1
|
Kadhim YA, Guzel MS, Mishra A. A Novel Hybrid Machine Learning-Based System Using Deep Learning Techniques and Meta-Heuristic Algorithms for Various Medical Datatypes Classification. Diagnostics (Basel) 2024; 14:1469. [PMID: 39061605 PMCID: PMC11275302 DOI: 10.3390/diagnostics14141469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Medicine is one of the fields where the advancement of computer science is making significant progress. Some diseases require an immediate diagnosis in order to improve patient outcomes. The usage of computers in medicine improves precision and accelerates data processing and diagnosis. In order to categorize biological images, hybrid machine learning, a combination of various deep learning approaches, was utilized, and a meta-heuristic algorithm was provided in this research. In addition, two different medical datasets were introduced, one covering the magnetic resonance imaging (MRI) of brain tumors and the other dealing with chest X-rays (CXRs) of COVID-19. These datasets were introduced to the combination network that contained deep learning techniques, which were based on a convolutional neural network (CNN) or autoencoder, to extract features and combine them with the next step of the meta-heuristic algorithm in order to select optimal features using the particle swarm optimization (PSO) algorithm. This combination sought to reduce the dimensionality of the datasets while maintaining the original performance of the data. This is considered an innovative method and ensures highly accurate classification results across various medical datasets. Several classifiers were employed to predict the diseases. The COVID-19 dataset found that the highest accuracy was 99.76% using the combination of CNN-PSO-SVM. In comparison, the brain tumor dataset obtained 99.51% accuracy, the highest accuracy derived using the combination method of autoencoder-PSO-KNN.
Collapse
Affiliation(s)
- Yezi Ali Kadhim
- College of Engineering, University of Baghdad, Jadriyah, Baghdad 10071, Iraq;
- Department of Modeling and Design of Engineering Systems (MODES), Atilim University, Ankara 06830, Turkey
- Department of Electrical and Electronics Engineering, Atilim University, Incek, Ankara 06830, Turkey
| | - Mehmet Serdar Guzel
- Department of Computer Engineering, Ankara University, Yenimahalle, Ankara 06100, Turkey;
| | - Alok Mishra
- Faculty of Engineering, Norwegian University of Science and Technology, 7034 Trondheim, Norway
- Department of Software Engineering, Atilim University, Incek, Ankara 06830, Turkey
| |
Collapse
|
2
|
Bakasa W, Viriri S. Stacked ensemble deep learning for pancreas cancer classification using extreme gradient boosting. Front Artif Intell 2023; 6:1232640. [PMID: 37876961 PMCID: PMC10591225 DOI: 10.3389/frai.2023.1232640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/04/2023] [Indexed: 10/26/2023] Open
Abstract
Ensemble learning aims to improve prediction performance by combining several models or forecasts. However, how much and which ensemble learning techniques are useful in deep learning-based pipelines for pancreas computed tomography (CT) image classification is a challenge. Ensemble approaches are the most advanced solution to many machine learning problems. These techniques entail training multiple models and combining their predictions to improve the predictive performance of a single model. This article introduces the idea of Stacked Ensemble Deep Learning (SEDL), a pipeline for classifying pancreas CT medical images. The weak learners are Inception V3, VGG16, and ResNet34, and we employed a stacking ensemble. By combining the first-level predictions, an input train set for XGBoost, the ensemble model at the second level of prediction, is created. Extreme Gradient Boosting (XGBoost), employed as a strong learner, will make the final classification. Our findings showed that SEDL performed better, with a 98.8% ensemble accuracy, after some adjustments to the hyperparameters. The Cancer Imaging Archive (TCIA) public access dataset consists of 80 pancreas CT scans with a resolution of 512 * 512 pixels, from 53 male and 27 female subjects. A sample of two hundred and twenty-two images was used for training and testing data. We concluded that implementing the SEDL technique is an effective way to strengthen the robustness and increase the performance of the pipeline for classifying pancreas CT medical images. Interestingly, grouping like-minded or talented learners does not make a difference.
Collapse
Affiliation(s)
| | - Serestina Viriri
- School of Mathematics Statistics & Computer Science, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
3
|
Ghassemi N, Shoeibi A, Khodatars M, Heras J, Rahimi A, Zare A, Zhang YD, Pachori RB, Gorriz JM. Automatic diagnosis of COVID-19 from CT images using CycleGAN and transfer learning. Appl Soft Comput 2023; 144:110511. [PMID: 37346824 PMCID: PMC10263244 DOI: 10.1016/j.asoc.2023.110511] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/23/2022] [Accepted: 06/08/2023] [Indexed: 06/23/2023]
Abstract
The outbreak of the corona virus disease (COVID-19) has changed the lives of most people on Earth. Given the high prevalence of this disease, its correct diagnosis in order to quarantine patients is of the utmost importance in the steps of fighting this pandemic. Among the various modalities used for diagnosis, medical imaging, especially computed tomography (CT) imaging, has been the focus of many previous studies due to its accuracy and availability. In addition, automation of diagnostic methods can be of great help to physicians. In this paper, a method based on pre-trained deep neural networks is presented, which, by taking advantage of a cyclic generative adversarial net (CycleGAN) model for data augmentation, has reached state-of-the-art performance for the task at hand, i.e., 99.60% accuracy. Also, in order to evaluate the method, a dataset containing 3163 images from 189 patients has been collected and labeled by physicians. Unlike prior datasets, normal data have been collected from people suspected of having COVID-19 disease and not from data from other diseases, and this database is made available publicly. Moreover, the method's reliability is further evaluated by calibration metrics, and its decision is interpreted by Grad-CAM also to find suspicious regions as another output of the method and make its decisions trustworthy and explainable.
Collapse
Affiliation(s)
- Navid Ghassemi
- Faculty of Electrical Engineering, FPGA Lab, K. N. Toosi University of Technology, Tehran, Iran
- Computer Engineering department, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Afshin Shoeibi
- Faculty of Electrical Engineering, FPGA Lab, K. N. Toosi University of Technology, Tehran, Iran
- Computer Engineering department, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Marjane Khodatars
- Department of Medical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Jonathan Heras
- Department of Mathematics and Computer Science, University of La Rioja, La Rioja, Spain
| | - Alireza Rahimi
- Computer Engineering department, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Assef Zare
- Faculty of Electrical Engineering, Gonabad Branch, Islamic Azad University, Gonabad, Iran
| | - Yu-Dong Zhang
- School of Informatics, University of Leicester, Leicester, LE1 7RH, UK
| | - Ram Bilas Pachori
- Department of Electrical Engineering, Indian Institute of Technology Indore, Indore 453552, India
| | - J Manuel Gorriz
- Department of Signal Theory, Networking and Communications, Universidad de Granada, Spain
- Department of Psychiatry, University of Cambridge, UK
| |
Collapse
|
4
|
Liu J, Zhang T, Kang Y, Wang Y, Zhang Y, Hu D, Chen Y. Deep residual constrained reconstruction via learned convolutional sparse coding for low-dose CT imaging. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
5
|
Shankar K, Mohanty SN, Yadav K, Gopalakrishnan T, Elmisery AM. Automated COVID-19 diagnosis and classification using convolutional neural network with fusion based feature extraction model. Cogn Neurodyn 2023; 17:1-14. [PMID: 34522236 PMCID: PMC8431962 DOI: 10.1007/s11571-021-09712-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 08/01/2021] [Accepted: 08/07/2021] [Indexed: 12/31/2022] Open
Abstract
COVID-19 was first identified in December 2019 at Wuhan, China. At present, the outbreak of COVID-19 pandemic has resulted in severe consequences on both economic and social infrastructures of the developed and developing countries. Several studies have been conducted and ongoing still to design efficient models for diagnosis and treatment of COVID-19 patients. The traditional diagnostic models that use reverse transcription-polymerase chain reaction (rt-qPCR) is a costly and time-consuming process. So, automated COVID-19 diagnosis using Deep Learning (DL) models becomes essential. The primary intention of this study is to design an effective model for diagnosis and classification of COVID-19. This research work introduces an automated COVID-19 diagnosis process using Convolutional Neural Network (CNN) with a fusion-based feature extraction model, called FM-CNN. FM-CNN model has three major phases namely, pre-processing, feature extraction, and classification. Initially, Wiener Filtering (WF)-based preprocessing is employed to discard the noise that exists in input chest X-Ray (CXR) images. Then, the pre-processed images undergo fusion-based feature extraction model which is a combination of Gray Level Co-occurrence Matrix (GLCM), Gray Level Run Length Matrix (GLRM), and Local Binary Patterns (LBP). In order to determine the optimal subset of features, Particle Swarm Optimization (PSO) algorithm is employed. At last, CNN is deployed as a classifier to identify the existence of binary and multiple classes of CXR images. In order to validate the proficiency of the proposed FM-CNN model in terms of its diagnostic performance, extension experimentation was carried out upon CXR dataset. As per the results attained from simulation, FM-CNN model classified multiple classes with the maximum sensitivity of 97.22%, specificity of 98.29%, accuracy of 98.06%, and F-measure of 97.93%.
