• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4643688)   Today's Articles (267)   Subscriber (50599)
For: Krzhizhanovskaya VV, Závodszky G, Lees MH, Dongarra JJ, Sloot PMA, Brissos S, Teixeira J. A Machine Learning Approach to Short-Term Body Weight Prediction in a Dietary Intervention Program. Lecture Notes in Computer Science 2020. [PMCID: PMC7303700 DOI: 10.1007/978-3-030-50423-6_33] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Number Cited by Other Article(s)
1
Cohen Y, Valdés-Mas R, Elinav E. The Role of Artificial Intelligence in Deciphering Diet-Disease Relationships: Case Studies. Annu Rev Nutr 2023;43:225-250. [PMID: 37207358 DOI: 10.1146/annurev-nutr-061121-090535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
2
Ferreras A, Sumalla-Cano S, Martínez-Licort R, Elío I, Tutusaus K, Prola T, Vidal-Mazón JL, Sahelices B, de la Torre Díez I. Systematic Review of Machine Learning applied to the Prediction of Obesity and Overweight. J Med Syst 2023;47:8. [PMID: 36637549 DOI: 10.1007/s10916-022-01904-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/15/2022] [Indexed: 01/14/2023]
3
Determining the effective factors in predicting diet adherence using an intelligent model. Sci Rep 2022;12:12340. [PMID: 35853992 PMCID: PMC9296581 DOI: 10.1038/s41598-022-16680-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/13/2022] [Indexed: 11/08/2022]  Open
4
Herbuela VRDM, Karita T, Furukawa Y, Wada Y, Toya A, Senba S, Onishi E, Saeki T. Machine learning-based classification of the movements of children with profound or severe intellectual or multiple disabilities using environment data features. PLoS One 2022;17:e0269472. [PMID: 35771797 PMCID: PMC9246124 DOI: 10.1371/journal.pone.0269472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 05/16/2022] [Indexed: 11/19/2022]  Open
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA