1
|
Pimpa J, Authaida S, Boonkum W, Rerkyusuke S, Janta C, Chankitisakul V. Unveiling the Potential of Aloe vera Gel Supplementation in a Cooling Extender: A Breakthrough in Enhancing Rooster Sperm Quality and Fertility Ability. Animals (Basel) 2024; 14:2290. [PMID: 39199824 PMCID: PMC11350648 DOI: 10.3390/ani14162290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
The cooling of semen storage at 5 °C from a Thai native rooster (Pradu Hang Dum), supplemented with herbs possessing antioxidant properties, provided limited research. This study was conducted to evaluate the efficiency of Aloe vera (AV) gel supplementation at various levels on the quality of cooled semen and subsequent fertility after artificial insemination. Sixty-four chickens had semen pooled, diluted, and supplemented with different levels of AV gel (0% as control, 0.25%, 0.50%, 1.0%, 2.5%, 5.0%, 10%, and 20%), and then stored for 72 h. In Experiment 1, semen quality, malondialdehyde (MDA) levels, and pH values were assessed at 0, 24, 48, and 72 h after storage. Experiment 2 assessed fertility potential using the most effective cooled storage semen from Experiment 1. Results showed a decrease in semen quality with prolonged storage time (p < 0.001). The highest semen quality was observed in the group supplemented with 1.0% AV gel (p < 0.001), whereas the lowest was noted in the 20% AV gel group (p < 0.001). Furthermore, the 1.0% AV gel group exhibited the highest semen quality at 24, 48, and 72 h of storage. The evaluation of fertility and hatchability rates revealed a statistically significant improvement in fertility potential (p < 0.05) in the group supplemented with 1.0% AV gel. In summary, this study represents the first investigation of stored Thai native rooster semen using a semen extender supplemented with Aloe vera gel at 5 °C, demonstrating its efficacy for storage up to 72 h. The addition of 1% AV gel was recommended as an antioxidant supplementation during the semen storage process at 5 °C to enhance semen quality and fertility rates.
Collapse
Affiliation(s)
- Jutarat Pimpa
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand; (J.P.); (S.A.); (W.B.)
| | - Supakorn Authaida
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand; (J.P.); (S.A.); (W.B.)
| | - Wuttigrai Boonkum
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand; (J.P.); (S.A.); (W.B.)
- Network Center for Animal Breeding and Omics Research, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sarinya Rerkyusuke
- Division of Livestock Medicine, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Chalinee Janta
- Medicinal Plants Innovation Center of Mae Fah Luang University, Chiang Rai 57100, Thailand;
| | - Vibuntita Chankitisakul
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand; (J.P.); (S.A.); (W.B.)
- Network Center for Animal Breeding and Omics Research, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
2
|
Hassan S, Bilal N, Khan TJ, Ali MN, Ghafoor B, Saif KU. Bioinspired chitosan based functionalization of biomedical implant surfaces for enhanced hemocompatibility, antioxidation and anticoagulation potential: an in silico and in vitro study. RSC Adv 2024; 14:20691-20713. [PMID: 38952927 PMCID: PMC11215499 DOI: 10.1039/d4ra00796d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/17/2024] [Indexed: 07/03/2024] Open
Abstract
Endowing implanted biomaterials with better hemocompatibility, anticoagulation, antioxidant and antiplatelet adhesion is necessary because of their potential to trigger activation of multiple reactive mechanisms including coagulation cascade and potentially causing serious adverse clinical events like late thrombosis. Active ingredients from natural sources including Foeniculum vulgare, Angelica sinensis, and Cinnamomum verum have the ability to inhibit the coagulation cascade and thrombus formation around biomedical implants. These properties are of interest for the development of a novel drug for biomedical implants to potentially solve the current blood clotting and coagulation problems which lead to stent thrombosis. The objective of this study was to incorporate different anticoagulants from natural sources into a degradable matrix of chitosan with varying concentrations ranging from 5% to 15% and a composite containing all three drugs. The presence of anticoagulant constituents was identified using GC-MS. Subsequently, all the compositions were characterized principally by using Fourier transform infrared spectroscopy and scanning electron microscopy while the drug release profile was determined using UV-spectrometry for a 30 days immersion period. The results indicated an initial burst release which was subsequently followed by the sustained release pattern. Compared to heparin loaded chitosan, DPPH and hemolysis tests revealed better blood compatibility of natural drug loaded films. Moreover, the anticoagulation activity of natural drugs was equivalent to the heparin loaded film; however, through docking, the mechanism of inhibition of the coagulation cascade of the novel drug was found to be through blocking the extrinsic pathway. The study suggested that the proposed drug composite expresses an optimum composition which may be a practicable and appropriate candidate for biomedical implant coatings.
