1
|
Russo D, Spina A, Portella L, Bello AM, Galdiero F, Trotta AM, Ieranò C, Rea G, Cecere SC, Coppola E, Di Maro S, Pignata S, Califano D, Scala S. The CXCR4 antagonist R54 targets epithelial-mesenchymal transition (EMT) in human ovarian cancer cells. PLoS One 2024; 19:e0314735. [PMID: 39700131 DOI: 10.1371/journal.pone.0314735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/14/2024] [Indexed: 12/21/2024] Open
Abstract
The axis CXCL12-CXCR4 is highly expressed in ovarian cancer where contributes to disease progression. Aim of the work was to evaluate the effect of the newly developed CXCR4 antagonist R54 on human ovarian cancer cells aggressiveness. CXCL12-CXCR4 axis was evaluated in human ovarian cancer cells through proliferation, migration and signaling CXCL12-dependents. Epithelial to mesenchymal transition (EMT) was analyzed through E-CADHERIN, N-CADHERIN, VIMENTIN, SNAIL1 and ΒETA-CATENIN by qRT-PCR, immunofluorescence and immunoblotting. R54 inhibited ovarian cancer cells proliferation and migration CXCL12-induced. Moreover, R54 inhibited CXCL12 dependent pERK1/2 and pAKT and reversed the CXCL12 induced EMT in ovarian cancer cells. Targeting CXCR4 with the new antagonist R54 consistently reverted the mesenchymal transition in human ovarian cancer cells reducing migratory and chemoresistance features.
Collapse
Affiliation(s)
- Daniela Russo
- Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", Naples, Italy
| | - Anna Spina
- Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", Naples, Italy
| | - Luigi Portella
- Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", Naples, Italy
| | - Anna Maria Bello
- Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", Naples, Italy
| | - Francesca Galdiero
- Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", Naples, Italy
| | - Anna Maria Trotta
- Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", Naples, Italy
| | - Caterina Ieranò
- Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", Naples, Italy
| | - Giuseppina Rea
- Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", Naples, Italy
| | - Sabrina Chiara Cecere
- Uro-Gynecologic Oncology Unit, Istituto Nazionale Tumori IRCCS-Fondazione "G. Pascale", Naples, Italy
| | - Elisabetta Coppola
- Uro-Gynecologic Oncology Unit, Istituto Nazionale Tumori IRCCS-Fondazione "G. Pascale", Naples, Italy
| | - Salvatore Di Maro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Sandro Pignata
- Uro-Gynecologic Oncology Unit, Istituto Nazionale Tumori IRCCS-Fondazione "G. Pascale", Naples, Italy
| | - Daniela Califano
- Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", Naples, Italy
| | - Stefania Scala
- Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", Naples, Italy
| |
Collapse
|
2
|
Hu H, He R, Liu M, Zhou H, Tan L, Ai Q, Wang Q, Zeng L, Qu W. C-X-C Motif Chemokine 12 Was Identified as a Potential Gene Target in the Treatment of Crohn's Disease. Int J Gen Med 2024; 17:6219-6228. [PMID: 39703796 PMCID: PMC11656194 DOI: 10.2147/ijgm.s487505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024] Open
Abstract
Object The present study aimed to identify hub genes associated with the treatment and control of active and inactive Crohn's disease (CD). Methods Differentially expressed genes (DEGs) were identified in normal, active CD, and inactive CD samples from GSE95095 dataset. Intersection genes screened by Venn diagram in DEGs. Subsequently, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were conducted on the intersection genes. The protein-protein interaction (PPI) network was used to screen of hub gene. The expression and mRNA levels of CXCL12 in CD and ROC curves in GSE95095 dataset. Signaling pathways of hub genes and their correlation with immune cells were analyzed by gene set enrichment analysis (GSEA), EPIC, and ESTIMATE, respectively. Finally, immunohistochemistry (IHC) and Reverse Transcription-Polymerase Chain Reaction (RT-PCR) were used to detect the expression of the hub gene in normal, inactive, and active CD tissues. Results In GSE95095 dataset, CXCL12 was identified as the most hub gene by limma analysis, Venn diagram and A protein-protein interaction (PPI) network. CXCL12 expression was highest in active CD (p < 0.001) followed by inactive CD (p < 0.01). Subsequently, it was validated through IHC and RT-PCR in normal intestinal mucosal, active CD, and inactive CD. CXCL12 was overexpressed in active and inactive CD (IHC: p < 0.001 and RT-PCR: p < 0.001, respectively). CXCL12 expression in active CD was determined via analysis with receiver operating characteristic (ROC) curves. The specificity and sensitivity were 0.875 and 0.625, respectively, the accuracy was 72.92%, the area under the curve (AUC) was 0.780, and the 95% confidence interval (CI) was in the range of 0.648-0.912. CXCL12 expression was closely correlated with various immune cells. Conclusion CXCL12 is overexpressed in active CD and is closely correlated with various immune cells. We propose that CXCL12 as a potential target genes for the treatment and management of both active and inactive CD.
Collapse
Affiliation(s)
- Hongsai Hu
- Department of Gastroenterology, Zhuzhou Hospital Affiliated to Xiangya Medical College, Central South University, Zhuzhou, 412000, People’s Republic of China
| | - Rong He
- Department of Gastroenterology, Zhuzhou Hospital Affiliated to Xiangya Medical College, Central South University, Zhuzhou, 412000, People’s Republic of China
| | - Minji Liu
- Department of Gastroenterology, Zhuzhou Hospital Affiliated to Xiangya Medical College, Central South University, Zhuzhou, 412000, People’s Republic of China
| | - Hongbing Zhou
- Department of Gastroenterology, Zhuzhou Hospital Affiliated to Xiangya Medical College, Central South University, Zhuzhou, 412000, People’s Republic of China
| | - Lin Tan
- Department of Gastroenterology, Zhuzhou Hospital Affiliated to Xiangya Medical College, Central South University, Zhuzhou, 412000, People’s Republic of China
| | - Qiongjia Ai
- Department of Gastroenterology, Zhuzhou Hospital Affiliated to Xiangya Medical College, Central South University, Zhuzhou, 412000, People’s Republic of China
| | - Qian Wang
- Department of Gastroenterology, Zhuzhou Hospital Affiliated to Xiangya Medical College, Central South University, Zhuzhou, 412000, People’s Republic of China
| | - Luwei Zeng
- Department of Gastroenterology, Zhuzhou Hospital Affiliated to Xiangya Medical College, Central South University, Zhuzhou, 412000, People’s Republic of China
| | - Weiming Qu
- Department of Gastroenterology, Zhuzhou Hospital Affiliated to Xiangya Medical College, Central South University, Zhuzhou, 412000, People’s Republic of China
| |
Collapse
|
3
|
Song D, Wu Y, Li J, Liu J, Yi Z, Wang X, Sun J, Li L, Wu Q, Chen Y, Fang H, Luan T, Du H, Huang J, Peng W, Wei Y, Li F, Li Q, Zhang L, Zhu Y, Wan J, Ren G, Li H. Insulin-like growth factor 2 drives fibroblast-mediated tumor immunoevasion and confers resistance to immunotherapy. J Clin Invest 2024; 134:e183366. [PMID: 39545420 PMCID: PMC11563680 DOI: 10.1172/jci183366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/20/2024] [Indexed: 11/17/2024] Open
Abstract
T cell exclusion is crucial in enabling tumor immune evasion and immunotherapy resistance. However, the key genes driving this process remain unclear. We uncovered a notable increase of insulin-like growth factor 2 (IGF2) in immune-excluded tumors, predominantly secreted by cancer-associated fibroblasts (CAFs). Using mice with systemic or fibroblast-specific deletion of IGF2, we demonstrated that IGF2 deficiency enhanced the infiltration and cytotoxic activity of CD8+ T cells, leading to a reduction in tumor burden. Integration of spatial and single-cell transcriptomics revealed that IGF2 promoted interaction between CAFs and T cells via CXCL12 and programmed death ligand 1 (PD-L1). Mechanistically, autocrine IGF2 activated PI3K/AKT signaling by binding to the IGF1 receptor (IGF1R) on CAFs, which was required for the immunosuppressive functions of CAFs. Furthermore, genetic ablation of IGF2 or targeted inhibition of the IGF2/IGF1R axis with the inhibitor linsitinib markedly boosted the response to immune checkpoint blockade. Clinically, elevated levels of IGF2 in tumors or plasma correlated with an adverse prognosis and reduced efficacy of anti-programmed death 1 treatment. Together, these results highlight the pivotal role of IGF2 in promoting CAF-mediated immunoevasion, indicating its potential as a biomarker and therapeutic target in immunotherapy.
Collapse
Affiliation(s)
- Daqiang Song
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Pharmacology, Chongqing Medical University, Chongqing, China
| | - Yushen Wu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Oncology
| | - Jie Li
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiazhou Liu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Breast and Thyroid Surgery, and
| | - Ziying Yi
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyu Wang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiazheng Sun
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liuying Li
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qianxue Wu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuru Chen
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huiying Fang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tiankuo Luan
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | | - Jing Huang
- Department of Respiratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weiyan Peng
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuxian Wei
- Department of Breast and Thyroid Surgery, and
| | - Fan Li
- Department of Breast and Thyroid Surgery, and
| | - Qin Li
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Li Zhang
- Department of Pathophysiology and
| | - Yong Zhu
- Research Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Jingyuan Wan
- Department of Pharmacology, Chongqing Medical University, Chongqing, China
| | - Guosheng Ren
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Breast and Thyroid Surgery, and
| | - Hongzhong Li
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
Corsaro A, Tremonti B, Bajetto A, Barbieri F, Thellung S, Florio T. Chemokine signaling in tumors: potential role of CXC chemokines and their receptors as glioblastoma therapeutic targets. Expert Opin Ther Targets 2024; 28:937-952. [PMID: 39582130 DOI: 10.1080/14728222.2024.2433130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024]
Abstract
INTRODUCTION Glioblastoma is the most aggressive brain tumor, typically associated with poor prognosis. Its treatment is challenging due to the peculiar glioblastoma cell biology and its microenvironment complexity. Specifically, a small fraction of glioma stem cells within the tumor mass drives tumor growth and invasiveness by hijacking brain resident and immune cells. This process also involves modification of extracellular matrix components, such as collagen and glycoproteins, where the secretion of soluble mediators, particularly CXC chemokines, plays a significant role. AREAS COVERED We analyze the critical role of chemokines in glioblastoma tumorigenesis, proliferation, angiogenesis, tumor progression, and brain parenchyma invasiveness. Recent evidence highlights how chemokines and their receptors impact glioblastoma biology and represent potential therapeutic targets. Several studies show that chemokines modulate glioblastoma development by acting on glioma stem cell proliferation and self-renewal, promoting vasculogenic mimicry, and altering the extracellular matrix to facilitate tumor invasiveness. EXPERT OPINION There is clear evidence supporting CXC receptors (such as CXCR1, 2, 3, 4, and ACKR3/CXCR7) and their signaling pathways as promising pharmacological targets. This in-depth review of chemokine roles in glioblastoma development provides a critical evaluation of the possible clinical translation of innovative compounds targeting these ligand/receptor systems, leading to improved therapeutic outcomes for glioblastoma patients.