Collapse
Affiliation(s)
- K. Shankar
- Federal University of Piauí, Teresina, Brazil
| | - Sachi Nandan Mohanty
- Department of Computer Science and Engineering, Vardhaman College of Engineering (Autonomous), Hyderabad, India
| | - Kusum Yadav
- College of Computer Science and Engineering, University of Haʼil, Hail, Saudi Arabia
| | - T. Gopalakrishnan
- School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, India
| | - Ahmed M. Elmisery
- Faculty of Computing, Engineering and Science, University of South Wales, Pontypridd, UK
| |
Collapse
|
6
|
Ghosh N, Saha I, Gambin A. Interactome-Based Machine Learning Predicts Potential Therapeutics for COVID-19. ACS OMEGA 2023; 8:13840-13854. [PMID: 37163139 PMCID: PMC10084923 DOI: 10.1021/acsomega.3c00030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/22/2023] [Indexed: 05/11/2023]
Abstract
COVID-19, the disease caused by SARS-CoV-2, has been disrupting our lives for more than two years now. SARS-CoV-2 interacts with human proteins to pave its way into the human body, thereby wreaking havoc. Moreover, the mutating variants of the virus that take place in the SARS-CoV-2 genome are also a cause of concern among the masses. Thus, it is very important to understand human-spike protein-protein interactions (PPIs) in order to predict new PPIs and consequently propose drugs for the human proteins in order to fight the virus and its different mutated variants, with the mutations occurring in the spike protein. This fact motivated us to develop a complete pipeline where PPIs and drug-protein interactions can be predicted for human-SARS-CoV-2 interactions. In this regard, initially interacting data sets are collected from the literature, and noninteracting data sets are subsequently created for human-SARS-CoV-2 by considering only spike glycoprotein. On the other hand, for drug-protein interactions both interacting and noninteracting data sets are considered from DrugBank and ChEMBL databases. Thereafter, a model based on a sequence-based feature is used to code the protein sequences of human and spike proteins using the well-known Moran autocorrelation technique, while the drugs are coded using another well-known technique, viz., PaDEL descriptors, to predict new human-spike PPIs and eventually new drug-protein interactions for the top 20 predicted human proteins interacting with the original spike protein and its different mutated variants like Alpha, Beta, Delta, Gamma, and Omicron. Such predictions are carried out by random forest as it is found to perform better than other predictors, providing an accuracy of 90.53% for human-spike PPI and 96.15% for drug-protein interactions. Finally, 40 unique drugs like eicosapentaenoic acid, doxercalciferol, ciclesonide, dexamethasone, methylprednisolone, etc. are identified that target 32 human proteins like ACACA, DST, DYNC1H1, etc.
Collapse
Affiliation(s)
- Nimisha Ghosh
- Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, 00-927 Warsaw, Poland
- Department of Computer Science and Information Technology, Institute of Technical Education and Research, Siksha 'O' Anusandhan, Bhubaneswar, 751030 Odisha, India
| | - Indrajit Saha
- Department of Computer Science and Engineering, National Institute of Technical Teachers' Training and Research, Kolkata, 700106 West Bengal, India
| | - Anna Gambin
- Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, 00-927 Warsaw, Poland
| |
Collapse
|
7
|
Early diagnosis of COVID-19-affected patients based on X-ray and computed tomography images using deep learning algorithm. Soft comput 2023; 27:2635-2643. [PMID: 32904395 PMCID: PMC7453871 DOI: 10.1007/s00500-020-05275-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The novel coronavirus infection (COVID-19) that was first identified in China in December 2019 has spread across the globe rapidly infecting over ten million people. The World Health Organization (WHO) declared it as a pandemic on March 11, 2020. What makes it even more critical is the lack of vaccines available to control the disease, although many pharmaceutical companies and research institutions all over the world are working toward developing effective solutions to battle this life-threatening disease. X-ray and computed tomography (CT) images scanning is one of the most encouraging exploration zones; it can help in finding and providing early diagnosis to diseases and gives both quick and precise outcomes. In this study, convolution neural networks method is used for binary classification pneumonia-based conversion of VGG-19, Inception_V2 and decision tree model on X-ray and CT scan images dataset, which contains 360 images. It can infer that fine-tuned version VGG-19, Inception_V2 and decision tree model show highly satisfactory performance with a rate of increase in training and validation accuracy (91%) other than Inception_V2 (78%) and decision tree (60%) models.
Collapse
|
8
|
Alsaeedi MAK, Kurnaz S. RETRACTED ARTICLE: Feature selection for diagnose coronavirus (COVID-19) disease by neural network and Caledonian crow learning algorithm. APPLIED NANOSCIENCE 2023; 13:3129. [PMID: 35155058 PMCID: PMC8818372 DOI: 10.1007/s13204-021-02159-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/09/2021] [Indexed: 11/07/2022]
Affiliation(s)
| | - Sefer Kurnaz
- Department of Electrical Computer Engineering, Altinbas University, Istanbul, Turkey
| |
Collapse
|
9
|
de Sousa PM, Carneiro PC, Pereira GM, Oliveira MM, da Costa Junior CA, de Moura LV, Mattjie C, da Silva AMM, Macedo TAA, Patrocinio AC. A new model for classification of medical CT images using CNN: a COVID-19 case study. MULTIMEDIA TOOLS AND APPLICATIONS 2022; 82:1-29. [PMID: 36570730 PMCID: PMC9760321 DOI: 10.1007/s11042-022-14316-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 11/18/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
SARS-CoV-2 is the causative agent of COVID-19 and leaves characteristic impressions on chest Computed Tomography (CT) images in infected patients and this analysis is performed by radiologists through visual reading of lung images, and failures may occur. In this article, we propose a classification model, called Wavelet Convolutional Neural Network (WCNN) that aims to improve the differentiation of images of patients with COVID-19 from images of patients with other lung infections. The WCNN model was based on a Convolutional Neural Network (CNN) and wavelet transform. The model proposes a new input layer added to the neural network, which was called Wave layer. The hyperparameters values were defined by ablation tests. WCNN was applied to chest CT images to images from two internal and one external repositories. For all repositories, the average results of Accuracy (ACC), Sensitivity (Sen) and Specificity (Sp) were calculated. Subsequently, the average results of the repositories were consolidated, and the final values were ACC = 0.9819, Sen = 0.9783 and Sp = 0.98. The WCNN model uses a new Wave input layer, which standardizes the network input, without using data augmentation, resizing and segmentation techniques, maintaining the integrity of the tomographic image analysis. Thus, applications developed based on WCNN have the potential to assist radiologists with a second opinion in the analysis.1.
Collapse
Affiliation(s)
- Pedro Moises de Sousa
- Biomedical Lab, Faculty of Electrical Engineering, Federal University of Uberlândia, Campus Sta Mônica, Av. João Naves de Avila, 2121, Bloco 1E, Uberlândia, MG CEP 38400-000 Brazil
| | - Pedro Cunha Carneiro
- Biomedical Lab, Faculty of Electrical Engineering, Federal University of Uberlândia, Campus Sta Mônica, Av. João Naves de Avila, 2121, Bloco 1E, Uberlândia, MG CEP 38400-000 Brazil
| | - Gabrielle Macedo Pereira
- Biomedical Lab, Faculty of Electrical Engineering, Federal University of Uberlândia, Campus Sta Mônica, Av. João Naves de Avila, 2121, Bloco 1E, Uberlândia, MG CEP 38400-000 Brazil
| | - Mariane Modesto Oliveira
- Biomedical Lab, Faculty of Electrical Engineering, Federal University of Uberlândia, Campus Sta Mônica, Av. João Naves de Avila, 2121, Bloco 1E, Uberlândia, MG CEP 38400-000 Brazil
| | - Carlos Alberto da Costa Junior
- Biomedical Lab, Faculty of Electrical Engineering, Federal University of Uberlândia, Campus Sta Mônica, Av. João Naves de Avila, 2121, Bloco 1E, Uberlândia, MG CEP 38400-000 Brazil
| | - Luis Vinicius de Moura
- Medical Image Computing Laboratory, Pontifical Catholic University of Rio Grande do Sul, Av. Ipiranga, 6681 Partenon, Porto Alegre, RS CEP 90619-900 Brazil
| | - Christian Mattjie
- Medical Image Computing Laboratory, Pontifical Catholic University of Rio Grande do Sul, Av. Ipiranga, 6681 Partenon, Porto Alegre, RS CEP 90619-900 Brazil
| | - Ana Maria Marques da Silva
- Medical Image Computing Laboratory, Pontifical Catholic University of Rio Grande do Sul, Av. Ipiranga, 6681 Partenon, Porto Alegre, RS CEP 90619-900 Brazil
| | - Túlio Augusto Alves Macedo
- Clinic Hospital of the Federal University, Campus Umuarama - Bloco UMU2H - Sala 01 Av. Pará - 1720 - Bairro Umuarama Uberlândia - MG - CEP, Uberlândia, MG 38405-320 Brazil
| | - Ana Claudia Patrocinio
- Biomedical Lab, Faculty of Electrical Engineering, Federal University of Uberlândia, Campus Sta Mônica, Av. João Naves de Avila, 2121, Bloco 1E, Uberlândia, MG CEP 38400-000 Brazil
| |
Collapse
|
10
|
Hamza A, Attique Khan M, Wang SH, Alqahtani A, Alsubai S, Binbusayyis A, Hussein HS, Martinetz TM, Alshazly H. COVID-19 classification using chest X-ray images: A framework of CNN-LSTM and improved max value moth flame optimization. Front Public Health 2022; 10:948205. [PMID: 36111186 PMCID: PMC9468600 DOI: 10.3389/fpubh.2022.948205] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/01/2022] [Indexed: 01/21/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a highly contagious disease that has claimed the lives of millions of people worldwide in the last 2 years. Because of the disease's rapid spread, it is critical to diagnose it at an early stage in order to reduce the rate of spread. The images of the lungs are used to diagnose this infection. In the last 2 years, many studies have been introduced to help with the diagnosis of COVID-19 from chest X-Ray images. Because all researchers are looking for a quick method to diagnose this virus, deep learning-based computer controlled techniques are more suitable as a second opinion for radiologists. In this article, we look at the issue of multisource fusion and redundant features. We proposed a CNN-LSTM and improved max value features optimization framework for COVID-19 classification to address these issues. The original images are acquired and the contrast is increased using a combination of filtering algorithms in the proposed architecture. The dataset is then augmented to increase its size, which is then used to train two deep learning networks called Modified EfficientNet B0 and CNN-LSTM. Both networks are built from scratch and extract information from the deep layers. Following the extraction of features, the serial based maximum value fusion technique is proposed to combine the best information of both deep models. However, a few redundant information is also noted; therefore, an improved max value based moth flame optimization algorithm is proposed. Through this algorithm, the best features are selected and finally classified through machine learning classifiers. The experimental process was conducted on three publically available datasets and achieved improved accuracy than the existing techniques. Moreover, the classifiers based comparison is also conducted and the cubic support vector machine gives better accuracy.