Collapse
Affiliation(s)
- Sadia Hassan
- School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology Islamabad Pakistan
| | - Namra Bilal
- Nencki Institute of Experimental Biology Poland
| | - Tooba Javaid Khan
- School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology Islamabad Pakistan
| | - Murtaza Najabat Ali
- School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology Islamabad Pakistan
| | - Bakhtawar Ghafoor
- School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology Islamabad Pakistan
| | | |
Collapse
|
3
|
Kumar H, Dhalaria R, Guleria S, Sharma R, Cimler R, Dhanjal DS, Chopra C, Kumar V, Manickam S, Siddiqui SA, Kaur T, Verma N, Kumar Pathera A, Kuča K. Advances in the concept of functional foods and feeds: applications of cinnamon and turmeric as functional enrichment ingredients. Crit Rev Food Sci Nutr 2023; 65:1144-1162. [PMID: 38063355 DOI: 10.1080/10408398.2023.2289645] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
Spices are a rich source of vitamins, polyphenols, proteins, dietary fiber, and minerals such as calcium, magnesium, iron, and zinc, all of which play an important role in biological functions. Since ancient times, spices have been used in our kitchen as a food coloring agent. Spices like cinnamon and turmeric allegedly contain various functional ingredients, such as phenolic and volatile compounds. Therefore, this review aims to summarize the current knowledge about the nutritional profiles of cinnamon and turmeric, as well as to analyze the clinical studies on their extracts and essential oils in animals and humans. Furthermore, their enrichment applications for food products and animal feed have also been investigated in terms of safety and toxicity. Numerous studies have shown that cinnamon and turmeric have various health benefits, including the reduction of insulin resistance and insulin signaling pathways in diabetic patients, the reduction of inflammatory biomarkers, and the maintenance of gut microflora in both animals and humans. The food and animal feed industries have taken notice of these health benefits and have begun to promote cinnamon and turmeric as healthy foods. This has resulted in the development of new food products and animal feeds that contain cinnamon and turmeric as primary ingredients, which have been deemed an effective means of promoting cinnamon and turmeric's health benefits.
Collapse
Affiliation(s)
- Harsh Kumar
- Centre of Advanced Technologies, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Rajni Dhalaria
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Shivani Guleria
- Department of Biotechnology, TIFAC-Centre of Relevance and Excellence in Agro and Industrial Biotechnology (CORE), Thapar Institute of Engineering and Technology, Patiala, India
| | - Ruchi Sharma
- School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Richard Cimler
- Centre of Advanced Technologies, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Vijay Kumar
- Central Ayurveda Research Institute, Jhansi, Uttar Pradesh, India
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, Brunei
| | - Shahida Anusha Siddiqui
- Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
| | - Talwinder Kaur
- Department of Microbiology, DAV University, Sarmastpur, Jalandhar, Punjab, India
| | - Narinder Verma
- School of Management and Liberal Arts, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | | | - Kamil Kuča
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec, Kralove, Czech Republic
| |
Collapse
|
4
|
Vezzani B, Perrone M, Carinci M, Palumbo L, Tombolato A, Tombolato D, Daminato C, Gentili V, Rizzo R, Campo G, Morandi L, Papi A, Spadaro S, Casolari P, Contoli M, Pinton P, Giorgi C. SARS-CoV-2 infection as a model to study the effect of cinnamaldehyde as adjuvant therapy for viral pneumonia. J Inflamm (Lond) 2023; 20:40. [PMID: 37986089 PMCID: PMC10658863 DOI: 10.1186/s12950-023-00364-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND The recent pandemic outbursts, due to SARS-CoV-2, have highlighted once more the central role of the inflammatory process in the propagation of viral infection. The main consequence of COVID-19 is the induction of a diffuse pro-inflammatory state, also defined as a cytokine storm, which affects different organs, but mostly the lungs. We aimed to prove the efficacy of cinnamaldehyde, the active compound of cinnamon, as an anti-inflammatory compound, able to reduce SARS-CoV-2 induced cytokine storm. RESULTS We enrolled 53 COVID-19 patients hospitalized for respiratory failure. The cohort was composed by 39 males and 13 females, aged 65.0 ± 9.8 years. We reported that COVID-19 patients have significantly higher IL-1β and IL-6 plasma levels compared to non-COVID-19 pneumonia patients. In addition, human mononuclear cells (PBMCs) isolated from SARS-CoV-2 infected patients are significantly more prone to release pro-inflammatory cytokines upon stimuli. We demonstrated, using in vitro cell models, that macrophages are responsible for mediating the pro-inflammatory cytokine storm while lung cells support SARS-CoV-2 replication upon viral infection. In this context, cinnamaldehyde administration significantly reduces SARS-CoV-2-related inflammation by inhibiting NLRP3 mediated IL-1β release in both PBMCs and THP-1 macrophages, as well as viral replication in CaLu-3 epithelial cells. Lastly, aerosol-administered cinnamaldehyde was able to significantly reduce IL-1β release in an in vivo lung-inflammatory model. CONCLUSION The obtained results suggest the possible use of cinnamaldehyde as a co-adjuvant preventive treatment for COVID-19 disease together with vaccination, but also as a promising dietary supplement to reduce, more broadly, viral induced inflammation.