Collapse
Affiliation(s)
- Alessandro Corsaro
- Sezione di Farmacologia, Dipartimento di Medicina Interna, Università di Genova, Genova, Italy
| | - Beatrice Tremonti
- Sezione di Farmacologia, Dipartimento di Medicina Interna, Università di Genova, Genova, Italy
| | - Adriana Bajetto
- Sezione di Farmacologia, Dipartimento di Medicina Interna, Università di Genova, Genova, Italy
| | - Federica Barbieri
- Sezione di Farmacologia, Dipartimento di Medicina Interna, Università di Genova, Genova, Italy
- IRCCS Policlinico San Martino, Genova, Italy
| | - Stefano Thellung
- Sezione di Farmacologia, Dipartimento di Medicina Interna, Università di Genova, Genova, Italy
- IRCCS Policlinico San Martino, Genova, Italy
| | - Tullio Florio
- Sezione di Farmacologia, Dipartimento di Medicina Interna, Università di Genova, Genova, Italy
- IRCCS Policlinico San Martino, Genova, Italy
| |
Collapse
|
5
|
Liu Y, Liu A, Li X, Liao Q, Zhang W, Zhu L, Ye RD. Cryo-EM structure of monomeric CXCL12-bound CXCR4 in the active state. Cell Rep 2024; 43:114578. [PMID: 39093700 DOI: 10.1016/j.celrep.2024.114578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/17/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024] Open
Abstract
CXCR4 binding of its endogenous agonist CXCL12 leads to diverse functions, including bone marrow retention of hematopoietic progenitors and cancer metastasis. However, the structure of the CXCL12-bound CXCR4 remains unresolved despite available structures of CXCR4 in complex with antagonists. Here, we present the cryoelectron microscopy (cryo-EM) structure of the CXCL12-CXCR4-Gi complex at an overall resolution of 2.65 Å. CXCL12 forms a 1:1 stoichiometry complex with CXCR4, following the two-site model. The first 8 amino acids of mature CXCL12 are crucial for CXCR4 activation by forming polar interactions with minor sub-pocket residues in the transmembrane binding pocket. The 3.2-Å distance between V3 of CXCL12 and the "toggle switch" W6.48 marks the deepest insertion among all chemokine-receptor pairs, leading to conformational changes of CXCR4 for G protein activation. These results, combined with functional assays and computational analysis, provide the structural basis for CXCR4 activation by CXCL12.
Collapse
Affiliation(s)
- Yezhou Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Aijun Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China; Dongguan Songshan Lake Central Hospital, Dongguan Third People's Hospital, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan, Guangdong 523326, China
| | - Xinyu Li
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Qiwen Liao
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Weijia Zhang
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Lizhe Zhu
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.
| | - Richard D Ye
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China; The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, Guangdong 518048, China.
| |
Collapse
|
6
|
Sergio I, Varricchio C, Patel SK, Del Gaizo M, Russo E, Orlando A, Peruzzi G, Ferrandino F, Tsaouli G, Coni S, Peluso D, Besharat ZM, Campolo F, Venneri MA, Del Bufalo D, Lai S, Indraccolo S, Minuzzo S, La Starza R, Bernardini G, Screpanti I, Campese AF, Felli MP. Notch3-regulated microRNAs impair CXCR4-dependent maturation of thymocytes allowing maintenance and progression of T-ALL. Oncogene 2024; 43:2535-2547. [PMID: 38907003 DOI: 10.1038/s41388-024-03079-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/23/2024]
Abstract
Malignant transformation of T-cell progenitors causes T-cell acute lymphoblastic leukemia (T-ALL), an aggressive childhood lymphoproliferative disorder. Activating mutations of Notch, Notch1 and Notch3, have been detected in T-ALL patients. In this study, we aimed to deeply characterize hyperactive Notch3-related pathways involved in T-cell dynamics within the thymus and bone marrow to propose these processes as an important step in facilitating the progression of T-ALL. We previously generated a transgenic T-ALL mouse model (N3-ICtg) demonstrating that aberrant Notch3 signaling affects early thymocyte maturation programs and leads to bone marrow infiltration by CD4+CD8+ (DP) T cells that are notably, Notch3highCXCR4high. Newly, our in vivo results suggest that an anomalous immature thymocyte subpopulation, such as CD4-CD8- (DN) over-expressing CD3ɛ, but with low CXCR4 expression, dominates N3-ICtg thymus-resident DN subset in T-ALL progression. MicroRNAs might be of significance in T-ALL pathobiology, however, whether required for leukemia maintenance is not fully understood. The selection of specific DN subsets demonstrates the inverse correlation between CXCR4 expression and a panel of Notch3-deregulated miRNAs. Interestingly, we found that within DN thymocyte subset hyperactive Notch3 inhibits CXCR4 expression through the cooperative effects of miR-139-5p and miR-150-5p, thus impinging on thymocyte differentiation with accumulation of DNCD3ɛ+CXCR4- cells. These data point out that deregulation of Notch3 in T-ALL, besides its role in sustaining dissemination of abnormal DP T cells, as we previously demonstrated, could play a role in selecting specific DN immature T cells within the thymus, thus impeding T cell development, to facilitate T-ALL progression inside the bone marrow.
Collapse
Affiliation(s)
- Ilaria Sergio
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Claudia Varricchio
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Martina Del Gaizo
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Eleonora Russo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Andrea Orlando
- Division of Hematology & Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York NY, USA
| | | | | | - Georgia Tsaouli
- Department of Medical-Surgical Science and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Sonia Coni
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Daniele Peluso
- Ph.D School of Applied Medical-Surgical Sciences, Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | | | - Federica Campolo
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Mary Anna Venneri
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Silvia Lai
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Stefano Indraccolo
- Department of Surgery Oncology and Gastroenterology, University of Padua, Padua, Italy
- Basic and Translational Oncology Unit, Istituto Oncologico Veneto IOV-IRCCS, Padua, Italy
| | - Sonia Minuzzo
- Department of Surgery Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Roberta La Starza
- Hematology Section, Department of Medicine and Surgery, and S. Maria Della Misericordia Hospital Perugia, CREO, Perugia, Italy
| | | | - Isabella Screpanti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
7
|
Lu X, Xu X, Zhou M, Ge J, Chen L, Yu W, Wang H. IL-17A-induced cancer-associated fibroblasts releases CXCL12 to promote lung adenocarcinoma progression via Wnt/β-Catenin signaling pathway. Cytokine 2024; 180:156676. [PMID: 38857560 DOI: 10.1016/j.cyto.2024.156676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/21/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) and their secretion, C-X-C motif chemokine ligand 12 (CXCL12), play an important role in the development of lung adenocarcinoma (LUAD). Interleukin 17A (IL-17A) is also crucial in regulating tumor progression. Herein, we explored the specific relationships between these two factors and their mechanisms in the progression of LUAD. METHODS Immunohistochemistry was utilized to assess the differential expression levels of IL-17A and CXCL12 in tumor versus normal tissues of LUAD patients, followed by gene correlation analysis. Cell counting kit-8 (CCK8), wound-healing and transwell assays were performed to investigate the effect of IL-17A on the function of LUAD cells. qPCR, immunofluorescence, immunohistochemistry and western blot analyses were conducted to elucidate the potential mechanism by which IL-17A facilitates the development of LUAD via CXCL12. Male BALB-C nude mice were used to explore the role of IL-17A in subcutaneous LUAD mouse models. RESULTS Elevated expression levels of IL-17A and CXCL12 were observed in LUAD tissues, exhibiting a positive correlation. Further studies revealed that IL-17A could stimulate CAFs to enhance the release of CXCL12, thereby facilitating the growth, proliferation, and metastasis of LUAD. The binding of CXCL12 to its specific receptor influences the activation of the Wnt/β-Catenin pathway, which in turn affects the progression of LUAD. In vivo experiments have demonstrated that IL-17A enhances the growth of LUAD tumors by facilitating the secretion of CXCL12. Conversely, inhibiting CXCL12 has been demonstrated to impede tumor growth. CONCLUSIONS We discovered that IL-17A promotes the release of CAFs-derived CXCL12, which in turn facilitates the development of LUAD via the Wnt/β-Catenin signaling pathway.
Collapse
Affiliation(s)
- Xi'nan Lu
- Department of Respiratory and Critical Care Medicine, Affiliated People's Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Xinjia Xu
- Department of Respiratory and Critical Care Medicine, Affiliated People's Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Mengxue Zhou
- Department of Respiratory and Critical Care Medicine, Affiliated People's Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Jianjun Ge
- Department of Thoracic and Cardiovascular Surgery, Affiliated People's Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Liping Chen
- Department of Respiratory and Critical Care Medicine, Affiliated People's Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Wanjun Yu
- Department of Respiratory and Critical Care Medicine, Affiliated People's Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Huaying Wang
- Department of Respiratory and Critical Care Medicine, Affiliated People's Hospital, Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
8
|
Sun D, Tan L, Chen Y, Yuan Q, Jiang K, Liu Y, Xue Y, Zhang J, Cao X, Xu M, Luo Y, Xu Z, Xu Z, Xu W, Shen M. CXCL5 impedes CD8 + T cell immunity by upregulating PD-L1 expression in lung cancer via PXN/AKT signaling phosphorylation and neutrophil chemotaxis. J Exp Clin Cancer Res 2024; 43:202. [PMID: 39034411 PMCID: PMC11264977 DOI: 10.1186/s13046-024-03122-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Lung cancer remains one of the most prevalent cancer types worldwide, with a high mortality rate. Upregulation of programmed cell death protein 1 (PD-1) and its ligand (PD-L1) may represent a key mechanism for evading immune surveillance. Immune checkpoint blockade (ICB) antibodies against PD-1 or PD-L1 are therefore widely used to treat patients with lung cancer. However, the mechanisms by which lung cancer and neutrophils in the microenvironment sustain PD-L1 expression and impart stronger inhibition of CD8+ T cell function remain unclear. METHODS We investigated the role and underlying mechanism by which PD-L1+ lung cancer and PD-L1+ neutrophils impede the function of CD8+ T cells through magnetic bead cell sorting, quantitative real-time polymerase chain reaction (RT-PCR), western blotting, enzyme-linked immunosorbent assays, confocal immunofluorescence, gene silencing, flow cytometry, etc. In vivo efficacy and safety studies were conducted using (Non-obeseDiabetes/severe combined immune deficiency) SCID/NOD mice. Additionally, we collected clinical and prognostic data from 208 patients who underwent curative lung cancer resection between 2017 and 2018. RESULTS We demonstrated that C-X-C motif chemokine ligand 5 (CXCL5) is markedly overexpressed in lung cancer cells and is positively correlated with a poor prognosis in patients with lung cancer. Mechanistically, CXCL5 activates the phosphorylation of the Paxillin/AKT signaling cascade, leading to upregulation of PD-L1 expression and the formation of a positive feedback loop. Moreover, CXCL5 attracts neutrophils, compromising CD8+ T cell-dependent antitumor immunity. These PD-L1+ neutrophils aggravate CD8+ T cell exhaustion following lung cancer domestication. Combined treatment with anti-CXCL5 and anti-PD-L1 antibodies significantly inhibits tumor growth in vivo. CONCLUSIONS Our findings collectively demonstrate that CXCL5 promotes immune escape through PD-L1 upregulation in lung cancer and neutrophils chemotaxis through autocrine and paracrine mechanisms. CXCL5 may serve as a potential therapeutic target in synergy with ICBs in lung cancer immunotherapy.