Collapse
Affiliation(s)
- Ameer Hamza
- Department of Computer Science, HITEC University, Taxila, Pakistan
| | - Muhammad Attique Khan
- Department of Computer Science, HITEC University, Taxila, Pakistan,*Correspondence: Muhammad Attique Khan
| | - Shui-Hua Wang
- Department of Mathematics, University of Leicester, Leicester, United Kingdom
| | - Abdullah Alqahtani
- College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Shtwai Alsubai
- College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Adel Binbusayyis
- College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Hany S. Hussein
- Department of Electrical Engineering, College of Engineering, King Khalid University, Abha, Saudi Arabia,Department of Electrical Engineering, Faculty of Engineering, Aswan University, Aswan, Egypt
| | | | - Hammam Alshazly
- Faculty of Computers and Information, South Valley University, Qena, Egypt
| |
Collapse
|
11
|
Sarv Ahrabi S, Momenzadeh A, Baccarelli E, Scarpiniti M, Piazzo L. How much BiGAN and CycleGAN-learned hidden features are effective for COVID-19 detection from CT images? A comparative study. THE JOURNAL OF SUPERCOMPUTING 2022; 79:2850-2881. [PMID: 36042937 PMCID: PMC9411851 DOI: 10.1007/s11227-022-04775-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Bidirectional generative adversarial networks (BiGANs) and cycle generative adversarial networks (CycleGANs) are two emerging machine learning models that, up to now, have been used as generative models, i.e., to generate output data sampled from a target probability distribution. However, these models are also equipped with encoding modules, which, after weakly supervised training, could be, in principle, exploited for the extraction of hidden features from the input data. At the present time, how these extracted features could be effectively exploited for classification tasks is still an unexplored field. Hence, motivated by this consideration, in this paper, we develop and numerically test the performance of a novel inference engine that relies on the exploitation of BiGAN and CycleGAN-learned hidden features for the detection of COVID-19 disease from other lung diseases in computer tomography (CT) scans. In this respect, the main contributions of the paper are twofold. First, we develop a kernel density estimation (KDE)-based inference method, which, in the training phase, leverages the hidden features extracted by BiGANs and CycleGANs for estimating the (a priori unknown) probability density function (PDF) of the CT scans of COVID-19 patients and, then, in the inference phase, uses it as a target COVID-PDF for the detection of COVID diseases. As a second major contribution, we numerically evaluate and compare the classification accuracies of the implemented BiGAN and CycleGAN models against the ones of some state-of-the-art methods, which rely on the unsupervised training of convolutional autoencoders (CAEs) for attaining feature extraction. The performance comparisons are carried out by considering a spectrum of different training loss functions and distance metrics. The obtained classification accuracies of the proposed CycleGAN-based (resp., BiGAN-based) models outperform the corresponding ones of the considered benchmark CAE-based models of about 16% (resp., 14%).
Collapse
Affiliation(s)
- Sima Sarv Ahrabi
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University or Rome, Via Eudossiana, 18, 00184 Roma, Italy
| | - Alireza Momenzadeh
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University or Rome, Via Eudossiana, 18, 00184 Roma, Italy
| | - Enzo Baccarelli
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University or Rome, Via Eudossiana, 18, 00184 Roma, Italy
| | - Michele Scarpiniti
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University or Rome, Via Eudossiana, 18, 00184 Roma, Italy
| | - Lorenzo Piazzo
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University or Rome, Via Eudossiana, 18, 00184 Roma, Italy
| |
Collapse
|
12
|
An Effective Deep Learning Model for Health Monitoring and Detection of COVID-19 Infected Patients: An End-to-End Solution. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:7126259. [PMID: 35965776 PMCID: PMC9372529 DOI: 10.1155/2022/7126259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/14/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022]
Abstract
The COVID-19 infection is the greatest danger to humankind right now because of the devastation it causes to the lives of its victims. It is important that infected people be tested in a timely manner in order to halt the spread of the disease. Physical approaches are time-consuming, expensive, and tedious. As a result, there is a pressing need for a cost-effective and efficient automated tool. A convolutional neural network is presented in this paper for analysing X-ray pictures of patients' chests. For the analysis of COVID-19 infections, this study investigates the most suitable pretrained deep learning models, which can be integrated with mobile or online apps and support the mobility of diagnostic instruments in the form of a portable tool. Patients can use the smartphone app to find the nearest healthcare testing facility, book an appointment, and get instantaneous results, while healthcare professionals can keep track of the details thanks to the web and mobile applications built for this study. Medical practitioners can apply the COVID-19 detection model for chest frontal X-ray pictures with ease. A user-friendly interface is created to make our end-to-end solution paradigm work. Based on the data, it appears that the model could be useful in the real world.
Collapse
|
13
|
Suganyadevi S, Seethalakshmi V. CVD-HNet: Classifying Pneumonia and COVID-19 in Chest X-ray Images Using Deep Network. WIRELESS PERSONAL COMMUNICATIONS 2022; 126:3279-3303. [PMID: 35756172 PMCID: PMC9206838 DOI: 10.1007/s11277-022-09864-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/29/2022] [Indexed: 06/04/2023]
Abstract
The use of computer-assisted analysis to improve image interpretation has been a long-standing challenge in the medical imaging industry. In terms of image comprehension, Continuous advances in AI (Artificial Intelligence), predominantly in DL (Deep Learning) techniques, are supporting in the classification, Detection, and quantification of anomalies in medical images. DL techniques are the most rapidly evolving branch of AI, and it's recently been successfully pragmatic in a variety of fields, including medicine. This paper provides a classification method for COVID 19 infected X-ray images based on new novel deep CNN model. For COVID19 specified pneumonia analysis, two new customized CNN architectures, CVD-HNet1 (COVID-HybridNetwork1) and CVD-HNet2 (COVID-HybridNetwork2), have been designed. The suggested method utilizes operations based on boundaries and regions, as well as convolution processes, in a systematic manner. In comparison to existing CNNs, the suggested classification method achieves excellent Accuracy 98 percent, F Score 0.99 and MCC 0.97. These results indicate impressive classification accuracy on a limited dataset, with more training examples, much better results can be achieved. Overall, our CVD-HNet model could be a useful tool for radiologists in diagnosing and detecting COVID 19 instances early.
Collapse
Affiliation(s)
- S. Suganyadevi
- Department of Electronics and Communication Engineering, KPR Institute of Engineering and Technology, Coimbatore, Tamilnadu 641 407 India
| | - V. Seethalakshmi
- Department of Electronics and Communication Engineering, KPR Institute of Engineering and Technology, Coimbatore, Tamilnadu 641 407 India
| |
Collapse
|
14
|
Meraihi Y, Gabis AB, Mirjalili S, Ramdane-Cherif A, Alsaadi FE. Machine Learning-Based Research for COVID-19 Detection, Diagnosis, and Prediction: A Survey. SN COMPUTER SCIENCE 2022; 3:286. [PMID: 35578678 PMCID: PMC9096341 DOI: 10.1007/s42979-022-01184-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/30/2022] [Indexed: 12/12/2022]
Abstract
The year 2020 experienced an unprecedented pandemic called COVID-19, which impacted the whole world. The absence of treatment has motivated research in all fields to deal with it. In Computer Science, contributions mainly include the development of methods for the diagnosis, detection, and prediction of COVID-19 cases. Data science and Machine Learning (ML) are the most widely used techniques in this area. This paper presents an overview of more than 160 ML-based approaches developed to combat COVID-19. They come from various sources like Elsevier, Springer, ArXiv, MedRxiv, and IEEE Xplore. They are analyzed and classified into two categories: Supervised Learning-based approaches and Deep Learning-based ones. In each category, the employed ML algorithm is specified and a number of used parameters is given. The parameters set for each of the algorithms are gathered in different tables. They include the type of the addressed problem (detection, diagnosis, or detection), the type of the analyzed data (Text data, X-ray images, CT images, Time series, Clinical data,...) and the evaluated metrics (accuracy, precision, sensitivity, specificity, F1-Score, and AUC). The study discusses the collected information and provides a number of statistics drawing a picture about the state of the art. Results show that Deep Learning is used in 79% of cases where 65% of them are based on the Convolutional Neural Network (CNN) and 17% use Specialized CNN. On his side, supervised learning is found in only 16% of the reviewed approaches and only Random Forest, Support Vector Machine (SVM) and Regression algorithms are employed.
Collapse
Affiliation(s)
- Yassine Meraihi
- LIST Laboratory, University of M’Hamed Bougara Boumerdes, Avenue of Independence, 35000 Boumerdes, Algeria
| | - Asma Benmessaoud Gabis
- Ecole nationale Supérieure d’Informatique, Laboratoire des Méthodes de Conception des Systèmes, BP 68 M, 16309 Oued-Smar, Alger Algeria
| | - Seyedali Mirjalili
- Centre for Artificial Intelligence Research and Optimisation, Torrens University Australia, Fortitude Valley, Brisbane, QLD 4006 Australia
- Yonsei Frontier Lab, Yonsei University, Seoul, Korea
| | - Amar Ramdane-Cherif
- LISV Laboratory, University of Versailles St-Quentin-en-Yvelines, 10-12 Avenue of Europe, 78140 Velizy, France
| | - Fawaz E. Alsaadi
- Information Technology Department, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
15
|
Abdulkareem KH, Mostafa SA, Al-Qudsy ZN, Mohammed MA, Al-Waisy AS, Kadry S, Lee J, Nam Y. Automated System for Identifying COVID-19 Infections in Computed Tomography Images Using Deep Learning Models. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:5329014. [PMID: 35368962 PMCID: PMC8968354 DOI: 10.1155/2022/5329014] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/29/2022] [Accepted: 02/18/2022] [Indexed: 12/24/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is a novel disease that affects healthcare on a global scale and cannot be ignored because of its high fatality rate. Computed tomography (CT) images are presently being employed to assist doctors in detecting COVID-19 in its early stages. In several scenarios, a combination of epidemiological criteria (contact during the incubation period), the existence of clinical symptoms, laboratory tests (nucleic acid amplification tests), and clinical imaging-based tests are used to diagnose COVID-19. This method can miss patients and cause more complications. Deep learning is one of the techniques that has been proven to be prominent and reliable in several diagnostic domains involving medical imaging. This study utilizes a convolutional neural network (CNN), stacked autoencoder, and deep neural network to develop a COVID-19 diagnostic system. In this system, classification undergoes some modification before applying the three CT image techniques to determine normal and COVID-19 cases. A large-scale and challenging CT image dataset was used in the training process of the employed deep learning model and reporting their final performance. Experimental outcomes show that the highest accuracy rate was achieved using the CNN model with an accuracy of 88.30%, a sensitivity of 87.65%, and a specificity of 87.97%. Furthermore, the proposed system has outperformed the current existing state-of-the-art models in detecting the COVID-19 virus using CT images.
Collapse
Affiliation(s)
| | - Salama A. Mostafa
- Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn Malaysia, 86400 Batu Pahat, Johor, Malaysia
| | - Zainab N. Al-Qudsy
- Computer Sciences Department, Baghdad College of Economic Sciences University, Baghdad, Iraq
| | - Mazin Abed Mohammed
- College of Computer Science and Information Technology, University of Anbar, 11 Ramadi, Anbar, Iraq
| | - Alaa S. Al-Waisy
- Communications Engineering Techniques Department Information Technology Collage, Imam Ja'afar Al-Sadiq University, Baghdad, Iraq
| | - Seifedine Kadry
- Faculty of Applied Computing and Technology, Noroff University College, Kristiansand, Norway
| | - Jinseok Lee
- Department of Biomedical Engineering, College of Electronics and Information, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Yunyoung Nam
- Department of Computer Science and Engineering, Soonchunhyang University, Asan 31538, Republic of Korea
| |
Collapse
|
16
|
Kini AS, Gopal Reddy AN, Kaur M, Satheesh S, Singh J, Martinetz T, Alshazly H. Ensemble Deep Learning and Internet of Things-Based Automated COVID-19 Diagnosis Framework. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:7377502. [PMID: 35280708 PMCID: PMC8896964 DOI: 10.1155/2022/7377502] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/24/2022] [Indexed: 12/17/2022]
Abstract
Coronavirus disease (COVID-19) is a viral infection caused by SARS-CoV-2. The modalities such as computed tomography (CT) have been successfully utilized for the early stage diagnosis of COVID-19 infected patients. Recently, many researchers have utilized deep learning models for the automated screening of COVID-19 suspected cases. An ensemble deep learning and Internet of Things (IoT) based framework is proposed for screening of COVID-19 suspected cases. Three well-known pretrained deep learning models are ensembled. The medical IoT devices are utilized to collect the CT scans, and automated diagnoses are performed on IoT servers. The proposed framework is compared with thirteen competitive models over a four-class dataset. Experimental results reveal that the proposed ensembled deep learning model yielded 98.98% accuracy. Moreover, the model outperforms all competitive models in terms of other performance metrics achieving 98.56% precision, 98.58% recall, 98.75% F-score, and 98.57% AUC. Therefore, the proposed framework can improve the acceleration of COVID-19 diagnosis.
Collapse
Affiliation(s)
- Anita S. Kini
- Manipal Institute of Technology MAHE, Manipal, Karnataka 576104, India
| | - A. Nanda Gopal Reddy
- Department of IT, Mahaveer Institute of Science and Technology, Hyderabad, Telangana 500005, India
| | - Manjit Kaur
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - S. Satheesh
- Department of Electronics and Communication Engineering, Malineni Lakshmaiah Women's Engineering College, Guntur, Andhra Pradesh 522017, India
| | - Jagendra Singh
- School of Computer Science Engineering and Technology, Bennett University, Greater Noida-203206, India
| | - Thomas Martinetz
- Institute for Neuro- and Bioinformatics, University of Lübeck, Lübeck 23562, Germany
| | - Hammam Alshazly
- Faculty of Computers and Information, South Valley University, Qena 83523, Egypt
| |
Collapse
|
17
|
Sarv Ahrabi S, Piazzo L, Momenzadeh A, Scarpiniti M, Baccarelli E. Exploiting probability density function of deep convolutional autoencoders' latent space for reliable COVID-19 detection on CT scans. THE JOURNAL OF SUPERCOMPUTING 2022; 78:12024-12045. [PMID: 35228777 PMCID: PMC8867464 DOI: 10.1007/s11227-022-04349-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/30/2022] [Indexed: 05/04/2023]
Abstract
We present a probabilistic method for classifying chest computed tomography (CT) scans into COVID-19 and non-COVID-19. To this end, we design and train, in an unsupervised manner, a deep convolutional autoencoder (DCAE) on a selected training data set, which is composed only of COVID-19 CT scans. Once the model is trained, the encoder can generate the compact hidden representation (the hidden feature vectors) of the training data set. Afterwards, we exploit the obtained hidden representation to build up the target probability density function (PDF) of the training data set by means of kernel density estimation (KDE). Subsequently, in the test phase, we feed a test CT into the trained encoder to produce the corresponding hidden feature vector, and then, we utilise the target PDF to compute the corresponding PDF value of the test image. Finally, this obtained value is compared to a threshold to assign the COVID-19 label or non-COVID-19 to the test image. We numerically check our approach's performance (i.e. test accuracy and training times) by comparing it with those of some state-of-the-art methods.
Collapse
Affiliation(s)
- Sima Sarv Ahrabi
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Via Eudossiana 18, 00184 Roma, Italy
| | - Lorenzo Piazzo
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Via Eudossiana 18, 00184 Roma, Italy
| | - Alireza Momenzadeh
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Via Eudossiana 18, 00184 Roma, Italy
| | - Michele Scarpiniti
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Via Eudossiana 18, 00184 Roma, Italy
| | - Enzo Baccarelli
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Via Eudossiana 18, 00184 Roma, Italy
| |
Collapse
|
18
|
Syed HH, Khan MA, Tariq U, Armghan A, Alenezi F, Khan JA, Rho S, Kadry S, Rajinikanth V. A Rapid Artificial Intelligence-Based Computer-Aided Diagnosis System for COVID-19 Classification from CT Images. Behav Neurol 2021; 2021:2560388. [PMID: 34966463 PMCID: PMC8712188 DOI: 10.1155/2021/2560388] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/16/2021] [Accepted: 11/17/2021] [Indexed: 12/23/2022] Open
Abstract
The excessive number of COVID-19 cases reported worldwide so far, supplemented by a high rate of false alarms in its diagnosis using the conventional polymerase chain reaction method, has led to an increased number of high-resolution computed tomography (CT) examinations conducted. The manual inspection of the latter, besides being slow, is susceptible to human errors, especially because of an uncanny resemblance between the CT scans of COVID-19 and those of pneumonia, and therefore demands a proportional increase in the number of expert radiologists. Artificial intelligence-based computer-aided diagnosis of COVID-19 using the CT scans has been recently coined, which has proven its effectiveness in terms of accuracy and computation time. In this work, a similar framework for classification of COVID-19 using CT scans is proposed. The proposed method includes four core steps: (i) preparing a database of three different classes such as COVID-19, pneumonia, and normal; (ii) modifying three pretrained deep learning models such as VGG16, ResNet50, and ResNet101 for the classification of COVID-19-positive scans; (iii) proposing an activation function and improving the firefly algorithm for feature selection; and (iv) fusing optimal selected features using descending order serial approach and classifying using multiclass supervised learning algorithms. We demonstrate that once this method is performed on a publicly available dataset, this system attains an improved accuracy of 97.9% and the computational time is almost 34 (sec).
Collapse
Affiliation(s)
- Hassaan Haider Syed
- Department of Computer Science, HITEC University Taxila, Museum Road, Taxila, Pakistan
| | - Muhammad Attique Khan
- Department of Computer Science, HITEC University Taxila, Museum Road, Taxila, Pakistan
| | - Usman Tariq
- College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ammar Armghan
- Department of Electrical Engineering, Jouf University, Sakaka 75471, Saudi Arabia
| | - Fayadh Alenezi
- Department of Electrical Engineering, Jouf University, Sakaka 75471, Saudi Arabia
| | - Junaid Ali Khan
- Department of Computer Science, HITEC University Taxila, Museum Road, Taxila, Pakistan
| | - Seungmin Rho
- Department of Industrial Security, Chung-Ang University, Seoul, Republic of Korea (06974)
| | - Seifedine Kadry
- Faculty of Applied Computing and Technology, Noroff University College, Kristiansand, Norway
| | - Venkatesan Rajinikanth
- Department of Electronics and Instrumentation, St. Joseph's College of Engineering, Chennai 600119, India
| |
Collapse
|
19
|
Hao J, Xie J, Liu R, Hao H, Ma Y, Yan K, Liu R, Zheng Y, Zheng J, Liu J, Zhang J, Zhao Y. Automatic Sequence-Based Network for Lung Diseases Detection in Chest CT. Front Oncol 2021; 11:781798. [PMID: 34926297 PMCID: PMC8674429 DOI: 10.3389/fonc.2021.781798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/01/2021] [Indexed: 11/18/2022] Open
Abstract
Objective To develop an accurate and rapid computed tomography (CT)-based interpretable AI system for the diagnosis of lung diseases. Background Most existing AI systems only focus on viral pneumonia (e.g., COVID-19), specifically, ignoring other similar lung diseases: e.g., bacterial pneumonia (BP), which should also be detected during CT screening. In this paper, we propose a unified sequence-based pneumonia classification network, called SLP-Net, which utilizes consecutiveness information for the differential diagnosis of viral pneumonia (VP), BP, and normal control cases from chest CT volumes. Methods Considering consecutive images of a CT volume as a time sequence input, compared with previous 2D slice-based or 3D volume-based methods, our SLP-Net can effectively use the spatial information and does not need a large amount of training data to avoid overfitting. Specifically, sequential convolutional neural networks (CNNs) with multi-scale receptive fields are first utilized to extract a set of higher-level representations, which are then fed into a convolutional long short-term memory (ConvLSTM) module to construct axial dimensional feature maps. A novel adaptive-weighted cross-entropy loss (ACE) is introduced to optimize the output of the SLP-Net with a view to ensuring that as many valid features from the previous images as possible are encoded into the later CT image. In addition, we employ sequence attention maps for auxiliary classification to enhance the confidence level of the results and produce a case-level prediction. Results For evaluation, we constructed a dataset of 258 chest CT volumes with 153 VP, 42 BP, and 63 normal control cases, for a total of 43,421 slices. We implemented a comprehensive comparison between our SLP-Net and several state-of-the-art methods across the dataset. Our proposed method obtained significant performance without a large amount of data, outperformed other slice-based and volume-based approaches. The superior evaluation performance achieved in the classification experiments demonstrated the ability of our model in the differential diagnosis of VP, BP and normal cases.
Collapse
Affiliation(s)
- Jinkui Hao
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.,School of Optical Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Jianyang Xie
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Ri Liu
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Huaying Hao
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Yuhui Ma
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.,School of Optical Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Kun Yan
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Ruirui Liu
- School of Medicine, Ningbo University, Ningbo, China
| | - Yalin Zheng
- Department of Eye and Vision Science, University of Liverpool, Liverpool, United Kingdom
| | - Jianjun Zheng
- School of Medicine, Ningbo University, Ningbo, China
| | - Jiang Liu
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.,Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Jingfeng Zhang
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Yitian Zhao
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.,Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.,Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| |
Collapse
|
20
|
Khan M, Mehran MT, Haq ZU, Ullah Z, Naqvi SR, Ihsan M, Abbass H. Applications of artificial intelligence in COVID-19 pandemic: A comprehensive review. EXPERT SYSTEMS WITH APPLICATIONS 2021; 185:115695. [PMID: 34400854 PMCID: PMC8359727 DOI: 10.1016/j.eswa.2021.115695] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/14/2021] [Accepted: 07/28/2021] [Indexed: 05/06/2023]
Abstract
During the current global public health emergency caused by novel coronavirus disease 19 (COVID-19), researchers and medical experts started working day and night to search for new technologies to mitigate the COVID-19 pandemic. Recent studies have shown that artificial intelligence (AI) has been successfully employed in the health sector for various healthcare procedures. This study comprehensively reviewed the research and development on state-of-the-art applications of artificial intelligence for combating the COVID-19 pandemic. In the process of literature retrieval, the relevant literature from citation databases including ScienceDirect, Google Scholar, and Preprints from arXiv, medRxiv, and bioRxiv was selected. Recent advances in the field of AI-based technologies are critically reviewed and summarized. Various challenges associated with the use of these technologies are highlighted and based on updated studies and critical analysis, research gaps and future recommendations are identified and discussed. The comparison between various machine learning (ML) and deep learning (DL) methods, the dominant AI-based technique, mostly used ML and DL methods for COVID-19 detection, diagnosis, screening, classification, drug repurposing, prediction, and forecasting, and insights about where the current research is heading are highlighted. Recent research and development in the field of artificial intelligence has greatly improved the COVID-19 screening, diagnostics, and prediction and results in better scale-up, timely response, most reliable, and efficient outcomes, and sometimes outperforms humans in certain healthcare tasks. This review article will help researchers, healthcare institutes and organizations, government officials, and policymakers with new insights into how AI can control the COVID-19 pandemic and drive more research and studies for mitigating the COVID-19 outbreak.
Collapse
Affiliation(s)
- Muzammil Khan
- School of Chemical & Materials Engineering, National University of Sciences & Technology, H-12, Islamabad 44000, Pakistan
| | - Muhammad Taqi Mehran
- School of Chemical & Materials Engineering, National University of Sciences & Technology, H-12, Islamabad 44000, Pakistan
| | - Zeeshan Ul Haq
- School of Chemical & Materials Engineering, National University of Sciences & Technology, H-12, Islamabad 44000, Pakistan
| | - Zahid Ullah
- School of Chemical & Materials Engineering, National University of Sciences & Technology, H-12, Islamabad 44000, Pakistan
| | - Salman Raza Naqvi
- School of Chemical & Materials Engineering, National University of Sciences & Technology, H-12, Islamabad 44000, Pakistan
| | - Mehreen Ihsan
- Peshawar Medical College, Peshawar, Khyber Pakhtunkhwa 25000, Pakistan
| | - Haider Abbass
- National Cyber Security Auditing and Evaluation LAb, National University of Sciences & Technology, MCS Campus, Rawalpindi 43600, Pakistan
| |
Collapse
|
21
|
Li W, Cao Y, Yu K, Cai Y, Huang F, Yang M, Xie W. Pulmonary lesion subtypes recognition of COVID-19 from radiomics data with three-dimensional texture characterization in computed tomography images. Biomed Eng Online 2021; 20:123. [PMID: 34865622 PMCID: PMC8645296 DOI: 10.1186/s12938-021-00961-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 11/19/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The COVID-19 disease is putting unprecedented pressure on the global healthcare system. The CT (computed tomography) examination as a auxiliary confirmed diagnostic method can help clinicians quickly detect lesions locations of COVID-19 once screening by PCR test. Furthermore, the lesion subtypes classification plays a critical role in the consequent treatment decision. Identifying the subtypes of lesions accurately can help doctors discover changes in lesions in time and better assess the severity of COVID-19. METHOD The most four typical lesion subtypes of COVID-19 are discussed in this paper, which are GGO (ground-glass opacity), cord, solid and subsolid. A computer-aided diagnosis approach of lesion subtype is proposed in this paper. The radiomics data of lesions are segmented from COVID-19 patients CT images with diagnosis and lesions annotations by radiologists. Then the three-dimensional texture descriptors are applied on the volume data of lesions as well as shape and first-order features. The massive feature data are selected by HAFS (hybrid adaptive feature selection) algorithm and a classification model is trained at the same time. The classifier is used to predict lesion subtypes as side decision information for radiologists. RESULTS There are 3734 lesions extracted from the dataset with 319 patients collection and then 189 radiomics features are obtained finally. The random forest classifier is trained with data augmentation that the number of different subtypes of lesions is imbalanced in initial dataset. The experimental results show that the accuracy of the four subtypes of lesions is (93.06%, 96.84%, 99.58%, and 94.30%), the recall is (95.52%, 91.58%, 95.80% and 80.75%) and the f-score is (93.84%, 92.37%, 95.47%, and 84.42%). CONCLUSION The three-dimensional radiomics features used in this paper can better express the high-level information of COVID-19 lesions in CT slices. HAFS method aggregates the results of multiple feature selection algorithms intersects with traditional methods to filter out redundant features more accurately. After selection, the subtype of COVID-19 lesion can be judged by inputting the features into the RF (random forest) model, which can help clinicians more accurately identify the subtypes of COVID-19 lesions and provide help for further research.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory of Intelligent Computing in Medical Image (MIIC), Northeastern University, Ministry of Education,
Shenyang, China
| | - Yangyong Cao
- School of Computer Science and Engineering, Northeastern University,
Shenyang, China
| | - Kun Yu
- Biomedical and Information Engineering School, Northeastern University,
Shenyang, China
| | - Yibo Cai
- School of Computer Science and Engineering, Northeastern University,
Shenyang, China
| | - Feng Huang
- Neusoft Medical System Co., Ltd., Shenyang, Liaoning China
| | - Minglei Yang
- Neusoft Medical System Co., Ltd., Shenyang, Liaoning China
| | - Weidong Xie
- School of Computer Science and Engineering, Northeastern University,
Shenyang, China
| |
Collapse
|
22
|
IMIIN: An inter-modality information interaction network for 3D multi-modal breast tumor segmentation. Comput Med Imaging Graph 2021; 95:102021. [PMID: 34861622 DOI: 10.1016/j.compmedimag.2021.102021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/02/2021] [Accepted: 11/23/2021] [Indexed: 11/22/2022]
Abstract
Breast tumor segmentation is critical to the diagnosis and treatment of breast cancer. In clinical breast cancer analysis, experts often examine multi-modal images since such images provide abundant complementary information on tumor morphology. Known multi-modal breast tumor segmentation methods extracted 2D tumor features and used information from one modal to assist another. However, these methods were not conducive to fusing multi-modal information efficiently, or may even fuse interference information, due to the lack of effective information interaction management between different modalities. Besides, these methods did not consider the effect of small tumor characteristics on the segmentation results. In this paper, We propose a new inter-modality information interaction network to segment breast tumors in 3D multi-modal MRI. Our network employs a hierarchical structure to extract local information of small tumors, which facilitates precise segmentation of tumor boundaries. Under this structure, we present a 3D tiny object segmentation network based on DenseVoxNet to preserve the boundary details of the segmented tumors (especially for small tumors). Further, we introduce a bi-directional request-supply information interaction module between different modalities so that each modal can request helpful auxiliary information according to its own needs. Experiments on a clinical 3D multi-modal MRI breast tumor dataset show that our new 3D IMIIN is superior to state-of-the-art methods and attains better segmentation results, suggesting that our new method has a good clinical application prospect.
Collapse
|
23
|
de Carvalho Brito V, Dos Santos PRS, de Sales Carvalho NR, de Carvalho Filho AO. COVID-index: A texture-based approach to classifying lung lesions based on CT images. PATTERN RECOGNITION 2021; 119:108083. [PMID: 34121775 PMCID: PMC8180348 DOI: 10.1016/j.patcog.2021.108083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 05/22/2021] [Accepted: 05/27/2021] [Indexed: 06/02/2023]
Abstract
COVID-19 is an infectious disease caused by a newly discovered type of coronavirus called SARS-CoV-2. Since the discovery of this disease in late 2019, COVID-19 has become a worldwide concern, mainly due to its high degree of contagion. As of April 2021, the number of confirmed cases of COVID-19 reported to the World Health Organization has already exceeded 135 million worldwide, while the number of deaths exceeds 2.9 million. Due to the impacts of the disease, efforts in the literature have intensified in terms of studying approaches aiming to detect COVID-19, with a focus on supporting and facilitating the process of disease diagnosis. This work proposes the application of texture descriptors based on phylogenetic relationships between species to characterize segmented CT volumes, and the subsequent classification of regions into COVID-19, solid lesion or healthy tissue. To evaluate our method, we use images from three different datasets. The results are promising, with an accuracy of 99.93%, a recall of 99.93%, a precision of 99.93%, an F1-score of 99.93%, and an AUC of 0.997. We present a robust, simple, and efficient method that can be easily applied to 2D and/or 3D images without limitations on their dimensionality.
