1
|
Rogalska ME, Mancini E, Bonnal S, Gohr A, Dunyak BM, Arecco N, Smith PG, Vaillancourt FH, Valcárcel J. Transcriptome-wide splicing network reveals specialized regulatory functions of the core spliceosome. Science 2024; 386:551-560. [PMID: 39480945 DOI: 10.1126/science.adn8105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 09/19/2024] [Indexed: 11/02/2024]
Abstract
The spliceosome is the complex molecular machinery that sequentially assembles on eukaryotic messenger RNA precursors to remove introns (pre-mRNA splicing), a physiologically regulated process altered in numerous pathologies. We report transcriptome-wide analyses upon systematic knock down of 305 spliceosome components and regulators in human cancer cells and the reconstruction of functional splicing factor networks that govern different classes of alternative splicing decisions. The results disentangle intricate circuits of splicing factor cross-regulation, reveal that the precise architecture of late-assembling U4/U6.U5 tri-small nuclear ribonucleoprotein (snRNP) complexes regulates splice site pairing, and discover an unprecedented division of labor among protein components of U1 snRNP for regulating exon definition and alternative 5' splice site selection. Thus, we provide a resource to explore physiological and pathological mechanisms of splicing regulation.
Collapse
Affiliation(s)
- Malgorzata E Rogalska
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Estefania Mancini
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Sophie Bonnal
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - André Gohr
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Niccolò Arecco
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | | | - Juan Valcárcel
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
2
|
Castellá M, Mestres-Arenas A, Gavaldà-Navarro A, Blasco-Roset A, Quesada-López T, Romero-Carramiñana I, Giralt M, Villarroya F, Cereijo R. The splicing factor SF3B1 is involved in brown adipocyte thermogenic activation. Biochem Pharmacol 2024; 220:116014. [PMID: 38158020 DOI: 10.1016/j.bcp.2023.116014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
The ability of alternative splicing mechanisms to control gene expression is increasingly being recognized as relevant for adipose tissue function. The expression of SF3B1, a key component of the SF3B complex directly involved in spliceosome formation, was previously reported to be significantly induced in brown adipose tissue under cold-induced thermogenic activation. Here, we identify that noradrenergic cAMP-mediated thermogenic stimulation increases SF3B1 expression in brown and beige adipocytes. We further show that pladienolide-B, a drug that binds SF3B1 to inhibit pre-mRNA splicing by targeting the SF3B complex, down-regulates key components of the thermogenic machinery (e.g., UCP1 gene expression), differentially alters the expression of alternative splicing-regulated transcripts encoding molecular actors involved in the oxidative metabolism of brown adipocytes (e.g., peroxisome proliferator-activated receptor-gamma co-activator-alpha [PGC-1α] and cytochrome oxidase subunit 7a genes), and impairs the respiratory activity of brown adipocytes. Similar alterations were found in brown adipocytes with siRNA-mediated knockdown of SF3B1 protein levels. Our findings collectively indicate that SF3B1 is a key factor in the appropriate thermogenic activation of differentiated brown adipocytes. This work exemplifies the importance of splicing processes in adaptive thermogenesis and suggests that pharmacological tools, such as pladienolide-B, may be used to modulate brown adipocyte thermogenic activity.
Collapse
Affiliation(s)
- Moisés Castellá
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona; Institut de Biomedicina de la Universitat de Barcelona (IBUB); and Institut de Recerca de Sant Joan de Déu, 08028 Barcelona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, 28029 Madrid, Spain
| | - Alberto Mestres-Arenas
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona; Institut de Biomedicina de la Universitat de Barcelona (IBUB); and Institut de Recerca de Sant Joan de Déu, 08028 Barcelona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, 28029 Madrid, Spain
| | - Aleix Gavaldà-Navarro
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona; Institut de Biomedicina de la Universitat de Barcelona (IBUB); and Institut de Recerca de Sant Joan de Déu, 08028 Barcelona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, 28029 Madrid, Spain
| | - Albert Blasco-Roset
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona; Institut de Biomedicina de la Universitat de Barcelona (IBUB); and Institut de Recerca de Sant Joan de Déu, 08028 Barcelona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, 28029 Madrid, Spain
| | - Tania Quesada-López
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona; Institut de Biomedicina de la Universitat de Barcelona (IBUB); and Institut de Recerca de Sant Joan de Déu, 08028 Barcelona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, 28029 Madrid, Spain; Institut d'Investigació Biomèdica Sant Pau (IIB-SANT PAU), and Department of Infectious Diseases, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| | - Inés Romero-Carramiñana
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona; Institut de Biomedicina de la Universitat de Barcelona (IBUB); and Institut de Recerca de Sant Joan de Déu, 08028 Barcelona, Spain; Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM); Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid; and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII, 28049 Madrid, Spain
| | - Marta Giralt
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona; Institut de Biomedicina de la Universitat de Barcelona (IBUB); and Institut de Recerca de Sant Joan de Déu, 08028 Barcelona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, 28029 Madrid, Spain
| | - Francesc Villarroya
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona; Institut de Biomedicina de la Universitat de Barcelona (IBUB); and Institut de Recerca de Sant Joan de Déu, 08028 Barcelona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, 28029 Madrid, Spain.
