant tumors, by regulating the expression and function of both coding and non-coding RNAs (ncRNAs). More and more studies demonstrated that m6A modification regulates the production, stability, and degradation of ncRNAs and that ncRNAs also regulate the expression of m6A-related proteins. Tumor microenvironment (TME) refers to the internal and external environment of tumor cells, which is composed of numerous tumor stromal cells, immune cells, immune factors, and inflammatory factors that are closely related to tumors occurrence and development. Recent studies have suggested that crosstalk between m6A modifications and ncRNAs plays an important role in the biological regulation of TME. In this review, we summarized and analyzed the effects of m6A modification-associated ncRNAs on TME from various perspectives, including tumor proliferation, angiogenesis, invasion and metastasis, and immune escape. Herein, we showed that m6A-related ncRNAs can not only be expected to become detection markers of tumor tissue samples, but can also be wrapped into exosomes and secreted into body fluids, thus exhibiting potential as markers for liquid biopsy. This review provides a deeper understanding of the relationship between m6A-related ncRNAs and TME, which is of great significance to the development of a new strategy for precise tumor therapy.
Collapse
Affiliation(s)
- YanJun Zhang
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu 223005, China
| | - Lijuan Zhan
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu 223005, China
| | - Jing Li
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu 223005, China
| | - Xue Jiang
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu 223005, China
| | - Li Yin
- Department of Biopharmaceutics, Yulin Normal University, Guangxi, Yulin 537000, China
- Bioengineering and Technology Center for Native Medicinal Resources Development, Yulin Normal University, Yulin 537000, China
| |
Collapse
|
46
|
Huang F, Wang Z, Zhu L, Lin C, Wang JX. Comprehensive Analysis of the Expression, Prognostic Value, and Immune Infiltration Activities of GABRD in Colon Adenocarcinoma. Mediators Inflamm 2023; 2023:8709458. [PMID: 37181811 PMCID: PMC10169248 DOI: 10.1155/2023/8709458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/03/2023] [Accepted: 04/16/2023] [Indexed: 05/16/2023] Open
Abstract
Colon adenocarcinoma (COAD) is one of the tumors with the highest mortality rates. It is of the utmost significance to make an accurate prognostic assessment and to tailor one's treatment to the specific needs of the patient. Multiple lines of evidence point to the possibility that genetic variables and clinicopathological traits are connected to the onset and development of cancer. In the past, a number of studies have revealed that gamma-aminobutyric acid type A receptor subunit delta (GABRD) plays a role in the advancement of a number of different cancers. However, its function in COAD was rarely reported. In this study, we analyzed TCGA datasets and identified 29 survival-related differentially expressed genes (DEGs) in COAD patients. In particular, GABRD expression was noticeably elevated in COAD specimens. There was a correlation between high GABRD expression and an advanced clinical stage. According to the results of the survival tests, patients whose GABRD expression was high had a lower overall survival time and progression-free survival time than those whose GABRD expression was low. GABRD expression was found to be an independent predictive predictor for overall survival, as determined by multivariate COX regression analysis. Additionally, the predictive nomogram model can accurately predict the fate of individuals with COAD. In addition, we observed that GABRD expressions were positively associated with the expression of T cells regulatory (Tregs), macrophages M0, while negatively associated with the expression of T cells CD8, T cells follicular helper, macrophages M1, dendritic cells activated, eosinophils, and T cells CD4 memory activated. The IC50 of BI-2536, bleomycin, embelin, FR-180204, GW843682X, LY317615, NSC-207895, rTRAIL, and VX-11e was higher in the GABRD high-expression group. In conclusion, we have shown evidence that GABRD is a novel biomarker that is connected with immune cell infiltration in COAD and may be utilized to predict the prognosis of COAD patients.