Collapse
Affiliation(s)
- Vitória de Carvalho Brito
- Department of Information Systems, Federal University of Piauí R. Cícero Duarte, 905, Junco, Picos 64607-670, PI, Brazil
- Department of Electrical Engineering, Federal University of Piauí - PI, Teresina, Brazil
| | - Patrick Ryan Sales Dos Santos
- Department of Information Systems, Federal University of Piauí R. Cícero Duarte, 905, Junco, Picos 64607-670, PI, Brazil
- Department of Electrical Engineering, Federal University of Piauí - PI, Teresina, Brazil
| | - Nonato Rodrigues de Sales Carvalho
- Department of Information Systems, Federal University of Piauí R. Cícero Duarte, 905, Junco, Picos 64607-670, PI, Brazil
- Department of Electrical Engineering, Federal University of Piauí - PI, Teresina, Brazil
| | - Antonio Oseas de Carvalho Filho
- Department of Information Systems, Federal University of Piauí R. Cícero Duarte, 905, Junco, Picos 64607-670, PI, Brazil
- Department of Electrical Engineering, Federal University of Piauí - PI, Teresina, Brazil
| |
Collapse
|
24
|
Shah FM, Joy SKS, Ahmed F, Hossain T, Humaira M, Ami AS, Paul S, Jim MARK, Ahmed S. A Comprehensive Survey of COVID-19 Detection Using Medical Images. SN COMPUTER SCIENCE 2021; 2:434. [PMID: 34485924 PMCID: PMC8401373 DOI: 10.1007/s42979-021-00823-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 08/16/2021] [Indexed: 12/24/2022]
Abstract
The outbreak of the Coronavirus disease 2019 (COVID-19) caused the death of a large number of people and declared as a pandemic by the World Health Organization. Millions of people are infected by this virus and are still getting infected every day. As the cost and required time of conventional Reverse Transcription Polymerase Chain Reaction (RT-PCR) tests to detect COVID-19 is uneconomical and excessive, researchers are trying to use medical images such as X-ray and Computed Tomography (CT) images to detect this disease with the help of Artificial Intelligence (AI)-based systems, to assist in automating the scanning procedure. In this paper, we reviewed some of these newly emerging AI-based models that can detect COVID-19 from X-ray or CT of lung images. We collected information about available research resources and inspected a total of 80 papers till June 20, 2020. We explored and analyzed data sets, preprocessing techniques, segmentation methods, feature extraction, classification, and experimental results which can be helpful for finding future research directions in the domain of automatic diagnosis of COVID-19 disease using AI-based frameworks. It is also reflected that there is a scarcity of annotated medical images/data sets of COVID-19 affected people, which requires enhancing, segmentation in preprocessing, and domain adaptation in transfer learning for a model, producing an optimal result in model performance. This survey can be the starting point for a novice/beginner level researcher to work on COVID-19 classification.
Collapse
Affiliation(s)
- Faisal Muhammad Shah
- Department of Computer Science and Engineering, Ahsanullah University of Science and Technology, Dhaka, Bangladesh
| | - Sajib Kumar Saha Joy
- Department of Computer Science and Engineering, Ahsanullah University of Science and Technology, Dhaka, Bangladesh
| | - Farzad Ahmed
- Department of Computer Science and Engineering, Ahsanullah University of Science and Technology, Dhaka, Bangladesh
| | - Tonmoy Hossain
- Department of Computer Science and Engineering, Ahsanullah University of Science and Technology, Dhaka, Bangladesh
| | - Mayeesha Humaira
- Department of Computer Science and Engineering, Ahsanullah University of Science and Technology, Dhaka, Bangladesh
| | - Amit Saha Ami
- Department of Computer Science and Engineering, Ahsanullah University of Science and Technology, Dhaka, Bangladesh
| | - Shimul Paul
- Department of Computer Science and Engineering, Ahsanullah University of Science and Technology, Dhaka, Bangladesh
| | - Md Abidur Rahman Khan Jim
- Department of Computer Science and Engineering, Ahsanullah University of Science and Technology, Dhaka, Bangladesh
| | - Sifat Ahmed
- Department of Computer Science and Engineering, Ahsanullah University of Science and Technology, Dhaka, Bangladesh
| |
Collapse
|
25
|
Alshazly H, Linse C, Abdalla M, Barth E, Martinetz T. COVID-Nets: deep CNN architectures for detecting COVID-19 using chest CT scans. PeerJ Comput Sci 2021; 7:e655. [PMID: 34401477 PMCID: PMC8330434 DOI: 10.7717/peerj-cs.655] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/09/2021] [Indexed: 05/10/2023]
Abstract
In this paper we propose two novel deep convolutional network architectures, CovidResNet and CovidDenseNet, to diagnose COVID-19 based on CT images. The models enable transfer learning between different architectures, which might significantly boost the diagnostic performance. Whereas novel architectures usually suffer from the lack of pretrained weights, our proposed models can be partly initialized with larger baseline models like ResNet50 and DenseNet121, which is attractive because of the abundance of public repositories. The architectures are utilized in a first experimental study on the SARS-CoV-2 CT-scan dataset, which contains 4173 CT images for 210 subjects structured in a subject-wise manner into three different classes. The models differentiate between COVID-19, non-COVID-19 viral pneumonia, and healthy samples. We also investigate their performance under three binary classification scenarios where we distinguish COVID-19 from healthy, COVID-19 from non-COVID-19 viral pneumonia, and non-COVID-19 from healthy, respectively. Our proposed models achieve up to 93.87% accuracy, 99.13% precision, 92.49% sensitivity, 97.73% specificity, 95.70% F1-score, and 96.80% AUC score for binary classification, and up to 83.89% accuracy, 80.36% precision, 82.04% sensitivity, 92.07% specificity, 81.05% F1-score, and 94.20% AUC score for the three-class classification tasks. We also validated our models on the COVID19-CT dataset to differentiate COVID-19 and other non-COVID-19 viral infections, and our CovidDenseNet model achieved the best performance with 81.77% accuracy, 79.05% precision, 84.69% sensitivity, 79.05% specificity, 81.77% F1-score, and 87.50% AUC score. The experimental results reveal the effectiveness of the proposed networks in automated COVID-19 detection where they outperform standard models on the considered datasets while being more efficient.
Collapse
Affiliation(s)
- Hammam Alshazly
- Institut für Neuro- und Bioinformatik, University of Lübeck, Lübeck, Germany
- Faculty of Computers and Information, South Valley University, Qena, Egypt
| | - Christoph Linse
- Institut für Neuro- und Bioinformatik, University of Lübeck, Lübeck, Germany
| | - Mohamed Abdalla
- Mathematics Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Mathematics Department, Faculty of Science, South Valley University, Qena, Egypt
| | - Erhardt Barth
- Institut für Neuro- und Bioinformatik, University of Lübeck, Lübeck, Germany
| | - Thomas Martinetz
- Institut für Neuro- und Bioinformatik, University of Lübeck, Lübeck, Germany
| |
Collapse
|
26
|
Dogan O, Tiwari S, Jabbar MA, Guggari S. A systematic review on AI/ML approaches against COVID-19 outbreak. COMPLEX INTELL SYST 2021; 7:2655-2678. [PMID: 34777970 PMCID: PMC8256231 DOI: 10.1007/s40747-021-00424-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 06/05/2021] [Indexed: 12/24/2022]
Abstract
A pandemic disease, COVID-19, has caused trouble worldwide by infecting millions of people. The studies that apply artificial intelligence (AI) and machine learning (ML) methods for various purposes against the COVID-19 outbreak have increased because of their significant advantages. Although AI/ML applications provide satisfactory solutions to COVID-19 disease, these solutions can have a wide diversity. This increase in the number of AI/ML studies and diversity in solutions can confuse deciding which AI/ML technique is suitable for which COVID-19 purposes. Because there is no comprehensive review study, this study systematically analyzes and summarizes related studies. A research methodology has been proposed to conduct the systematic literature review for framing the research questions, searching criteria and relevant data extraction. Finally, 264 studies were taken into account after following inclusion and exclusion criteria. This research can be regarded as a key element for epidemic and transmission prediction, diagnosis and detection, and drug/vaccine development. Six research questions are explored with 50 AI/ML approaches in COVID-19, 8 AI/ML methods for patient outcome prediction, 14 AI/ML techniques in disease predictions, along with five AI/ML methods for risk assessment of COVID-19. It also covers AI/ML method in drug development, vaccines for COVID-19, models in COVID-19, datasets and their usage and dataset applications with AI/ML.
Collapse
Affiliation(s)
- Onur Dogan
- Department of Industrial Engineering, Izmir Bakircay University, 35665 Izmir, Turkey
- Research Center for Data Analytics and Spatial Data Modeling (RC-DAS), Izmir Bakircay University, 35665 Izmir, Turkey
| | - Sanju Tiwari
- Department of Computer Science, Universidad Autonoma de Tamaulipas, Ciudad Victoria, Mexico
| | - M. A. Jabbar
- Vardhaman College of Engineering, Kacharam, India
| | | |
Collapse
|
27
|
Kugunavar S, Prabhakar CJ. Convolutional neural networks for the diagnosis and prognosis of the coronavirus disease pandemic. Vis Comput Ind Biomed Art 2021; 4:12. [PMID: 33950399 PMCID: PMC8097673 DOI: 10.1186/s42492-021-00078-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/19/2021] [Indexed: 12/21/2022] Open
Abstract
A neural network is one of the current trends in deep learning, which is increasingly gaining attention owing to its contribution in transforming the different facets of human life. It also paves a way to approach the current crisis caused by the coronavirus disease (COVID-19) from all scientific directions. Convolutional neural network (CNN), a type of neural network, is extensively applied in the medical field, and is particularly useful in the current COVID-19 pandemic. In this article, we present the application of CNNs for the diagnosis and prognosis of COVID-19 using X-ray and computed tomography (CT) images of COVID-19 patients. The CNN models discussed in this review were mainly developed for the detection, classification, and segmentation of COVID-19 images. The base models used for detection and classification were AlexNet, Visual Geometry Group Network with 16 layers, residual network, DensNet, GoogLeNet, MobileNet, Inception, and extreme Inception. U-Net and voxel-based broad learning network were used for segmentation. Even with limited datasets, these methods proved to be beneficial for efficiently identifying the occurrence of COVID-19. To further validate these observations, we conducted an experimental study using a simple CNN framework for the binary classification of COVID-19 CT images. We achieved an accuracy of 93% with an F1-score of 0.93. Thus, with the availability of improved medical image datasets, it is evident that CNNs are very useful for the efficient diagnosis and prognosis of COVID-19.
Collapse
Affiliation(s)
- Sneha Kugunavar
- Department of Computer Science, Kuvempu University, Shimoga, Karnataka, 577451, India.
| | - C J Prabhakar
- Department of Computer Science, Kuvempu University, Shimoga, Karnataka, 577451, India
| |
Collapse
|
28
|
Shahid O, Nasajpour M, Pouriyeh S, Parizi RM, Han M, Valero M, Li F, Aledhari M, Sheng QZ. Machine learning research towards combating COVID-19: Virus detection, spread prevention, and medical assistance. J Biomed Inform 2021; 117:103751. [PMID: 33771732 PMCID: PMC7987503 DOI: 10.1016/j.jbi.2021.103751] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/06/2021] [Accepted: 03/11/2021] [Indexed: 12/15/2022]
Abstract
COVID-19 was first discovered in December 2019 and has continued to rapidly spread across countries worldwide infecting thousands and millions of people. The virus is deadly, and people who are suffering from prior illnesses or are older than the age of 60 are at a higher risk of mortality. Medicine and Healthcare industries have surged towards finding a cure, and different policies have been amended to mitigate the spread of the virus. While Machine Learning (ML) methods have been widely used in other domains, there is now a high demand for ML-aided diagnosis systems for screening, tracking, predicting the spread of COVID-19 and finding a cure against it. In this paper, we present a journey of what role ML has played so far in combating the virus, mainly looking at it from a screening, forecasting, and vaccine perspective. We present a comprehensive survey of the ML algorithms and models that can be used on this expedition and aid with battling the virus.