| | - Rubén Cereijo
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona; Institut de Biomedicina de la Universitat de Barcelona (IBUB); and Institut de Recerca de Sant Joan de Déu, 08028 Barcelona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, 28029 Madrid, Spain.
| |
Collapse
|
3
|
Diaba-Nuhoho P. Plant homeodomain-finger protein 5A: A key player in cancer progression. Biomed Pharmacother 2023; 169:115857. [PMID: 37951028 DOI: 10.1016/j.biopha.2023.115857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/31/2023] [Accepted: 11/05/2023] [Indexed: 11/13/2023] Open
Abstract
PHF5A is a member of the zinc-finger proteins. To advance knowledge on their role in carcinogenesis, data from experimental studies, animal models and clinical studies in different tumorigenesis have been reviewed. Furthermore, PHF5A as an oncogenic function, is frequently high expressed in tumor cells and a potential prognostic marker for different cancers. PHF5A is implicated in the regulation of cancer cell proliferation, invasion, migration and metastasis. Knockdown of PHF5A prevented the invasion and metastasis of tumor cells. Here, the role of PHF5A in different cancers and their possible mechanism in relation to recent literature is reviewed and discussed. There is an open promising perspective to their therapeutic management for different cancer types.
Collapse
Affiliation(s)
- Patrick Diaba-Nuhoho
- Department of Paediatric and Adolescent Medicine, Paediatric Haematology and Oncology, University Hospital Münster, Germany.
| |
Collapse
|
4
|
Harms FL, Dingemans AJM, Hempel M, Pfundt R, Bierhals T, Casar C, Müller C, Niermeijer JMF, Fischer J, Jahn A, Hübner C, Majore S, Agolini E, Novelli A, van der Smagt J, Ernst R, van Binsbergen E, Mancini GMS, van Slegtenhorst M, Barakat TS, Wakeling EL, Kamath A, Downie L, Pais L, White SM, de Vries BBA, Kutsche K. De novo PHF5A variants are associated with craniofacial abnormalities, developmental delay, and hypospadias. Genet Med 2023; 25:100927. [PMID: 37422718 DOI: 10.1016/j.gim.2023.100927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/10/2023] Open
Abstract
PURPOSE The SF3B splicing complex is composed of SF3B1-6 and PHF5A. We report a developmental disorder caused by de novo variants in PHF5A. METHODS Clinical, genomic, and functional studies using subject-derived fibroblasts and a heterologous cellular system were performed. RESULTS We studied 9 subjects with congenital malformations, including preauricular tags and hypospadias, growth abnormalities, and developmental delay who had de novo heterozygous PHF5A variants, including 4 loss-of-function (LOF), 3 missense, 1 splice, and 1 start-loss variant. In subject-derived fibroblasts with PHF5A LOF variants, wild-type and variant PHF5A mRNAs had a 1:1 ratio, and PHF5A mRNA levels were normal. Transcriptome sequencing revealed alternative promoter use and downregulated genes involved in cell-cycle regulation. Subject and control fibroblasts had similar amounts of PHF5A with the predicted wild-type molecular weight and of SF3B1-3 and SF3B6. SF3B complex formation was unaffected in 2 subject cell lines. CONCLUSION Our data suggest the existence of feedback mechanisms in fibroblasts with PHF5A LOF variants to maintain normal levels of SF3B components. These compensatory mechanisms in subject fibroblasts with PHF5A or SF3B4 LOF variants suggest disturbed autoregulation of mutated splicing factor genes in specific cell types, that is, neural crest cells, during embryonic development rather than haploinsufficiency as pathomechanism.
Collapse
Affiliation(s)
- Frederike L Harms
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander J M Dingemans
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maja Hempel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany
| | - Rolph Pfundt
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tatjana Bierhals
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Casar
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Müller
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Jan Fischer
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Arne Jahn
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Christoph Hübner
- Department of Neuropaediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Silvia Majore
- Division of Medical Genetics, Department of Experimental Medicine, San Camillo-Forlanini Hospital, Sapienza University, Rome, Italy
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Jasper van der Smagt
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Robert Ernst
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Ellen van Binsbergen
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Grazia M S Mancini
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Marjon van Slegtenhorst
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands; Discovery Unit, Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Emma L Wakeling
- North East Thames Regional Genetic Service, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, United Kingdom
| | - Arveen Kamath
- All Wales Medical Genomics Service/ Pennaeth Labordy Genomeg Cymru Gyfan, University Hospital of Wales, Heath Park, Cardiff, United Kingdom
| | - Lilian Downie
- Victorian Clinical Genetics Service, Murdoch Children's Research Institute, VIC; Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Lynn Pais
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Susan M White
- Victorian Clinical Genetics Service, Murdoch Children's Research Institute, VIC; Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Bert B A de Vries
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
5
|
Lazear MR, Remsberg JR, Jaeger MG, Rothamel K, Her HL, DeMeester KE, Njomen E, Hogg SJ, Rahman J, Whitby LR, Won SJ, Schafroth MA, Ogasawara D, Yokoyama M, Lindsey GL, Li H, Germain J, Barbas S, Vaughan J, Hanigan TW, Vartabedian VF, Reinhardt CJ, Dix MM, Koo SJ, Heo I, Teijaro JR, Simon GM, Ghosh B, Abdel-Wahab O, Ahn K, Saghatelian A, Melillo B, Schreiber SL, Yeo GW, Cravatt BF. Proteomic discovery of chemical probes that perturb protein complexes in human cells. Mol Cell 2023; 83:1725-1742.e12. [PMID: 37084731 PMCID: PMC10198961 DOI: 10.1016/j.molcel.2023.03.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/09/2023] [Accepted: 03/28/2023] [Indexed: 04/23/2023]
Abstract
Most human proteins lack chemical probes, and several large-scale and generalizable small-molecule binding assays have been introduced to address this problem. How compounds discovered in such "binding-first" assays affect protein function, nonetheless, often remains unclear. Here, we describe a "function-first" proteomic strategy that uses size exclusion chromatography (SEC) to assess the global impact of electrophilic compounds on protein complexes in human cells. Integrating the SEC data with cysteine-directed activity-based protein profiling identifies changes in protein-protein interactions that are caused by site-specific liganding events, including the stereoselective engagement of cysteines in PSME1 and SF3B1 that disrupt the PA28 proteasome regulatory complex and stabilize a dynamic state of the spliceosome, respectively. Our findings thus show how multidimensional proteomic analysis of focused libraries of electrophilic compounds can expedite the discovery of chemical probes with site-specific functional effects on protein complexes in human cells.
Collapse
Affiliation(s)
- Michael R Lazear
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA
| | | | - Martin G Jaeger
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA
| | - Katherine Rothamel
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Hsuan-Lin Her
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | - Evert Njomen
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA
| | - Simon J Hogg
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Jahan Rahman
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Landon R Whitby
- Vividion Therapeutics, 5820 Nancy Ridge Drive, San Diego, CA 92121, USA
| | - Sang Joon Won
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA
| | | | | | - Minoru Yokoyama
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA
| | | | - Haoxin Li
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA
| | - Jason Germain
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA
| | - Sabrina Barbas
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA
| | - Joan Vaughan
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Thomas W Hanigan
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA
| | - Vincent F Vartabedian
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | | | - Melissa M Dix
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA
| | - Seong Joo Koo
- Molecular and Cellular Pharmacology, Discovery Technologies and Molecular Pharmacology, Janssen Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Inha Heo
- Molecular and Cellular Pharmacology, Discovery Technologies and Molecular Pharmacology, Janssen Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - John R Teijaro
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Gabriel M Simon
- Vividion Therapeutics, 5820 Nancy Ridge Drive, San Diego, CA 92121, USA
| | - Brahma Ghosh
- Discovery Chemistry, Janssen Research & Development, Spring House, PA 19477, USA
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Kay Ahn
- Molecular and Cellular Pharmacology, Discovery Technologies and Molecular Pharmacology, Janssen Research and Development, Spring House, PA 19477, USA
| | - Alan Saghatelian
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Bruno Melillo
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA; Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02142, USA
| | - Stuart L Schreiber
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02142, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | | |
Collapse
|