Collapse
Affiliation(s)
- Dantong Sun
- Department of Thoracic and Cardiac Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Lipin Tan
- Department of nursing administration, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Yongbing Chen
- Department of Thoracic and Cardiac Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Qiang Yuan
- Department of interventional medicine, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Kanqiu Jiang
- Department of Thoracic and Cardiac Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Yangyang Liu
- Department of Vascular Surgery, Hospital of Zhangjiagang, Suzhou, 215600, China
| | - Yuhang Xue
- Department of Thoracic Surgery, Hospital of Yancheng, Yancheng, 224000, China
| | - Jinzhi Zhang
- Department of Thoracic and Cardiac Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Xianbao Cao
- Department of Thoracic and Cardiac Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Minzhao Xu
- Department of Thoracic and Cardiac Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Yang Luo
- Department of Thoracic and Cardiac Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Zhonghua Xu
- Department of Thoracic and Cardiac Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Zhonghen Xu
- Department of Thoracic and Cardiac Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Weihua Xu
- Department of Thoracic and Cardiac Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Mingjing Shen
- Department of Thoracic and Cardiac Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
| |
Collapse
|
9
|
Abbasifard M, Bagherzadeh K, Khorramdelazad H. The story of clobenpropit and CXCR4: can be an effective drug in cancer and autoimmune diseases? Front Pharmacol 2024; 15:1410104. [PMID: 39070795 PMCID: PMC11272485 DOI: 10.3389/fphar.2024.1410104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024] Open
Abstract
Clobenpropit is a histamine H3 receptor antagonist and has developed as a potential therapeutic drug due to its ability to inhibit CXCR4, a chemokine receptor involved in autoimmune diseases and cancer pathogenesis. The CXCL12/CXCR4 axis involves several biological phenomena, including cell proliferation, migration, angiogenesis, inflammation, and metastasis. Accordingly, inhibiting CXCR4 can have promising clinical outcomes in patients with malignancy or autoimmune disorders. Based on available knowledge, Clobenpropit can effectively regulate the release of monocyte-derived inflammatory cytokine in autoimmune diseases such as juvenile idiopathic arthritis (JIA), presenting a potential targeted target with possible advantages over current therapeutic approaches. This review summarizes the intricate interplay between Clobenpropit and CXCR4 and the molecular mechanisms underlying their interactions, comprehensively analyzing their impact on immune regulation. Furthermore, we discuss preclinical and clinical investigations highlighting the probable efficacy of Clobenpropit for managing autoimmune diseases and cancer. Through this study, we aim to clarify the immunomodulatory role of Clobenpropit and its advantages and disadvantages as a novel therapeutic opportunity.
Collapse
Affiliation(s)
- Mitra Abbasifard
- Department of Internal Medicine, School of Medicine, Ali-Ibn Abi-Talib Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Kowsar Bagherzadeh
- Eye Research Center, The Five Senses Health Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
10
|
Guo Z, Lei L, Zhang Z, Du M, Chen Z. The potential of vascular normalization for sensitization to radiotherapy. Heliyon 2024; 10:e32598. [PMID: 38952362 PMCID: PMC11215263 DOI: 10.1016/j.heliyon.2024.e32598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/11/2024] [Accepted: 06/05/2024] [Indexed: 07/03/2024] Open
Abstract
Radiotherapy causes apoptosis mainly through direct or indirect damage to DNA via ionizing radiation, leading to DNA strand breaks. However, the efficacy of radiotherapy is attenuated in malignant tumor microenvironment (TME), such as hypoxia. Tumor vasculature, due to the imbalance of various angiogenic and anti-angiogenic factors, leads to irregular morphology of tumor neovasculature, disordered arrangement of endothelial cells, and too little peripheral coverage. This ultimately leads to a TME characterized by hypoxia, low pH and high interstitial pressure. This deleterious TME further exacerbates the adverse effects of tumor neovascularization and weakens the efficacy of conventional radiotherapy. Whereas normalization of blood vessels improves TME and thus the efficacy of radiotherapy. In addition to describing the research progress of radiotherapy sensitization and vascular normalization, this review focuses on the strategy and application prospect of modulating vascular normalization to improve the efficacy of radiotherapy sensitization.
Collapse
Affiliation(s)
- Zhili Guo
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
- The Seventh Affiliated Hospital, Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Lingling Lei
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
| | - Zenan Zhang
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
- The Seventh Affiliated Hospital, Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Meng Du
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhiyi Chen
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
- The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| |
Collapse
|
11
|
Yang W, Liu M, Sun Q, Liu L, Wu W, Liu F, Liu Z. Needle-scalpel therapy inhibits the apoptosis of nucleus pulposus cells via the SDF-1/CXCR4 axis in a rat degenerative cervical intervertebral disc model. Aging (Albany NY) 2024; 16:10868-10881. [PMID: 38949514 PMCID: PMC11272114 DOI: 10.18632/aging.205959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/29/2024] [Indexed: 07/02/2024]
Abstract
As a common disease, cervical spondylosis (CS) results from the degeneration of the cervical intervertebral disc. However, there are still no effective clinical strategies for the treatment of this disease. Needle-scalpel (Ns), a therapy guided by traditional Chinese medicine theory, alleviates intervertebral disc degradation and is widely used in the clinic to treat CS. Stromal cell-derived factor-1 (SDF-1) and its receptor CXC receptor 4 (CXCR4) in nucleus pulposus cells play an important role in CS onset and development. This study aimed to explore whether Ns can relieve pain and regulate the SDF-1/CXCR4 axis in nucleus pulposus cells to inhibit apoptosis, thereby delaying cervical intervertebral disc degradation in a rat model of CS. It was found that the Ns-treated groups exhibited higher mechanical allodynia scores than the model group, and H&E staining, MRI, and scanning electron microscopy revealed that Ns therapy inhibited intervertebral disc degeneration. Additionally, Ns therapy significantly inhibited increases in the RNA and protein expression levels of SDF-1 and CXCR4. Furthermore, these treatments alleviated the apoptosis of nucleus pulposus cells, which manifested as a decline in the proportion of apoptotic nucleus pulposus cells and inhibition of the decrease in the levels of Bcl-2/Bax. These findings indicated that Ns mitigated CS-induced pain, inhibited the apoptosis of nucleus pulposus cells, and alleviated intervertebral disc degeneration in CS rats. These effects may be mediated by specifically regulating the SDF-1/CXCR4 signaling axis. Based on these findings, we conclude that Ns might serve as a promising therapy for the treatment of CS.
Collapse
Affiliation(s)
- Wenlong Yang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, Shandong, China
| | - Muqing Liu
- School of Acupuncture-Tuina, Shandong University of Traditional Chinese Medicine, Shandong, China
| | - Qinran Sun
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, Shandong, China
| | - Lei Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, Shandong, China
| | - Wenqing Wu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, Shandong, China
| | - Fangming Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, Shandong, China
| | - Zhizhen Liu
- School of Acupuncture-Tuina, Shandong University of Traditional Chinese Medicine, Shandong, China
| |
Collapse
|
12
|
Szukiewicz D. CX3CL1 (Fractalkine)-CX3CR1 Axis in Inflammation-Induced Angiogenesis and Tumorigenesis. Int J Mol Sci 2024; 25:4679. [PMID: 38731899 PMCID: PMC11083509 DOI: 10.3390/ijms25094679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
The chemotactic cytokine fractalkine (FKN, chemokine CX3CL1) has unique properties resulting from the combination of chemoattractants and adhesion molecules. The soluble form (sFKN) has chemotactic properties and strongly attracts T cells and monocytes. The membrane-bound form (mFKN) facilitates diapedesis and is responsible for cell-to-cell adhesion, especially by promoting the strong adhesion of leukocytes (monocytes) to activated endothelial cells with the subsequent formation of an extracellular matrix and angiogenesis. FKN signaling occurs via CX3CR1, which is the only known member of the CX3C chemokine receptor subfamily. Signaling within the FKN-CX3CR1 axis plays an important role in many processes related to inflammation and the immune response, which often occur simultaneously and overlap. FKN is strongly upregulated by hypoxia and/or inflammation-induced inflammatory cytokine release, and it may act locally as a key angiogenic factor in the highly hypoxic tumor microenvironment. The importance of the FKN/CX3CR1 signaling pathway in tumorigenesis and cancer metastasis results from its influence on cell adhesion, apoptosis, and cell migration. This review presents the role of the FKN signaling pathway in the context of angiogenesis in inflammation and cancer. The mechanisms determining the pro- or anti-tumor effects are presented, which are the cause of the seemingly contradictory results that create confusion regarding the therapeutic goals.
Collapse
Affiliation(s)
- Dariusz Szukiewicz
- Department of Biophysics, Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
13
|
Gao F, You X, Yang L, Zou X, Sui B. Boosting immune responses in lung tumor immune microenvironment: A comprehensive review of strategies and adjuvants. Int Rev Immunol 2024; 43:280-308. [PMID: 38525925 DOI: 10.1080/08830185.2024.2333275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/12/2024] [Accepted: 03/15/2024] [Indexed: 03/26/2024]
Abstract
The immune system has a substantial impact on the growth and expansion of lung malignancies. Immune cells are encompassed by a stroma comprising an extracellular matrix (ECM) and different cells like stromal cells, which are known as the tumor immune microenvironment (TIME). TME is marked by the presence of immunosuppressive factors, which inhibit the function of immune cells and expand tumor growth. In recent years, numerous strategies and adjuvants have been developed to extend immune responses in the TIME, to improve the efficacy of immunotherapy. In this comprehensive review, we outline the present knowledge of immune evasion mechanisms in lung TIME, explain the biology of immune cells and diverse effectors on these components, and discuss various approaches for overcoming suppressive barriers. We highlight the potential of novel adjuvants, including toll-like receptor (TLR) agonists, cytokines, phytochemicals, nanocarriers, and oncolytic viruses, for enhancing immune responses in the TME. Ultimately, we provide a summary of ongoing clinical trials investigating these strategies and adjuvants in lung cancer patients. This review also provides a broad overview of the current state-of-the-art in boosting immune responses in the TIME and highlights the potential of these approaches for improving outcomes in lung cancer patients.