Collapse
Affiliation(s)
- Osama Shahid
- Department of Information Technology, Kennesaw State University, Marietta, GA, USA.
| | - Mohammad Nasajpour
- Department of Information Technology, Kennesaw State University, Marietta, GA, USA.
| | - Seyedamin Pouriyeh
- Department of Information Technology, Kennesaw State University, Marietta, GA, USA.
| | - Reza M Parizi
- Department of Software Engineering and Game Development, Kennesaw State University, Marietta, GA, USA.
| | - Meng Han
- Department of Information Technology, Kennesaw State University, Marietta, GA, USA.
| | - Maria Valero
- Department of Information Technology, Kennesaw State University, Marietta, GA, USA.
| | - Fangyu Li
- Department of Electrical and Computer Engineering, Kennesaw State University, Marietta, GA, USA.
| | - Mohammed Aledhari
- Department of Computer Science, Kennesaw State University, Marietta, GA, USA.
| | - Quan Z Sheng
- Department of Computing, Macquarie University, Sydney, Australia.
| |
Collapse
|
29
|
Soomro TA, Zheng L, Afifi AJ, Ali A, Yin M, Gao J. Artificial intelligence (AI) for medical imaging to combat coronavirus disease (COVID-19): a detailed review with direction for future research. Artif Intell Rev 2021; 55:1409-1439. [PMID: 33875900 PMCID: PMC8047522 DOI: 10.1007/s10462-021-09985-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Since early 2020, the whole world has been facing the deadly and highly contagious disease named coronavirus disease (COVID-19) and the World Health Organization declared the pandemic on 11 March 2020. Over 23 million positive cases of COVID-19 have been reported till late August 2020. Medical images such as chest X-rays and Computed Tomography scans are becoming one of the main leading clinical diagnosis tools in fighting against COVID-19, underpinned by Artificial Intelligence based techniques, resulting in rapid decision-making in saving lives. This article provides an extensive review of AI-based methods to assist medical practitioners with comprehensive knowledge of the efficient AI-based methods for efficient COVID-19 diagnosis. Nearly all the reported methods so far along with their pros and cons as well as recommendations for improvements are discussed, including image acquisition, segmentation, classification, and follow-up diagnosis phases developed between 2019 and 2020. AI and machine learning technologies have boosted the accuracy of Covid-19 diagnosis, and most of the widely used deep learning methods have been implemented and worked well with a small amount of data for COVID-19 diagnosis. This review presents a detailed mythological analysis for the evaluation of AI-based methods used in the process of detecting COVID-19 from medical images. However, due to the quick outbreak of Covid-19, there are not many ground-truth datasets available for the communities. It is necessary to combine clinical experts' observations and information from images to have a reliable and efficient COVID-19 diagnosis. This paper suggests that future research may focus on multi-modality based models as well as how to select the best model architecture where AI can introduce more intelligence to medical systems to capture the characteristics of diseases by learning from multi-modality data to obtain reliable results for COVID-19 diagnosis for timely treatment .
Collapse
Affiliation(s)
- Toufique A. Soomro
- Department of Electronic Engineering, Quaid-e-Awam University of Engineering, Science and Technology, Nawabshah, Sindh Pakistan
| | - Lihong Zheng
- School of Computing and Mathematics, Charles Sturt University, Wagga Wagga, Australia
| | - Ahmed J. Afifi
- Computer Vision and Remote Sensing, Technische Universität Berlin, Berlin, Germany
| | - Ahmed Ali
- Eletrical Engineering Department, Sukkur IBA University, Sukkur, Pakistan
| | - Ming Yin
- School of Automation, Guangdong University of Technology, Guangzhou, China
| | - Junbin Gao
- Discipline of Business Analytics in Business School, The University of Sydney, Sydney, Australia
| |
Collapse
|
30
|
Mohammad-Rahimi H, Nadimi M, Ghalyanchi-Langeroudi A, Taheri M, Ghafouri-Fard S. Application of Machine Learning in Diagnosis of COVID-19 Through X-Ray and CT Images: A Scoping Review. Front Cardiovasc Med 2021; 8:638011. [PMID: 33842563 PMCID: PMC8027078 DOI: 10.3389/fcvm.2021.638011] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 02/23/2021] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease, first detected in late 2019 (COVID-19), has spread fast throughout the world, leading to high mortality. This condition can be diagnosed using RT-PCR technique on nasopharyngeal and throat swabs with sensitivity values ranging from 30 to 70%. However, chest CT scans and X-ray images have been reported to have sensitivity values of 98 and 69%, respectively. The application of machine learning methods on CT and X-ray images has facilitated the accurate diagnosis of COVID-19. In this study, we reviewed studies which used machine and deep learning methods on chest X-ray images and CT scans for COVID-19 diagnosis and compared their performance. The accuracy of these methods ranged from 76% to more than 99%, indicating the applicability of machine and deep learning methods in the clinical diagnosis of COVID-19.
Collapse
Affiliation(s)
- Hossein Mohammad-Rahimi
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohadeseh Nadimi
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Research Center for Biomedical Technologies and Robotics (RCBTR), Tehran, Iran
| | - Azadeh Ghalyanchi-Langeroudi
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Research Center for Biomedical Technologies and Robotics (RCBTR), Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Ahmad F, Farooq A, Ghani MU. Deep Ensemble Model for Classification of Novel Coronavirus in Chest X-Ray Images. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2021; 2021:8890226. [PMID: 33488691 PMCID: PMC7805527 DOI: 10.1155/2021/8890226] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/22/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022]
Abstract
The novel coronavirus, SARS-CoV-2, can be deadly to people, causing COVID-19. The ease of its propagation, coupled with its high capacity for illness and death in infected individuals, makes it a hazard to the community. Chest X-rays are one of the most common but most difficult to interpret radiographic examination for early diagnosis of coronavirus-related infections. They carry a considerable amount of anatomical and physiological information, but it is sometimes difficult even for the expert radiologist to derive the related information they contain. Automatic classification using deep learning models can help in better assessing these infections swiftly. Deep CNN models, namely, MobileNet, ResNet50, and InceptionV3, were applied with different variations, including training the model from the start, fine-tuning along with adjusting learned weights of all layers, and fine-tuning with learned weights along with augmentation. Fine-tuning with augmentation produced the best results in pretrained models. Out of these, two best-performing models (MobileNet and InceptionV3) selected for ensemble learning produced accuracy and FScore of 95.18% and 90.34%, and 95.75% and 91.47%, respectively. The proposed hybrid ensemble model generated with the merger of these deep models produced a classification accuracy and FScore of 96.49% and 92.97%. For test dataset, which was separately kept, the model generated accuracy and FScore of 94.19% and 88.64%. Automatic classification using deep ensemble learning can help radiologists in the correct identification of coronavirus-related infections in chest X-rays. Consequently, this swift and computer-aided diagnosis can help in saving precious human lives and minimizing the social and economic impact on society.
Collapse
Affiliation(s)
- Fareed Ahmad
- Department of Computer Science, University of Engineering and Technology, Lahore 54890, Pakistan
- Quality Operations Laboratory, Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Amjad Farooq
- Department of Computer Science, University of Engineering and Technology, Lahore 54890, Pakistan
| | - Muhammad Usman Ghani
- Department of Computer Science, University of Engineering and Technology, Lahore 54890, Pakistan
| |
Collapse
|
32
|
Tayarani N MH. Applications of artificial intelligence in battling against covid-19: A literature review. CHAOS, SOLITONS, AND FRACTALS 2021; 142:110338. [PMID: 33041533 PMCID: PMC7532790 DOI: 10.1016/j.chaos.2020.110338] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/01/2020] [Indexed: 05/14/2023]
Abstract
Colloquially known as coronavirus, the Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2), that causes CoronaVirus Disease 2019 (COVID-19), has become a matter of grave concern for every country around the world. The rapid growth of the pandemic has wreaked havoc and prompted the need for immediate reactions to curb the effects. To manage the problems, many research in a variety of area of science have started studying the issue. Artificial Intelligence is among the area of science that has found great applications in tackling the problem in many aspects. Here, we perform an overview on the applications of AI in a variety of fields including diagnosis of the disease via different types of tests and symptoms, monitoring patients, identifying severity of a patient, processing covid-19 related imaging tests, epidemiology, pharmaceutical studies, etc. The aim of this paper is to perform a comprehensive survey on the applications of AI in battling against the difficulties the outbreak has caused. Thus we cover every way that AI approaches have been employed and to cover all the research until the writing of this paper. We try organize the works in a way that overall picture is comprehensible. Such a picture, although full of details, is very helpful in understand where AI sits in current pandemonium. We also tried to conclude the paper with ideas on how the problems can be tackled in a better way and provide some suggestions for future works.