Collapse
Affiliation(s)
- Fakun Huang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fujian, China
| | | | - Liyue Zhu
- Fujian Medical University, Fuzhou, Fujian, China
| | | | - Jia-xing Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fujian, China
| |
Collapse
|
47
|
Atiakshin D, Patsap O, Kostin A, Mikhalyova L, Buchwalow I, Tiemann M. Mast Cell Tryptase and Carboxypeptidase A3 in the Formation of Ovarian Endometrioid Cysts. Int J Mol Sci 2023; 24:ijms24076498. [PMID: 37047472 PMCID: PMC10095096 DOI: 10.3390/ijms24076498] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
The mechanisms of ovarian endometrioid cyst formation, or cystic ovarian endometriosis, still remain to be elucidated. To address this issue, we analyzed the involvement of mast cell (MC) tryptase and carboxypeptidase A3 (CPA3) in the development of endometriomas. It was found that the formation of endometrioid cysts was accompanied by an increased MC population in the ovarian medulla, as well as by an MC appearance in the cortical substance. The formation of MC subpopulations was associated with endometrioma wall structures. An active, targeted secretion of tryptase and CPA3 to the epithelium of endometrioid cysts, immunocompetent cells, and the cells of the cytogenic ovarian stroma was detected. The identification of specific proteases in the cell nuclei of the ovarian local tissue microenvironment suggests new mechanisms for the regulatory effects of MCs. The cytoplasmic outgrowths of MCs propagate in the structures of the stroma over a considerable distance; they offer new potentials for MC effects on the structures of the ovarian-specific tissue microenvironment under pathological conditions. Our findings indicate the potential roles of MC tryptase and CPA3 in the development of ovarian endometriomas and infer new perspectives on their uses as pharmacological targets in personalized medicine.
Collapse
Affiliation(s)
- Dmitri Atiakshin
- Research and Educational Resource Centre for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, 394036 Voronezh, Russia
| | - Olga Patsap
- Research and Educational Resource Centre for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| | - Andrey Kostin
- Research and Educational Resource Centre for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| | | | - Igor Buchwalow
- Research and Educational Resource Centre for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
- Institute for Hematopathology, 22547 Hamburg, Germany
| | | |
Collapse
|
48
|
Li Y, Xiang S, Pan W, Wang J, Zhan H, Liu S. Targeting tumor immunosuppressive microenvironment for pancreatic cancer immunotherapy: Current research and future perspective. Front Oncol 2023; 13:1166860. [PMID: 37064113 PMCID: PMC10090519 DOI: 10.3389/fonc.2023.1166860] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Pancreatic cancer is one of the most malignant tumors with increased incidence rate. The effect of surgery combined with chemoradiotherapy on survival of patients is unsatisfactory. New treatment strategy such as immunotherapy need to be investigated. The accumulation of desmoplastic stroma, infiltration of immunosuppressive cells including myeloid derived suppressor cells (MDSCs), tumor associated macrophages (TAMs), cancer‐associated fibroblasts (CAFs), and regulatory T cells (Tregs), as well as tumor associated cytokine such as TGF-β, IL-10, IL-35, CCL5 and CXCL12 construct an immunosuppressive microenvironment of pancreatic cancer, which presents challenges for immunotherapy. In this review article, we explore the roles and mechanism of immunosuppressive cells and lymphocytes in establishing an immunosuppressive tumor microenvironment in pancreatic cancer. In addition, immunotherapy strategies for pancreatic cancer based on tumor microenvironment including immune checkpoint inhibitors, targeting extracellular matrix (ECM), interfering with stromal cells or cytokines in TME, cancer vaccines and extracellular vesicles (EVs) are also discussed. It is necessary to identify an approach of immunotherapy in combination with other modalities to produce a synergistic effect with increased response rates in pancreatic cancer therapy.
Collapse
Affiliation(s)
- Ying Li
- Department of Blood Transfusion, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shuai Xiang
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenjun Pan
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Wang
- Department of Operating Room, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hanxiang Zhan
- Department of General Surgery, Qilu hospital, Shandong University, Jinan, Shandong, China
- *Correspondence: Shanglong Liu, ; Hanxiang Zhan,
| | - Shanglong Liu
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Shanglong Liu, ; Hanxiang Zhan,
| |
Collapse
|
49
|
Krishnan SN, Thanasupawat T, Arreza L, Wong GW, Sfanos K, Trock B, Arock M, Shah GG, Glogowska A, Ghavami S, Hombach-Klonisch S, Klonisch T. Human C1q Tumor Necrosis Factor 8 (CTRP8) defines a novel tryptase+ mast cell subpopulation in the prostate cancer microenvironment. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166681. [PMID: 36921737 DOI: 10.1016/j.bbadis.2023.166681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/26/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
Abstract
The adipokine C1q Tumor Necrosis Factor 8 (CTRP8) is the least known member of the 15 CTRP proteins and a ligand of the relaxin receptor RXFP1. We previously demonstrated the ability of the CTRP8-RXFP1 interaction to promote motility, matrix invasion, and drug resistance. The lack of specific tools to detect CTRP8 protein severely limits our knowledge on CTRP8 biological functions in normal and tumor tissues. Here, we have generated and characterized the first specific antiserum to human CTRP8 which identified CTRP8 as a novel marker of tryptase+ mast cells (MCT) in normal human tissues and in the prostate cancer (PC) microenvironment. Using human PC tissue microarrays composed of neoplastic and corresponding tumor-adjacent prostate tissues, we have identified a significantly higher number of CTRP8+ MCT in the peritumor versus intratumor compartment of PC tissues of Gleason scores 6 and 7. Higher numbers of CTRP8+ MCT correlated with the clinical parameter of biochemical recurrence. We showed that the human MC line ROSAKIT WT expressed RXFP1 transcripts and responded to CTRP8 treatment with a small but significant increase in cell proliferation. Like the cognate RXFP1 ligand RLN-2 and the small molecule RXFP1 agonist ML-290, CTRP8 reduced degranulation of ROSAKIT WT MC stimulated by the Ca2+-ionophore A14187. In conclusion, this is the first report to identify the RXFP1 agonist CTRP8 as a novel marker of MCT and autocrine/paracrine oncogenic factor within the PC microenvironment.
Collapse
Affiliation(s)
- Sai Nivedita Krishnan
- Dept. of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada
| | - Thatchawan Thanasupawat
- Dept. of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada
| | - Leanne Arreza
- Dept. of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada
| | - G William Wong
- Dept. of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Karen Sfanos
- Dept. of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bruce Trock
- Dept. of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michel Arock
- Laboratoire d'Hématologie Biologique, Hôpital Pitié-Salpêtrière, Paris, France
| | - G Girish Shah
- Dept. of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, CHU de Quebec-Laval, Quebec, Canada
| | - Aleksandra Glogowska
- Dept. of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada
| | - Saeid Ghavami
- Dept. of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada; Research Institute of Cancer and Hematology, CancerCare Manitoba, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Sabine Hombach-Klonisch
- Dept. of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada; Dept. of Pathology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada.
| | - Thomas Klonisch
- Dept. of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada; Dept. of Pathology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada; Research Institute of Cancer and Hematology, CancerCare Manitoba, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada; Dept. of Medical Microbiology & Infectious Diseases, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada.
| |
Collapse
|
50
|
Pericytes in the tumor microenvironment. Cancer Lett 2023; 556:216074. [PMID: 36682706 DOI: 10.1016/j.canlet.2023.216074] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 01/21/2023]
Abstract
Pericytes are a type of mural cell located between the endothelial cells of capillaries and the basement membrane, which function to regulate the capillary vasomotor and maintain normal microcirculation of local tissues and organs and have been identified as a significant component in the tumor microenvironment (TME). Pericytes have various interactions with different components of the TME, such as constituting the pre-metastatic niche, promoting the growth of cancer cells and drug resistance through paracrine activity, and inducing M2 macrophage polarization. While changes in the TME can affect the number, phenotype, and molecular markers of pericytes. For example, pericyte detachment from endothelial cells in the TME facilitates tumor cells in situ to invade the circulating blood and is beneficial to local capillary basement membrane enzymatic hydrolysis and endothelial cell proliferation and budding, which contribute to tumor angiogenesis and metastasis. In this review, we discuss the emerging role of pericytes in the TME, and tumor treatment related to pericytes. This review aimed to provide a more comprehensive understanding of the function of pericytes and the relationship between pericytes and tumors and to provide ideas for the treatment and prevention of malignant tumors.
Collapse
|