Collapse
Affiliation(s)
- Fei Gao
- Department of Oncology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Xiaoqing You
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Liu Yang
- Department of Oncology, Da Qing Long Nan Hospital, Daqing, Heilongjiang Province, China
| | - Xiangni Zou
- Department of Nursing, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Bowen Sui
- Department of Oncology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| |
Collapse
|
14
|
Freag MS, Mohammed MT, Kulkarni A, Emam HE, Maremanda KP, Elzoghby AO. Modulating tumoral exosomes and fibroblast phenotype using nanoliposomes augments cancer immunotherapy. SCIENCE ADVANCES 2024; 10:eadk3074. [PMID: 38416824 PMCID: PMC10901379 DOI: 10.1126/sciadv.adk3074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/25/2024] [Indexed: 03/01/2024]
Abstract
Cancer cells program fibroblasts into cancer associated fibroblasts (CAFs) in a two-step manner. First, cancer cells secrete exosomes to program quiescent fibroblasts into activated CAFs. Second, cancer cells maintain the CAF phenotype via activation of signal transduction pathways. We rationalized that inhibiting this two-step process can normalize CAFs into quiescent fibroblasts and augment the efficacy of immunotherapy. We show that cancer cell-targeted nanoliposomes that inhibit sequential steps of exosome biogenesis and release from lung cancer cells block the differentiation of lung fibroblasts into CAFs. In parallel, we demonstrate that CAF-targeted nanoliposomes that block two distinct nodes in fibroblast growth factor receptor (FGFR)-Wnt/β-catenin signaling pathway can reverse activate CAFs into quiescent fibroblasts. Co-administration of both nanoliposomes significantly improves the infiltration of cytotoxic T cells and enhances the antitumor efficacy of αPD-L1 in immunocompetent lung cancer-bearing mice. Simultaneously blocking the tumoral exosome-mediated activation of fibroblasts and FGFR-Wnt/β-catenin signaling constitutes a promising approach to augment immunotherapy.
Collapse
Affiliation(s)
- May S. Freag
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Investigative Toxicology, Drug Safety Research and Evaluation, Takeda Pharmaceuticals, Cambridge, MA, USA
| | - Mostafa T. Mohammed
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Anatomical and Clinical Pathology Department, Tufts Medical Center, Boston, MA, USA
| | - Arpita Kulkarni
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Hagar E. Emam
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Krishna P. Maremanda
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Ahmed O. Elzoghby
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Thakur D, Sengupta D, Mahapatra E, Das S, Sarkar R, Mukherjee S. Glucocorticoid receptor: a harmonizer of cellular plasticity in breast cancer-directs the road towards therapy resistance, metastatic progression and recurrence. Cancer Metastasis Rev 2024; 43:481-499. [PMID: 38170347 DOI: 10.1007/s10555-023-10163-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024]
Abstract
Recent therapeutic advances have significantly uplifted the quality of life in breast cancer patients, yet several impediments block the road to disease-free survival. This involves unresponsiveness towards administered therapy, epithelial to mesenchymal transition, and metastatic progression with the eventual appearance of recurrent disease. Attainment of such characteristics is a huge adaptive challenge to which tumour cells respond by acquiring diverse phenotypically plastic states. Several signalling networks and mediators are involved in such a process. Glucocorticoid receptor being a mediator of stress response imparts prognostic significance in the context of breast carcinoma. Involvement of the glucocorticoid receptor in the signalling cascade of breast cancer phenotypic plasticity needs further elucidation. This review attempted to shed light on the inter-regulatory interactions of the glucocorticoid receptor with the mediators of the plasticity program in breast cancer; which may provide a hint for strategizing therapeutics against the glucocorticoid/glucocorticoid receptor axis so as to modulate phenotypic plasticity in breast carcinoma.
Collapse
Affiliation(s)
- Debanjan Thakur
- Department of Environmental Carcinogenesis and Toxicology, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700 026, India
| | - Debomita Sengupta
- Department of Environmental Carcinogenesis and Toxicology, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700 026, India
| | - Elizabeth Mahapatra
- Department of Environmental Carcinogenesis and Toxicology, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700 026, India
| | - Salini Das
- Department of Environmental Carcinogenesis and Toxicology, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700 026, India
| | - Ruma Sarkar
- B. D. Patel Institute of Paramedical Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, 388421, India
| | - Sutapa Mukherjee
- Department of Environmental Carcinogenesis and Toxicology, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700 026, India.
| |
Collapse
|
16
|
Lai Y, Lu X, Liao Y, Ouyang P, Wang H, Zhang X, Huang G, Qi S, Li Y. Crosstalk between glioblastoma and tumor microenvironment drives proneural-mesenchymal transition through ligand-receptor interactions. Genes Dis 2024; 11:874-889. [PMID: 37692522 PMCID: PMC10491977 DOI: 10.1016/j.gendis.2023.05.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/28/2023] [Accepted: 05/25/2023] [Indexed: 09/12/2023] Open
Abstract
Glioblastoma (GBM) is the most common intrinsic and aggressive primary brain tumor in adults, with a median survival of approximately 15 months. GBM heterogeneity is considered responsible for the treatment resistance and unfavorable prognosis. Proneural-mesenchymal transition (PMT) represents GBM malignant progression and recurrence, which might be a breakthrough to understand GBM heterogeneity and overcome treatment resistance. PMT is a complicated process influenced by crosstalk between GBM and tumor microenvironment, depending on intricate ligand-receptor interactions. In this review, we summarize the autocrine and paracrine pathways in the GBM microenvironment and related ligand-receptor interactions inducing PMT. We also discuss the current therapies targeting the PMT-related autocrine and paracrine pathways. Together, this review offers a comprehensive understanding of the failure of GBM-targeted therapy and ideas for future tendencies of GBM treatment.
Collapse
Affiliation(s)
- Yancheng Lai
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiaole Lu
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yankai Liao
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Pei Ouyang
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Hai Wang
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xian Zhang
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Guanglong Huang
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Songtao Qi
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yaomin Li
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
17
|
Zhang W, Su Y, Yue G, Zhao L, Li H, Jia M, Wang Y, Liu D, Wang H, Gao Y. Correlations of SDF-1ɑ and XRCC1 gene polymorphisms with the risk of renal cancer development and bioinformatics studies of SDF-1α and XRCC1 and the prognosis of renal cancer. Sci Rep 2024; 14:3367. [PMID: 38337001 PMCID: PMC10858090 DOI: 10.1038/s41598-024-53808-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 02/05/2024] [Indexed: 02/12/2024] Open
Abstract
To study the relationships between stromal cell-derived factor-1 (SDF-1ɑ) and renal cell carcinoma (RCC) susceptibility and the presence of single nucleotide polymorphisms in the human X-ray cross-complementary repair gene (XRCC1). Compare SDF-1 based on RCC related data in the TCGA database α, The expression difference of XRCC1 between RCC tissue and normal tissue; Collect 166 newly diagnosed RCC cases and 166 healthy individuals who underwent physical examinations during the same period, and detect genotype using iMLDR method. The results The rs1801157 locus (C:T) of the SDF-1α gene was not significantly associated with the pathohistological type, the rs1799782 locus (G:A) of the XRCC1 gene was associated with the pathohistological type of RCC, and there were interactions between rs1799782 and smoking, alcohol consumption, pesticide exposure, hair dye, and urine holding. The rs1799782 locus of the XRCC1 gene may be a key factor in the pathogenesis and pathological development of RCC. High SDF-1ɑ expression is a protective factor for the overall survival of patients with RCC, and SDF-1ɑ and XRCC1 may be important for the treatment of RCC.
Collapse
Affiliation(s)
- Wenjing Zhang
- School of Public Health, Inner Mongolia Medical University, Hohhot, China
| | - Yubo Su
- School of Public Health, Inner Mongolia Medical University, Hohhot, China
| | - Genquan Yue
- Department of Urology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Lingyan Zhao
- School of Public Health, Inner Mongolia Medical University, Hohhot, China
- Key Laboratory of Molecular Epidemiology of Chronic Diseases, Inner Mongolia Medical University, Hohhot, China
| | - Hailing Li
- School of Public Health, Inner Mongolia Medical University, Hohhot, China
- Key Laboratory of Molecular Epidemiology of Chronic Diseases, Inner Mongolia Medical University, Hohhot, China
| | - Min Jia
- School of Public Health, Inner Mongolia Medical University, Hohhot, China
| | - Yuqi Wang
- School of Public Health, Inner Mongolia Medical University, Hohhot, China
| | - Dongyang Liu
- School of Public Health, Inner Mongolia Medical University, Hohhot, China
| | - Haisheng Wang
- School of Public Health, Inner Mongolia Medical University, Hohhot, China.
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Inner Mongolia Medical University, Hohhot, China.
| | - Yumin Gao
- School of Public Health, Inner Mongolia Medical University, Hohhot, China.
- Key Laboratory of Molecular Epidemiology of Chronic Diseases, Inner Mongolia Medical University, Hohhot, China.
| |
Collapse
|
18
|
Duan C, Zhu Y, Zhang Z, Wu T, Shen M, Xu J, Gao W, Pan J, Wei L, Su H, Shi C. Esketamine inhibits the c-Jun N-terminal kinase pathway in the spinal dorsal horn to relieve bone cancer pain in rats. Mol Pain 2024; 20:17448069241239231. [PMID: 38417838 PMCID: PMC10938627 DOI: 10.1177/17448069241239231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/04/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024] Open
Abstract
Cancer-induced bone pain (CIBP) is one of the most common and feared symptoms in patients with advanced tumors. The X-C motif chemokine ligand 12 (CXCL12) and the CXCR4 receptor have been associated with glial cell activation in bone cancer pain. Moreover, mitogen-activated protein kinases (MAPKs), as downstream CXCL12/CXCR4 signals, and c-Jun, as activator protein AP-1 components, contribute to the development of various types of pain. However, the specific CIBP mechanisms remain unknown. Esketamine is a non-selective N-methyl-d-aspartic acid receptor (NMDA) inhibitor commonly used as an analgesic in the clinic, but its analgesic mechanism in bone cancer pain remains unclear. We used a tumor cell implantation (TCI) model and explored that CXCL12/CXCR4, p-MAPKs, and p-c-Jun were stably up-regulated in the spinal cord. Immunofluorescence images showed activated microglia in the spinal cord on day 14 after TCI and co-expression of CXCL12/CXCR4, p-MAPKs (p-JNK, p-ERK, p-p38 MAPK), and p-c-Jun in microglia. Intrathecal injection of the CXCR4 inhibitor AMD3100 reduced JNK and c-Jun phosphorylations, and intrathecal injection of the JNK inhibitor SP600125 and esketamine also alleviated TCI-induced pain and reduced the expression of p-JNK and p-c-Jun in microglia. Overall, our data suggest that the CXCL12/CXCR4-JNK-c-Jun signaling pathway of microglia in the spinal cord mediates neuronal sensitization and pain hypersensitivity in cancer-induced bone pain and that esketamine exerts its analgesic effect by inhibiting the JNK-c-Jun pathway.
Collapse
Affiliation(s)
- Chenxia Duan
- Department of Anesthesiology, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Yi Zhu
- Department of Anesthesiology, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Zhuoliang Zhang
- Department of Anesthesiology, Suzhou Municipal Hospital, Xuzhou Medical University, Suzhou, China
| | - Tiantian Wu
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Mengwei Shen
- Department of Anesthesiology, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jinfu Xu
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Wenxin Gao
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Jianhua Pan
- Department of Anesthesiology, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Lei Wei
- Department of Anesthesiology, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Huibin Su
- Department of Anesthesiology, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Chenghuan Shi
- Department of Anesthesiology, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| |
Collapse
|
19
|
Mohan S, Hakami MA, Dailah HG, Khalid A, Najmi A, Zoghebi K, Halawi MA, Alotaibi TM. From inflammation to metastasis: The central role of miR-155 in modulating NF-κB in cancer. Pathol Res Pract 2024; 253:154962. [PMID: 38006837 DOI: 10.1016/j.prp.2023.154962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 11/27/2023]
Abstract
Cancer is a multifaceted, complex disease characterized by unchecked cell growth, genetic mutations, and dysregulated signalling pathways. These factors eventually cause evasion of apoptosis, sustained angiogenesis, tissue invasion, and metastasis, which makes it difficult for targeted therapeutic interventions to be effective. MicroRNAs (miRNAs) are essential gene expression regulators linked to several biological processes, including cancer and inflammation. The NF-κB signalling pathway, a critical regulator of inflammatory reactions and oncogenesis, has identified miR-155 as a significant participant in its modulation. An intricate network of transcription factors known as the NF-κB pathway regulates the expression of genes related to inflammation, cell survival, and immunological responses. The NF-κB pathway's dysregulation contributes to many cancer types' development, progression, and therapeutic resistance. In numerous cancer models, the well-studied miRNA miR-155 has been identified as a crucial regulator of NF-κB signalling. The p65 subunit and regulatory molecules like IκB are among the primary targets that miR-155 directly targets to alter NF-κB activity. The molecular processes by which miR-155 affects the NF-κB pathway are discussed in this paper. It also emphasizes the miR-155's direct and indirect interactions with important NF-κB cascade elements to control the expression of NF-κB subunits. We also investigate how miR-155 affects NF-κB downstream effectors in cancer, including inflammatory cytokines and anti-apoptotic proteins.
Collapse
Affiliation(s)
- Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia; School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India; Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India.
| | - Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al, Quwayiyah, Shaqra University, Riyadh, Saudi Arabia.
| | - Hamad Ghaleb Dailah
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan 45142, Saudi Arabia
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Khalid Zoghebi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Maryam A Halawi
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | | |
Collapse
|
20
|
Kotsifaki A, Alevizopoulos N, Dimopoulou V, Armakolas A. Unveiling the Immune Microenvironment's Role in Breast Cancer: A Glimpse into Promising Frontiers. Int J Mol Sci 2023; 24:15332. [PMID: 37895012 PMCID: PMC10607694 DOI: 10.3390/ijms242015332] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Breast cancer (BC), one of the most widespread and devastating diseases affecting women worldwide, presents a significant public health challenge. This review explores the emerging frontiers of research focused on deciphering the intricate interplay between BC cells and the immune microenvironment. Understanding the role of the immune system in BC is critical as it holds promise for novel therapeutic approaches and precision medicine strategies. This review delves into the current literature regarding the immune microenvironment's contribution to BC initiation, progression, and metastasis. It examines the complex mechanisms by which BC cells interact with various immune cell populations, including tumor-infiltrating lymphocytes (TILs) and tumor-associated macrophages (TAMs). Furthermore, this review highlights the impact of immune-related factors, such as cytokines and immune checkpoint molecules. Additionally, this comprehensive analysis sheds light on the potential biomarkers associated with the immune response in BC, enabling early diagnosis and prognostic assessment. The therapeutic implications of targeting the immune microenvironment are also explored, encompassing immunotherapeutic strategies and combination therapies to enhance treatment efficacy. The significance of this review lies in its potential to pave the way for novel therapeutic interventions, providing clinicians and researchers with essential knowledge to design targeted and personalized treatment regimens for BC patients.
Collapse
Affiliation(s)
| | | | | | - Athanasios Armakolas
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.K.); (N.A.); (V.D.)
| |
Collapse
|
21
|
Yin X, Xia K, Peng S, Tan B, Huang Y, Wang M, He M. ABCF1/CXCL12/CXCR4 Enhances Glioblastoma Cell Proliferation, Migration, and Invasion by Activating the PI3K/AKT Signal Pathway. Dev Neurosci 2023; 46:210-220. [PMID: 37757768 DOI: 10.1159/000533130] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 07/03/2023] [Indexed: 09/29/2023] Open
Abstract
Glioblastoma (GBM) is the most prevalent and fatal form of brain tumor, which is associated with a poor prognosis. ATP-binding cassette subfamily F member 1 (ABCF1) is an E2 ubiquitin-conjugating enzyme, which is implicated in regulating immune responses and tumorigenesis. Aberrant E3 ubiquitylation has been evidenced in GBM. However, the role of ABCF1 in GBM needs to be further explored. The expression of ABCF1, CXC chemokine ligand 12 (CXCL12), and CXC chemokine receptor 4 (CXCR4) in GBM tissues was examined by the GEPIA tool, real-time PCR and Western blotting. HMC3, U251MG, and LN-229 cells were cultured and transfected with shRNA targeting ABCF1 and ABCF1 plasmids. The proliferative, migrative, and invasive ability of cells was detected. Western blotting was used to detect the levels of phosphorylated phosphatidylinositol 3-kinase (PI3K) and phosphorylated protein kinase B (AKT). We observed that GBM tissues had higher ABCF1, CXCL12, and CXCR4 expression levels. The expression levels of CXCL12 and CXCR4 were enhanced by ABCF1 overexpression, which were significantly reversed by silence of ABCF1 in GBM cells. Silencing ABCF1 or CXCR4 inhibition weakened the capacity of GBM cell growth, migration, and invasion, while ectopic ABCF1 expression or CXCL12 treatment enhanced the cellular function of GBM cells. Furthermore, p-PI3K and p-AKT protein levels were downregulated by ABCF1 knockdown or CXCR4 blockade, which were prompted by ABCF1 overexpression or CXCL12 supplement. The ABCF1-CXCL12-CXCR4 axis was identified as a key player in GBM cell survival and metastasis by activating the PI3K/AKT signaling pathway in GBM cells.
Collapse
Affiliation(s)
- Xiaohong Yin
- Department of Neurosurgery, Guangyuan Central Hospital, Guangyuan, China
| | - Keshun Xia
- Department of Neurosurgery, Guangyuan Central Hospital, Guangyuan, China
| | - Song Peng
- Department of Neurosurgery, Guangyuan Central Hospital, Guangyuan, China
| | - Bo Tan
- Department of Neurosurgery, Guangyuan Central Hospital, Guangyuan, China
| | - Yaohui Huang
- Department of Neurosurgery, Guangyuan Central Hospital, Guangyuan, China
| | - Mao Wang
- Department of Neurosurgery, Guangyuan Central Hospital, Guangyuan, China
| | - Mingfang He
- Department of Neurosurgery, Guangyuan Central Hospital, Guangyuan, China
| |
Collapse
|
22
|
Ge Z, Zhang Q, Lin W, Jiang X, Zhang Y. The role of angiogenic growth factors in the immune microenvironment of glioma. Front Oncol 2023; 13:1254694. [PMID: 37790751 PMCID: PMC10542410 DOI: 10.3389/fonc.2023.1254694] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/28/2023] [Indexed: 10/05/2023] Open
Abstract
Angiogenic growth factors (AGFs) are a class of secreted cytokines related to angiogenesis that mainly include vascular endothelial growth factors (VEGFs), stromal-derived factor-1 (SDF-1), platelet-derived growth factors (PDGFs), fibroblast growth factors (FGFs), transforming growth factor-beta (TGF-β) and angiopoietins (ANGs). Accumulating evidence indicates that the role of AGFs is not only limited to tumor angiogenesis but also participating in tumor progression by other mechanisms that go beyond their angiogenic role. AGFs were shown to be upregulated in the glioma microenvironment characterized by extensive angiogenesis and high immunosuppression. AGFs produced by tumor and stromal cells can exert an immunomodulatory role in the glioma microenvironment by interacting with immune cells. This review aims to sum up the interactions among AGFs, immune cells and cancer cells with a particular emphasis on glioma and tries to provide new perspectives for understanding the glioma immune microenvironment and in-depth explorations for anti-glioma therapy.
Collapse
Affiliation(s)
| | | | | | - Xiaofan Jiang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yanyu Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
23
|
Corallo D, Dalla Vecchia M, Lazic D, Taschner-Mandl S, Biffi A, Aveic S. The molecular basis of tumor metastasis and current approaches to decode targeted migration-promoting events in pediatric neuroblastoma. Biochem Pharmacol 2023; 215:115696. [PMID: 37481138 DOI: 10.1016/j.bcp.2023.115696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/24/2023]
Abstract
Cell motility is a crucial biological process that plays a critical role in the development of multicellular organisms and is essential for tissue formation and regeneration. However, uncontrolled cell motility can lead to the development of various diseases, including neoplasms. In this review, we discuss recent advances in the discovery of regulatory mechanisms underlying the metastatic spread of neuroblastoma, a solid pediatric tumor that originates in the embryonic migratory cells of the neural crest. The highly motile phenotype of metastatic neuroblastoma cells requires targeting of intracellular and extracellular processes, that, if affected, would be helpful for the treatment of high-risk patients with neuroblastoma, for whom current therapies remain inadequate. Development of new potentially migration-inhibiting compounds and standardized preclinical approaches for the selection of anti-metastatic drugs in neuroblastoma will also be discussed.
Collapse
Affiliation(s)
- Diana Corallo
- Laboratory of Target Discovery and Biology of Neuroblastoma, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35127 Padova, Italy
| | - Marco Dalla Vecchia
- Laboratory of Target Discovery and Biology of Neuroblastoma, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35127 Padova, Italy
| | - Daria Lazic
- St. Anna Children's Cancer Research Institute, CCRI, Zimmermannplatz 10, 1090, Vienna, Austria
| | - Sabine Taschner-Mandl
- St. Anna Children's Cancer Research Institute, CCRI, Zimmermannplatz 10, 1090, Vienna, Austria
| | - Alessandra Biffi
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Woman's and Child Health Department, University of Padova, 35121 Padova, Italy
| | - Sanja Aveic
- Laboratory of Target Discovery and Biology of Neuroblastoma, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35127 Padova, Italy.
| |
Collapse
|
24
|
Gao J, Li Z, Lu Q, Zhong J, Pan L, Feng C, Tang S, Wang X, Tao Y, Lin J, Wang Q. Single-cell RNA sequencing reveals cell subpopulations in the tumor microenvironment contributing to hepatocellular carcinoma. Front Cell Dev Biol 2023; 11:1194199. [PMID: 37333982 PMCID: PMC10272598 DOI: 10.3389/fcell.2023.1194199] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/25/2023] [Indexed: 06/20/2023] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is among the deadliest cancers worldwide, and advanced HCC is difficult to treat. Identifying specific cell subpopulations in the tumor microenvironment and exploring interactions between the cells and their environment are crucial for understanding the development, prognosis, and treatment of tumors. Methods: In this study, we constructed a tumor ecological landscape of 14 patients with HCC from 43 tumor tissue samples and 14 adjacent control samples. We used bioinformatics analysis to reveal cell subpopulations with potentially specific functions in the tumor microenvironment and to explore the interactions between tumor cells and the tumor microenvironment. Results: Immune cell infiltration was evident in the tumor tissues, and BTG1 + RGS1 + central memory T cells (Tcms) interact with tumor cells through CCL5-SDC4/1 axis. HSPA1B may be associated with remodeling of the tumor ecological niche in HCC. Cancer-associated fibroblasts (CAFs) and macrophages (TAMs) were closely associated with tumor cells. APOC1 + SPP1 + TAM secretes SPP1, which binds to ITGF1 secreted by CAFs to remodel the tumor microenvironment. More interestingly, FAP + CAF interacts with naïve T cells via the CXCL12-CXCR4 axis, which may lead to resistance to immune checkpoint inhibitor therapy. Conclusion: Our study suggests the presence of tumor cells with drug-resistant potential in the HCC microenvironment. Among non-tumor cells, high NDUFA4L2 expression in fibroblasts may promote tumor progression, while high HSPA1B expression in central memory T cells may exert anti-tumor effects. In addition, the CCL5-SDC4/1 interaction between BTG1 + RGS1 + Tcms and tumor cells may promote tumor progression. Focusing on the roles of CAFs and TAMs, which are closely related to tumor cells, in tumors would be beneficial to the progress of systemic therapy research.
Collapse
Affiliation(s)
- Jiamin Gao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Laboratory of Infectious Disease, The Fourth People’s Hospital of Nanning, Nanning, China
| | - Zhijian Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qinchen Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
| | - Jialing Zhong
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
| | - Lixin Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
| | - Chao Feng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
| | - Shaomei Tang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
| | - Xi Wang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
| | - Yuting Tao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
| | - Jianyan Lin
- Administrative Office, The First People’s Hospital of Nanning, Nanning, China
| | - Qiuyan Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
| |
Collapse
|
25
|
Li CY, Anuraga G, Chang CP, Weng TY, Hsu HP, Ta HDK, Su PF, Chiu PH, Yang SJ, Chen FW, Ye PH, Wang CY, Lai MD. Repurposing nitric oxide donating drugs in cancer therapy through immune modulation. J Exp Clin Cancer Res 2023; 42:22. [PMID: 36639681 PMCID: PMC9840268 DOI: 10.1186/s13046-022-02590-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/29/2022] [Indexed: 05/30/2023] Open
Abstract
BACKGROUND Nitric oxide-releasing drugs are used for cardiovascular diseases; however, their effects on the tumor immune microenvironment are less clear. Therefore, this study explored the impact of nitric oxide donors on tumor progression in immune-competent mice. METHODS The effects of three different nitric oxide-releasing compounds (SNAP, SNP, and ISMN) on tumor growth were studied in tumor-bearing mouse models. Three mouse tumor models were used: B16F1 melanoma and LL2 lung carcinoma in C57BL/6 mice, CT26 colon cancer in BALB/c mice, and LL2 lung carcinoma in NOD/SCID mice. After nitric oxide treatment, splenic cytokines and lymphocytes were analyzed by cytokine array and flow cytometry, and tumor-infiltrating lymphocytes in the TME were analyzed using flow cytometry and single-cell RNA sequencing. RESULTS Low doses of three exogenous nitric oxide donors inhibited tumor growth in two immunocompetent mouse models but not in NOD/SCID immunodeficient mice. Low-dose nitric oxide donors increase the levels of splenic cytokines IFN-γ and TNF-α but decrease the levels of cytokines IL-6 and IL-10, suggesting an alteration in Th2 cells. Nitric oxide donors increased the number of CD8+ T cells with activation gene signatures, as indicated by single-cell RNA sequencing. Flow cytometry analysis confirmed an increase in infiltrating CD8+ T cells and dendritic cells. The antitumor effect of nitric oxide donors was abolished by depletion of CD8+ T cells, indicating the requirement for CD8+ T cells. Tumor inhibition correlated with a decrease in a subtype of protumor macrophages and an increase in a subset of Arg1-positive macrophages expressing antitumor gene signatures. The increase in this subset of macrophages was confirmed by flow cytometry analysis. Finally, the combination of low-dose nitric oxide donor and cisplatin induced an additive cancer therapeutic effect in two immunocompetent animal models. The enhanced therapeutic effect was accompanied by an increase in the cells expressing the gene signature of NK cell. CONCLUSIONS Low concentrations of exogenous nitric oxide donors inhibit tumor growth in vivo by regulating T cells and macrophages. CD8+ T cells are essential for antitumor effects. In addition, low-dose nitric oxide donors may be combined with chemotherapeutic drugs in cancer therapy in the future.
Collapse
Affiliation(s)
- Chung-Yen Li
- College of Medicine, Institute of basic medical sciences, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Gangga Anuraga
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan, ROC
- Department of Statistics, Faculty of Science and Technology, Universitas PGRI Adi Buana, Surabaya, Indonesia
| | - Chih-Peng Chang
- College of Medicine, Institute of basic medical sciences, National Cheng Kung University, Tainan, Taiwan, ROC
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Tzu-Yang Weng
- College of Medicine, Institute of basic medical sciences, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Hui-Ping Hsu
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Hoang Dang Khoa Ta
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan, ROC
| | - Pei-Fang Su
- Department of Statistics, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Pin-Hsuan Chiu
- The Center for Quantitative Sciences, Clinical Medicine Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Shiang-Jie Yang
- College of Medicine, Institute of basic medical sciences, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Feng-Wei Chen
- College of Medicine, Institute of basic medical sciences, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Pei-Hsuan Ye
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Chih-Yang Wang
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan, ROC.
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| | - Ming-Derg Lai
- College of Medicine, Institute of basic medical sciences, National Cheng Kung University, Tainan, Taiwan, ROC.
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC.
| |
Collapse
|
26
|
Wang J, Chen H, Deng Q, Chen Y, Wang Z, Yan Z, Wang Y, Tang H, Liang H, Jiang Y. High expression of RNF169 is associated with poor prognosis in pancreatic adenocarcinoma by regulating tumour immune infiltration. Front Genet 2023; 13:1022626. [PMID: 36685833 PMCID: PMC9849556 DOI: 10.3389/fgene.2022.1022626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/20/2022] [Indexed: 01/06/2023] Open
Abstract
Background: Pancreatic adenocarcinoma (PAAD) is a highly deadly and aggressive tumour with a poor prognosis. However, the prognostic value of RNF169 and its related mechanisms in PAAD have not been elucidated. In this study, we aimed to explore prognosis-related genes, especially RNF169 in PAAD and to identify novel potential prognostic predictors of PAAD. Methods: The GEPIA and UALCAN databases were used to investigate the expression and prognostic value of RNF169 in PAAD. The correlation between RNF169 expression and immune infiltration was determined by using TIMER and TISIDB. Correlation analysis with starBase was performed to identify a potential regulatory axis of lncRNA-miRNA-RNF169. Results: The data showed that the level of RNF169 mRNA expression in PAAD tissues was higher than that in normal tissues. High RNF169 expression was correlated with poor prognosis in PAAD. In addition, analysis with the TISIDB and TIMER databases revealed that RNF169 expression was positively correlated with tumour immune infiltration in PAAD. Correlation analysis suggested that the long non-coding RNA (lncRNA) AL049555.1 and the microRNA (miRNA) hsa-miR-324-5p were involved in the expression of RNF169, composing a potential regulatory axis to control the progression of PAAD. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses indicated that RNF169 plays a role in PAAD through pathways such as TNF, Hippo, JAK-STAT and Toll-like receptor signaling. Conclusion: In summary, the upregulation of RNF169 expression mediated by ncRNAs might influence immune cell infiltration in the microenvironment; thus, it can be used as a prognostic biomarker and a potential therapeutic target in PAAD.
Collapse
Affiliation(s)
- Jieyan Wang
- Department of Urology, The People’s Hospital of Longhua, The Affiliated Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Hanghang Chen
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Qiong Deng
- Department of Urology, The People’s Hospital of Longhua, The Affiliated Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Yeda Chen
- Department of Urology, The People’s Hospital of Longhua, The Affiliated Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Zhu Wang
- Department of Urology, The People’s Hospital of Longhua, The Affiliated Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Zhengzheng Yan
- Dongguan Key Laboratory of Respiratory and Critical Care Medicine, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Yinglin Wang
- Department of Pediatrics, The Second Hospital of Zhuzhou, Zhuzhou, Hunan, China
| | - Haoxuan Tang
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hui Liang
- Department of Urology, The People’s Hospital of Longhua, The Affiliated Hospital of Southern Medical University, Shenzhen, Guangdong, China,*Correspondence: Hui Liang, ; Yong Jiang,
| | - Yong Jiang
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Dongguan Key Laboratory of Respiratory and Critical Care Medicine, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China,*Correspondence: Hui Liang, ; Yong Jiang,
| |
Collapse
|
27
|
Roberto M, Arrivi G, Di Civita MA, Barchiesi G, Pilozzi E, Marchetti P, Santini D, Mazzuca F, Tomao S. The role of CXCL12 axis in pancreatic cancer: New biomarkers and potential targets. Front Oncol 2023; 13:1154581. [PMID: 37035150 PMCID: PMC10076769 DOI: 10.3389/fonc.2023.1154581] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/09/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction Chemokines are small, secreted peptides involved in the mediation of the immune cell recruitment. Chemokines have been implicated in several diseases including autoimmune diseases, viral infections and also played a critical role in the genesis and development of several malignant tumors. CXCL12 is a homeostatic CXC chemokine involved in the process of proliferation, and tumor spread. Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive tumors, that is still lacking effective therapies and with a dramatically poor prognosis. Method We conducted a scientific literature search on Pubmed and Google Scholar including retrospective, prospective studies and reviews focused on the current research elucidating the emerging role of CXCL12 and its receptors CXCR4 - CXCR7 in the pathogenesis of pancreatic cancer. Results Considering the mechanism of immunomodulation of the CXCL12-CXCR4-CXCR7 axis, as well as the potential interaction with the microenvironment in the PDAC, several combined therapeutic approaches have been studied and developed, to overcome the "cold" immunological setting of PDAC, like combining CXCL12 axis inhibitors with anti PD-1/PDL1 drugs. Conclusion Understanding the role of this chemokine's axis in disease initiation and progression may provide the basis for developing new potential biomarkers as well as therapeutic targets for related pancreatic cancers.
Collapse
Affiliation(s)
- Michela Roberto
- Oncology Unit (UOC) Oncologia A, Department of Radiological, Oncological and Anathomo-patological Science, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Giulia Arrivi
- Oncology Unit, Department of Clinical and Molecular Medicine, Sant’ Andrea University Hospital, Sapienza University of Rome, Rome, Italy
| | - Mattia Alberto Di Civita
- Oncology Unit (UOC) Oncologia A, Department of Radiological, Oncological and Anathomo-patological Science, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
- *Correspondence: Mattia Alberto Di Civita,
| | - Giacomo Barchiesi
- Oncology Unit (UOC) Oncologia A, Department of Radiological, Oncological and Anathomo-patological Science, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Emanuela Pilozzi
- Department of Clinical and Molecular Medicine, Anatomia Patologica Unit, Sant’ Andrea University Hospital, Sapienza University of Rome, Rome, Italy
| | - Paolo Marchetti
- Scientific Direction, Istituto Dermopatico dell’Immacolata (IDI-IRCCS), Rome, Italy
| | - Daniele Santini
- Oncology Unit (UOC) Oncologia A, Department of Radiological, Oncological and Anathomo-patological Science, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Federica Mazzuca
- Oncology Unit, Department of Clinical and Molecular Medicine, Sant’ Andrea University Hospital, Sapienza University of Rome, Rome, Italy
| | - Silverio Tomao
- Oncology Unit (UOC) Oncologia A, Department of Radiological, Oncological and Anathomo-patological Science, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
28
|
Koch C, Fischer NC, Puchert M, Engele J. Interactions of the chemokines CXCL11 and CXCL12 in human tumor cells. BMC Cancer 2022; 22:1335. [PMID: 36539774 PMCID: PMC9768901 DOI: 10.1186/s12885-022-10451-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The chemokines, CXCL12 and CXCL11, are upregulated in tumors from many organs and control their progression. CXCL12 and CXCL11 affect tumor cell functions by either binding their prime receptors, CXCR4 and CXCR3, respectively, and/or CXCR7 as a common second chemokine receptor. In humans, CXCR3 exists in the functional splice variants, CXCR3A and CXCR3B, which either have pro- or anti-tumor activity, respectively. Despite the intimate crosstalk between the CXCL12- and CXCL11-system, the impact of a combination of CXCL12 and CXCL11 on tumor progression remains vague. METHODS In the present work, we have analyzed CXCL12 and CXCL11 for combined effects on migration, invasion, proliferation, and cytostatic-induced apoptosis of the human tumor cells, A549, A767, A772, DLD-1, and MDA-MB-231. RESULTS We demonstrate that the mode of interaction differs with respect to cell type and function and allows for either potentiation, attenuation or no changes of cellular responses. The divergent responses are not the result of the distinct use of different CXCL12- and CXCL11-receptors by the respective tumor cells, but in case of cell migration seem to be associated with the activation of p38 signaling pathways. CONCLUSIONS Our findings point to therapeutic limitations of ongoing efforts to selectively target CXCR3, CXCR4, or CXCR7 in cancer patients, and rather favor individualized targeting strategies.
Collapse
Affiliation(s)
- Christian Koch
- Institute of Anatomy, University of Leipzig, Medical Faculty, Liebigstr. 13, 04103, Leipzig, Germany
- Department of Medical Oncology and Hematology, University of Zurich and University Hospital of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Nina Charlotte Fischer
- Institute of Anatomy, University of Leipzig, Medical Faculty, Liebigstr. 13, 04103, Leipzig, Germany
| | - Malte Puchert
- Institute of Anatomy, University of Leipzig, Medical Faculty, Liebigstr. 13, 04103, Leipzig, Germany
| | - Jürgen Engele
- Institute of Anatomy, University of Leipzig, Medical Faculty, Liebigstr. 13, 04103, Leipzig, Germany.
| |
Collapse
|
29
|
Kim Y, Lee J, Lee C, Lawler S. Role of senescent tumor cells in building a cytokine shield in the tumor microenvironment: mathematical modeling. J Math Biol 2022; 86:14. [PMID: 36512100 DOI: 10.1007/s00285-022-01850-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 10/29/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022]
Abstract
Cellular senescence can induce dual effects (promotion or inhibition) on cancer progression. While immune cells naturally respond and migrate toward various chemotactic sources from the tumor mass, various factors including senescent tumor cells (STCs) in the tumor microenvironment may affect this chemotactic movement. In this work, we investigate the mutual interactions between the tumor cells and the immune cells that either inhibit or facilitate tumor growth by developing a mathematical model that consists of taxis-reaction-diffusion equations and receptor kinetics for the key players in the interaction network. We apply a mathematical model to a transwell Boyden chamber invasion assay used in the experiments to illustrate that STCs can play a pivotal role in negating immune attack through tight regulation of intra- and extra-cellular signaling molecules. In particular, we show that senescent tumor cells in cell cycle arrest can block intratumoral infiltration of CD8+ T cells by secreting a high level of CXCL12, which leads to significant reduction its receptors, CXCR4, on T cells, and thus impaired chemotaxis. The predictions of nonlinear responses to CXCL12 were in good agreement with experimental data. We tested several hypotheses on immune-tumor interactions under various biochemical conditions in the tumor microenvironment and developed new concepts for anti-tumor strategies targeting senescence induced immune impairment.
Collapse
Affiliation(s)
- Yangjin Kim
- Department of Mathematics, Konkuk University, Seoul, 05029, Republic of Korea.
| | - Junho Lee
- Department of Mathematics, Konkuk University, Seoul, 05029, Republic of Korea
| | - Chaeyoung Lee
- Department of Mathematics, Korea University, Seoul, Republic of Korea
| | - Sean Lawler
- Department of Pathology and Laboratory Medicine, Brown Cancer Center, Brown University, Providence, RI, USA
| |
Collapse
|
30
|
Stuckel AJ, Khare T, Bissonnette M, Khare S. Aberrant regulation of CXCR4 in cancer via deviant microRNA-targeted interactions. Epigenetics 2022; 17:2318-2331. [PMID: 36047714 PMCID: PMC9665135 DOI: 10.1080/15592294.2022.2118947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/02/2022] [Accepted: 08/18/2022] [Indexed: 11/03/2022] Open
Abstract
CXCR4 is involved in many facets of cancer, including being a major player in establishing metastasis. This is in part due to the deregulation of CXCR4, which can be attributed to many genetic and epigenetic mechanisms, including aberrant microRNA-CXCR4 interaction. MicroRNAs (miRNAs) are a type of small non-coding RNA that primarily targets the 3' UTR of mRNA transcripts, which in turn suppresses mRNA and subsequent protein expression. In this review, we reported and characterized the many aberrant miRNA-CXCR4 interactions that occur throughout human cancers. In particular, we reported known target sequences located on the 3' UTR of CXCR4 transcripts that tumour suppressor miRNAs bind and therefore regulate expression by. From these aberrant interactions, we also documented affected downstream genes/pathways and whether a particular tumour suppressor miRNA was reported as a prognostic marker in its respected cancer type. In addition, a limited number of cancer-causing miRNAs coined 'oncomirs' were reported and described in relation to CXCR4 regulation. Moreover, the mechanisms underlying both tumour suppressor and oncomir deregulations concerning CXCR4 expression were also explored. Furthermore, the miR-146a-CXCR4 axis was delineated in oncoviral infected endothelial cells in the context of virus-causing cancers. Lastly, miRNA-driven therapies and CXCR4 antagonist drugs were discussed as potential future treatment options in reported cancers pertaining to deregulated miRNA-CXCR4 interactions.
Collapse
Affiliation(s)
- Alexei J. Stuckel
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, Missouri65212, USA
| | - Tripti Khare
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, Missouri65212, USA
| | - Marc Bissonnette
- Section of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Chicago, Chicago, Il60637, USA
| | - Sharad Khare
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, Missouri65212, USA
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri65201, USA
| |
Collapse
|
31
|
Lyubetskaya A, Rabe B, Fisher A, Lewin A, Neuhaus I, Brett C, Brett T, Pereira E, Golhar R, Kebede S, Font-Tello A, Mosure K, Van Wittenberghe N, Mavrakis KJ, MacIsaac K, Chen BJ, Drokhlyansky E. Assessment of spatial transcriptomics for oncology discovery. CELL REPORTS METHODS 2022; 2:100340. [PMID: 36452860 PMCID: PMC9701619 DOI: 10.1016/j.crmeth.2022.100340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/05/2022] [Accepted: 10/21/2022] [Indexed: 06/17/2023]
Abstract
Tumor heterogeneity is a major challenge for oncology drug discovery and development. Understanding of the spatial tumor landscape is key to identifying new targets and impactful model systems. Here, we test the utility of spatial transcriptomics (ST) for oncology discovery by profiling 40 tissue sections and 80,024 capture spots across a diverse set of tissue types, sample formats, and RNA capture chemistries. We verify the accuracy and fidelity of ST by leveraging matched pathology analysis, which provides a ground truth for tissue section composition. We then use spatial data to demonstrate the capture of key tumor depth features, identifying hypoxia, necrosis, vasculature, and extracellular matrix variation. We also leverage spatial context to identify relative cell-type locations showing the anti-correlation of tumor and immune cells in syngeneic cancer models. Lastly, we demonstrate target identification approaches in clinical pancreatic adenocarcinoma samples, highlighting tumor intrinsic biomarkers and paracrine signaling.
Collapse
Affiliation(s)
- Anna Lyubetskaya
- Research and Early Development, Bristol Myers Squibb Company, 100 Binney Street, Cambridge, MA 02142, USA
| | - Brian Rabe
- Research and Early Development, Bristol Myers Squibb Company, 100 Binney Street, Cambridge, MA 02142, USA
| | - Andrew Fisher
- Research and Early Development, Bristol Myers Squibb Company, 100 Binney Street, Cambridge, MA 02142, USA
| | - Anne Lewin
- Research and Early Development, Bristol Myers Squibb Company, 100 Binney Street, Cambridge, MA 02142, USA
| | - Isaac Neuhaus
- Research and Early Development, Bristol Myers Squibb Company, Route 206 & Province Line Road, Princeton, NJ 08543, USA
| | - Constance Brett
- Aggregate Genius, Inc., 560 Fulford-Ganges Road, Salt Spring Island, BC V8K 2K1, Canada
| | - Todd Brett
- Aggregate Genius, Inc., 560 Fulford-Ganges Road, Salt Spring Island, BC V8K 2K1, Canada
| | - Ethel Pereira
- Research and Early Development, Bristol Myers Squibb Company, 100 Binney Street, Cambridge, MA 02142, USA
| | - Ryan Golhar
- Research and Early Development, Bristol Myers Squibb Company, Route 206 & Province Line Road, Princeton, NJ 08543, USA
| | - Sami Kebede
- Research and Early Development, Bristol Myers Squibb Company, 100 Binney Street, Cambridge, MA 02142, USA
| | - Alba Font-Tello
- Research and Early Development, Bristol Myers Squibb Company, 100 Binney Street, Cambridge, MA 02142, USA
| | - Kathy Mosure
- Research and Early Development, Bristol Myers Squibb Company, 100 Binney Street, Cambridge, MA 02142, USA
| | - Nicholas Van Wittenberghe
- Research and Early Development, Bristol Myers Squibb Company, 100 Binney Street, Cambridge, MA 02142, USA
| | - Konstantinos J. Mavrakis
- Research and Early Development, Bristol Myers Squibb Company, 100 Binney Street, Cambridge, MA 02142, USA
| | - Kenzie MacIsaac
- Research and Early Development, Bristol Myers Squibb Company, 100 Binney Street, Cambridge, MA 02142, USA
| | - Benjamin J. Chen
- Research and Early Development, Bristol Myers Squibb Company, 100 Binney Street, Cambridge, MA 02142, USA
| | - Eugene Drokhlyansky
- Research and Early Development, Bristol Myers Squibb Company, 100 Binney Street, Cambridge, MA 02142, USA
| |
Collapse
|
32
|
Zhang M, Zhu J, Wang W, Jiang Z. Active legumain promotes invasion and migration of neuroblastoma by regulating epithelial-mesenchymal transition. Open Life Sci 2022; 17:676-685. [PMID: 35800070 PMCID: PMC9214917 DOI: 10.1515/biol-2022-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 11/26/2021] [Accepted: 01/03/2022] [Indexed: 11/18/2022] Open
Abstract
Neuroblastoma (NB) is a commonly occurring malignancy in children. Epithelial-mesenchymal transition (EMT) is an adaptive change in promoting tumor metastasis. As an important factor in regulating tumor metastasis, whether legumain could promote metastasis of NB by EMT is still unexplored. Legumain is the active form of prolegumain, abundant in tumor plasma. So in the current study, different forms of legumain were identified in NB. Second, correlation analysis of N-cadherin and active legumain was identified by western blot analysis. Third, legumain gene amplification or gene knockdown were proceeded to examine the effect of legumain on EMT by scratch and transwell assay; meanwhile, active mature legumain or its asparagine endopeptidase (AEP) inhibitor was also added in. Finally, legumain can be detected differently in NB cells. Changes in legumain could influence NB metastasis by regulating EMT markers (e.g., N-cadherin, vimentin, and slug). Besides, the effect of legumain on EMT by its AEP activity was proved by intervention experiment of AEP gene transfection and gene knockdown experiments or adding recombinant human legumain suspension or specific inhibitor of AEP in NB cells (p < 0.05). These results suggest that legumain can promote invasion and migration of NB by regulating EMT, and EMT of NB is regulated by AEP activity of legumain, which can be inhibited by a specific AEP inhibitor.
Collapse
Affiliation(s)
- Min Zhang
- Department of Emergency & Trauma Surgery, Shanghai University of Medicine and Health Sciences, Affiliated Zhoupu Hospital , Shanghai 201318 , P. R. China
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200092 , P. R. China
| | - Jianhua Zhu
- Department of Emergency & Trauma Surgery, Shanghai University of Medicine and Health Sciences, Affiliated Zhoupu Hospital , Shanghai 201318 , P. R. China
| | - Wei Wang
- Department of Emergency & Trauma Surgery, Shanghai University of Medicine and Health Sciences, Affiliated Zhoupu Hospital , Shanghai 201318 , P. R. China
| | - Zhiteng Jiang
- Colloge of Pharmacy, Shanghai University of Medicine and Health Sciences , Shanghai 201318 , P. R. China
| |
Collapse
|
33
|
Qiu L, Xu Y, Xu H, Yu B. The clinicopathological and prognostic value of CXCR4 expression in patients with lung cancer: a meta-analysis. BMC Cancer 2022; 22:681. [PMID: 35729596 PMCID: PMC9210617 DOI: 10.1186/s12885-022-09756-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 06/10/2022] [Indexed: 12/13/2022] Open
Abstract
Background The C-X-C chemokine receptor 4 (CXCR4) has been suggested to play an important role in several types of cancers and is related to biological behaviors connected with tumor progression. However, the clinical significance and application of CXCR4 in lung cancer remain disputable. Thus, we conducted a meta-analysis to investigate the impact of CXCR4 expression on survival and clinicopathological features in lung cancer. Methods Comprehensive literature searches were conducted in PubMed, Embase and Web of Science for relevant studies. We pooled hazard ratios (HRs)/odds ratios (ORs) with 95% confidence intervals (CIs) by STATA 12.0 to evaluate the potential value of CXCR4 expression. Results Twenty-seven relevant articles involving 2932 patients with lung cancer were included in our meta-analysis. The results revealed that CXCR4 expression was apparently associated with poor overall survival (OS) (HR 1.61, 95% CI 1.42–1.82) and disease-free survival (HR 3.39, 95% CI 2.38–4.83). Furthermore, a significant correlation with poor OS was obvious in non-small cell lung cancer patients (HR 1.59, 95% CI 1.40–1.81) and in patients showing CXCR4 expression in the cytoplasm (HR 2.10, 95% CI 1.55–2.84) and the membrane (HR 1.74, 95% CI 1.24–2.45). CXCR4 expression was significantly associated with men (OR 1.32, 95% CI 1.08–1.61), advanced tumor stages (T3-T4) (OR 2.34, 95% CI 1.28–4.28), advanced nodal stages (N > 0) (OR 2.34, 95% CI 1.90–2.90), distant metastasis (OR 3.65, 95% CI 1.53–8.69), advanced TNM stages (TNM stages III, IV) (OR 3.10, 95% CI 1.95–4.93) and epidermal growth factor receptor (EGFR) expression (OR 2.44, 95% CI 1.44–4.12) but was not associated with age, smoking history, histopathology, differentiation, lymphatic vessel invasion or local recurrence. Conclusion High expression of CXCR4 is related to tumor progression and might be an adverse prognostic factor for lung cancer.
Collapse
Affiliation(s)
- Liping Qiu
- Department of Pulmonary and Critical Care Medicine, Ningbo Medical Center Lihuili Hospital, 1111 Jiangnan Road, Zhejiang, 315000, China
| | - Yuanyuan Xu
- Department of Pulmonary and Critical Care Medicine, Ningbo Medical Center Lihuili Hospital, 1111 Jiangnan Road, Zhejiang, 315000, China
| | - Hui Xu
- Department of Pulmonary and Critical Care Medicine, Ningbo Medical Center Lihuili Hospital, 1111 Jiangnan Road, Zhejiang, 315000, China
| | - Biyun Yu
- Department of Pulmonary and Critical Care Medicine, Ningbo Medical Center Lihuili Hospital, 1111 Jiangnan Road, Zhejiang, 315000, China.
| |
Collapse
|
34
|
CXCR4/CXCL12 Activities in the Tumor Microenvironment and Implications for Tumor Immunotherapy. Cancers (Basel) 2022; 14:cancers14092314. [PMID: 35565443 PMCID: PMC9105267 DOI: 10.3390/cancers14092314] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/03/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Chemokines are small soluble proteins that control and regulate cell trafficking within and between tissues by binding to their receptors. Among them, CXCL12 and its receptor CXCR4 appeared with ancestral vertebrates, are expressed almost ubiquitously, and play essential roles in embryogenesis and organogenesis. In addition, CXCL12 and CXCR4 are involved in antigen recognition by T and B cells and in shaping the tumor microenvironment (TME), mainly towards dampening immune responses. New data indicate that CXCR4 interacts with the surface protein CD47 in a novel form of immunosurveillance, called ImmunoGenic Surrender (IGS). Following the co-internalization of CXCR4 and CD47 in tumor cells, macrophages phagocytose them and cross-present their antigens to the adaptive immune system, leading to tumor rejection in a fraction of mice. All of these specific activities of CXCL12 and CXCR4 in antigen presentation might be complementary to current immunotherapies. Abstract CXCR4 is a G-Protein coupled receptor that is expressed nearly ubiquitously and is known to control cell migration via its interaction with CXCL12, the most ancient chemokine. The functions of CXCR4/CXCL12 extend beyond cell migration and involve the recognition and disposal of unhealthy or tumor cells. The CXCR4/CXCL12 axis plays a relevant role in shaping the tumor microenvironment (TME), mainly towards dampening immune responses. Notably, CXCR4/CXCL12 cross-signal via the T and B cell receptors (TCR and BCR) and co-internalize with CD47, promoting tumor cell phagocytosis by macrophages in an anti-tumor immune process called ImmunoGenic Surrender (IGS). These specific activities in shaping the immune response might be exploited to improve current immunotherapies.
Collapse
|
35
|
Alsayed RKME, Khan AQ, Ahmad F, Ansari AW, Alam MA, Buddenkotte J, Steinhoff M, Uddin S, Ahmad A. Epigenetic Regulation of CXCR4 Signaling in Cancer Pathogenesis and Progression. Semin Cancer Biol 2022; 86:697-708. [PMID: 35346802 DOI: 10.1016/j.semcancer.2022.03.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 02/08/2023]
Abstract
Signaling involving chemokine receptor CXCR4 and its ligand SDF-1/CXL12 has been investigated for many years for its possible role in cancer progression and pathogenesis. Evidence emerging from clinical studies in recent years has further established diagnostic as well as prognostic importance of CXCR4 signaling. CXCR4 and SDF-1 are routinely reported to be elevated in tumors, distant metastases, which correlates with poor survival of patients. These findings have kindled interest in the mechanisms that regulate CXCR4/SDF-1 expression. Of note, there is a particular interest in the epigenetic regulation of CXCR4 signaling that may be responsible for upregulated CXCR4 in primary as well as metastatic cancers. This review first lists the clinical evidence supporting CXCR4 signaling as putative cancer diagnostic and/or prognostic biomarker, followed by a discussion on reported epigenetic mechanisms that affect CXCR4 expression. These mechanisms include regulation by non-coding RNAs, such as, microRNAs, long non-coding RNAs and circular RNAs. Additionally, we also discuss the regulation of CXCR4 expression through methylation and acetylation. Better understanding and appreciation of epigenetic regulation of CXCR4 signaling can invariably lead to identification of novel therapeutic targets as well as therapies to regulate this oncogenic signaling.
Collapse
Affiliation(s)
- Reem Khaled M E Alsayed
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Fareed Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Abdul Wahid Ansari
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Majid Ali Alam
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Jorg Buddenkotte
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar; Weill Cornell Medicine-Qatar, Medical School, Doha, 24144, Qatar; Dept. of Dermatology, Weill Cornell Medicine, New York, 10065, NY, USA
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Laboratory Animal Research Center, Qatar University, Doha, 2713, Qatar
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar.
| |
Collapse
|
36
|
Ajarrag S, St-Pierre Y. Galectins in Glioma: Current Roles in Cancer Progression and Future Directions for Improving Treatment. Cancers (Basel) 2021; 13:cancers13215533. [PMID: 34771696 PMCID: PMC8582867 DOI: 10.3390/cancers13215533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Glioblastomas are among the most common and aggressive brain tumors. The high rate of recurrence and mortality associated with this cancer underscores the need for the development of new therapeutical targets. Galectins are among the new targets that have attracted the attention of many scientists working in the field of cancer. They form a group of small proteins found in many tissues where they accomplish various physiological roles, including regulation of immune response and resistance to cell death. In many types of cancer, however, production of abnormally high levels of galectins by cancer cells can be detrimental to patients. Elevated levels of galectins can, for example, suppress the ability of the host’s immune system to kill cancer cells. They can also provide cancer cells with resistance to drugs-induced cell death. Here, we review the recent progress that has contributed to a better understanding of the mechanisms of actions of galectins in glioblastoma. We also discuss recent development of anti-galectin drugs and the challenges associated with their use in clinical settings, with particular attention to their role in reducing the efficacy of immunotherapy, a promising treatment that exploits the capacity of the immune system to recognize and kill cancer cells. Abstract Traditional wisdom suggests that galectins play pivotal roles at different steps in cancer progression. Galectins are particularly well known for their ability to increase the invasiveness of cancer cells and their resistance to drug-induced cell death. They also contribute to the development of local and systemic immunosuppression, allowing cancer cells to escape the host’s immunological defense. This is particularly true in glioma, the most common primary intracranial tumor. Abnormally high production of extracellular galectins in glioma contributes to the establishment of a strong immunosuppressive environment that favors immune escape and tumor progression. Considering the recent development and success of immunotherapy in halting cancer progression, it is logical to foresee that galectin-specific drugs may help to improve the success rate of immunotherapy for glioma. This provides a new perspective to target galectins, whose intracellular roles in cancer progression have already been investigated thoroughly. In this review, we discuss the mechanisms of action of galectins at different steps of glioma progression and the potential of galectin-specific drugs for the treatment of glioma.
Collapse
|