Collapse
Affiliation(s)
- Mohammad-H Tayarani N
- Biocomputation Group, School of Computer Science, University of Hertfordshire, Hatfield, AL10 9AB, United Kingdom
| |
Collapse
|
33
|
Classification of COVID-19 in CT Scans Using Image Smoothing and Improved Deep Residual Network. ARTIF INTELL 2021. [DOI: 10.1007/978-3-030-93046-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
34
|
Zhu X, Song B, Shi F, Chen Y, Hu R, Gan J, Zhang W, Li M, Wang L, Gao Y, Shan F, Shen D. Joint prediction and time estimation of COVID-19 developing severe symptoms using chest CT scan. Med Image Anal 2021; 67:101824. [PMID: 33091741 PMCID: PMC7547024 DOI: 10.1016/j.media.2020.101824] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 08/23/2020] [Accepted: 09/25/2020] [Indexed: 02/08/2023]
Abstract
With the rapidly worldwide spread of Coronavirus disease (COVID-19), it is of great importance to conduct early diagnosis of COVID-19 and predict the conversion time that patients possibly convert to the severe stage, for designing effective treatment plans and reducing the clinicians' workloads. In this study, we propose a joint classification and regression method to determine whether the patient would develop severe symptoms in the later time formulated as a classification task, and if yes, the conversion time will be predicted formulated as a classification task. To do this, the proposed method takes into account 1) the weight for each sample to reduce the outliers' influence and explore the problem of imbalance classification, and 2) the weight for each feature via a sparsity regularization term to remove the redundant features of the high-dimensional data and learn the shared information across two tasks, i.e., the classification and the regression. To our knowledge, this study is the first work to jointly predict the disease progression and the conversion time, which could help clinicians to deal with the potential severe cases in time or even save the patients' lives. Experimental analysis was conducted on a real data set from two hospitals with 408 chest computed tomography (CT) scans. Results show that our method achieves the best classification (e.g., 85.91% of accuracy) and regression (e.g., 0.462 of the correlation coefficient) performance, compared to all comparison methods. Moreover, our proposed method yields 76.97% of accuracy for predicting the severe cases, 0.524 of the correlation coefficient, and 0.55 days difference for the conversion time.
Collapse
Affiliation(s)
- Xiaofeng Zhu
- Center for Future Media and school of computer science and technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Bin Song
- Department of Radiology, Sichuan University West China Hospital, Chengdu 610041, China.
| | - Feng Shi
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai 200232, China
| | - Yanbo Chen
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai 200232, China
| | - Rongyao Hu
- Center for Future Media and school of computer science and technology, University of Electronic Science and Technology of China, Chengdu 611731, China; School of Natural and Computational Sciences, Massey University Auckland, Auckland 0745, New Zealand
| | - Jiangzhang Gan
- Center for Future Media and school of computer science and technology, University of Electronic Science and Technology of China, Chengdu 611731, China; School of Natural and Computational Sciences, Massey University Auckland, Auckland 0745, New Zealand
| | - Wenhai Zhang
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai 200232, China
| | - Man Li
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai 200232, China
| | - Liye Wang
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai 200232, China
| | - Yaozong Gao
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai 200232, China
| | - Fei Shan
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China.
| | - Dinggang Shen
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai 200232, China; School of Biomedical Engineering, ShanghaiTech University, Shanghai 201210, China; Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
35
|
Rasheed J, Jamil A, Hameed AA, Aftab U, Aftab J, Shah SA, Draheim D. A survey on artificial intelligence approaches in supporting frontline workers and decision makers for the COVID-19 pandemic. CHAOS, SOLITONS, AND FRACTALS 2020; 141:110337. [PMID: 33071481 PMCID: PMC7547637 DOI: 10.1016/j.chaos.2020.110337] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/01/2020] [Indexed: 05/04/2023]
Abstract
While the world has experience with many different types of infectious diseases, the current crisis related to the spread of COVID-19 has challenged epidemiologists and public health experts alike, leading to a rapid search for, and development of, new and innovative solutions to combat its spread. The transmission of this virus has infected more than 18.92 million people as of August 6, 2020, with over half a million deaths across the globe; the World Health Organization (WHO) has declared this a global pandemic. A multidisciplinary approach needs to be followed for diagnosis, treatment and tracking, especially between medical and computer sciences, so, a common ground is available to facilitate the research work at a faster pace. With this in mind, this survey paper aimed to explore and understand how and which different technological tools and techniques have been used within the context of COVID-19. The primary contribution of this paper is in its collation of the current state-of-the-art technological approaches applied to the context of COVID-19, and doing this in a holistic way, covering multiple disciplines and different perspectives. The analysis is widened by investigating Artificial Intelligence (AI) approaches for the diagnosis, anticipate infection and mortality rate by tracing contacts and targeted drug designing. Moreover, the impact of different kinds of medical data used in diagnosis, prognosis and pandemic analysis is also provided. This review paper covers both medical and technological perspectives to facilitate the virologists, AI researchers and policymakers while in combating the COVID-19 outbreak.
Collapse
Affiliation(s)
- Jawad Rasheed
- Department of Computer Engineering, Istanbul Sabahattin Zaim University, Istanbul 34303, Turkey
| | - Akhtar Jamil
- Department of Computer Engineering, Istanbul Sabahattin Zaim University, Istanbul 34303, Turkey
| | - Alaa Ali Hameed
- Department of Computer Engineering, Istanbul Sabahattin Zaim University, Istanbul 34303, Turkey
| | - Usman Aftab
- Department of Pharmacology, University of Health Sciences, Lahore 54700, Pakistan
| | - Javaria Aftab
- Department of Chemistry, Istanbul Technical University, Istanbul 34467, Turkey
| | - Syed Attique Shah
- Department of IT, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta 87300, Pakistan
| | - Dirk Draheim
- Information Systems Group, Tallinn University of Technology, Akadeemia tee 15a, 12618, Tallinn, Estonia
| |
Collapse
|
36
|
Abstract
Covid-19 is a rapidly spreading viral disease that infects not only humans, but animals are also infected because of this disease. The daily life of human beings, their health, and the economy of a country are affected due to this deadly viral disease. Covid-19 is a common spreading disease, and till now, not a single country can prepare a vaccine for COVID-19. A clinical study of COVID-19 infected patients has shown that these types of patients are mostly infected from a lung infection after coming in contact with this disease. Chest x-ray (i.e., radiography) and chest CT are a more effective imaging technique for diagnosing lunge related problems. Still, a substantial chest x-ray is a lower cost process in comparison to chest CT. Deep learning is the most successful technique of machine learning, which provides useful analysis to study a large amount of chest x-ray images that can critically impact on screening of Covid-19. In this work, we have taken the PA view of chest x-ray scans for covid-19 affected patients as well as healthy patients. After cleaning up the images and applying data augmentation, we have used deep learning-based CNN models and compared their performance. We have compared Inception V3, Xception, and ResNeXt models and examined their accuracy. To analyze the model performance, 6432 chest x-ray scans samples have been collected from the Kaggle repository, out of which 5467 were used for training and 965 for validation. In result analysis, the Xception model gives the highest accuracy (i.e., 97.97%) for detecting Chest X-rays images as compared to other models. This work only focuses on possible methods of classifying covid-19 infected patients and does not claim any medical accuracy.
Collapse
|
37
|
Canayaz M. MH-COVIDNet: Diagnosis of COVID-19 using deep neural networks and meta-heuristic-based feature selection on X-ray images. Biomed Signal Process Control 2020; 64:102257. [PMID: 33042210 PMCID: PMC7538100 DOI: 10.1016/j.bspc.2020.102257] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/29/2020] [Accepted: 10/04/2020] [Indexed: 12/24/2022]
Abstract
COVID-19 is a disease that causes symptoms in the lungs and causes deaths around the world. Studies are ongoing for the diagnosis and treatment of this disease, which is defined as a pandemic. Early diagnosis of this disease is important for human life. This process is progressing rapidly with diagnostic studies based on deep learning. Therefore, to contribute to this field, a deep learning-based approach that can be used for early diagnosis of the disease is proposed in our study. In this approach, a data set consisting of 3 classes of COVID19, normal and pneumonia lung X-ray images was created, with each class containing 364 images. Pre-processing was performed using the image contrast enhancement algorithm on the prepared data set and a new data set was obtained. Feature extraction was completed from this data set with deep learning models such as AlexNet, VGG19, GoogleNet, and ResNet. For the selection of the best potential features, two metaheuristic algorithms of binary particle swarm optimization and binary gray wolf optimization were used. After combining the features obtained in the feature selection of the enhancement data set, they were classified using SVM. The overall accuracy of the proposed approach was obtained as 99.38%. The results obtained by verification with two different metaheuristic algorithms proved that the approach we propose can help experts during COVID-19 diagnostic studies.
Collapse
Affiliation(s)
- Murat Canayaz
- Computer Engineering Department, Engineering Faculty, Van Yuzuncu Yil University, 65000, Van, Turkey
| |
Collapse
|
38
|
Swapnarekha H, Behera HS, Nayak J, Naik B. Role of intelligent computing in COVID-19 prognosis: A state-of-the-art review. CHAOS, SOLITONS, AND FRACTALS 2020; 138:109947. [PMID: 32836916 PMCID: PMC7256553 DOI: 10.1016/j.chaos.2020.109947] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 05/26/2020] [Indexed: 05/09/2023]
Abstract
The World Health Organization (WHO) declared novel coronavirus 2019 (COVID-19), an infectious epidemic caused by SARS-CoV-2, as Pandemic in March 2020. It has affected more than 40 million people in 216 countries. Almost in all the affected countries, the number of infected and deceased patients has been enhancing at a distressing rate. As the early prediction can reduce the spread of the virus, it is highly desirable to have intelligent prediction and diagnosis tools. The inculcation of efficient forecasting and prediction models may assist the government in implementing better design strategies to prevent the spread of virus. In this paper, a state-of-the-art analysis of the ongoing machine learning (ML) and deep learning (DL) methods in the diagnosis and prediction of COVID-19 has been done. Moreover, a comparative analysis on the impact of machine learning and other competitive approaches like mathematical and statistical models on COVID-19 problem has been conducted. In this study, some factors such as type of methods(machine learning, deep learning, statistical & mathematical) and the impact of COVID research on the nature of data used for the forecasting and prediction of pandemic using computing approaches has been presented. Finally some important research directions for further research on COVID-19 are highlighted which may facilitate the researchers and technocrats to develop competent intelligent models for the prediction and forecasting of COVID-19 real time data.
Collapse
Affiliation(s)
- H Swapnarekha
- Department of Information Technology, Veer Surendra Sai University of Technology (VSSUT), Burla, Sambalpur-768018, Odisha, India
| | - Himansu Sekhar Behera
- Department of Information Technology, Veer Surendra Sai University of Technology (VSSUT), Burla, Sambalpur-768018, Odisha, India
| | - Janmenjoy Nayak
- Department of Computer Science and Engineering, Aditya Institute of Technology and Management (AITAM), Tekkali, Andhra Pradesh 532201, India
| | - Bighnaraj Naik
- Department of Computer Application, Veer Surendra Sai University of Technology (VSSUT), Burla, Sambalpur-768018, Odisha, India
| |
Collapse
|