Collapse
Affiliation(s)
- Bianca Vezzani
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121, Ferrara, Italy
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121, Ferrara, Italy
| | - Mariasole Perrone
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121, Ferrara, Italy
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121, Ferrara, Italy
| | - Marianna Carinci
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121, Ferrara, Italy
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121, Ferrara, Italy
| | - Laura Palumbo
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121, Ferrara, Italy
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121, Ferrara, Italy
| | | | | | | | - Valentina Gentili
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Roberta Rizzo
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Gianluca Campo
- Cardiology Unit, Azienda Ospedaliero-Universitaria Di Ferrara, Ferrara, Italy
| | - Luca Morandi
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Alberto Papi
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Savino Spadaro
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Paolo Casolari
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Marco Contoli
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Paolo Pinton
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121, Ferrara, Italy
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121, Ferrara, Italy
| | - Carlotta Giorgi
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121, Ferrara, Italy.
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121, Ferrara, Italy.
| |
Collapse
|
5
|
Halma MTJ, Plothe C, Marik P, Lawrie TA. Strategies for the Management of Spike Protein-Related Pathology. Microorganisms 2023; 11:1308. [PMID: 37317282 PMCID: PMC10222799 DOI: 10.3390/microorganisms11051308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 06/16/2023] Open
Abstract
In the wake of the COVID-19 crisis, a need has arisen to prevent and treat two related conditions, COVID-19 vaccine injury and long COVID-19, both of which can trace at least part of their aetiology to the spike protein, which can cause harm through several mechanisms. One significant mechanism of harm is vascular, and it is mediated by the spike protein, a common element of the COVID-19 illness, and it is related to receiving a COVID-19 vaccine. Given the significant number of people experiencing these two related conditions, it is imperative to develop treatment protocols, as well as to consider the diversity of people experiencing long COVID-19 and vaccine injury. This review summarizes the known treatment options for long COVID-19 and vaccine injury, their mechanisms, and their evidentiary basis.
Collapse
Affiliation(s)
| | - Christof Plothe
- Center for Biophysical Osteopathy, Am Wegweiser 27, 55232 Alzey, Germany
| | - Paul Marik
- Front Line COVID-19 Critical Care Alliance (FLCCC), 2001 L St. NW Suite 500, Washington, DC 20036, USA;
| | | |
Collapse
|
6
|
Rajasegaran T, How CW, Saud A, Ali A, Lim JCW. Targeting Inflammation in Non-Small Cell Lung Cancer through Drug Repurposing. Pharmaceuticals (Basel) 2023; 16:ph16030451. [PMID: 36986550 PMCID: PMC10051080 DOI: 10.3390/ph16030451] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Lung cancer is the most common cause of cancer-related deaths. Lung cancers can be classified as small-cell (SCLC) or non-small cell (NSCLC). About 84% of all lung cancers are NSCLC and about 16% are SCLC. For the past few years, there have been a lot of new advances in the management of NSCLC in terms of screening, diagnosis and treatment. Unfortunately, most of the NSCLCs are resistant to current treatments and eventually progress to advanced stages. In this perspective, we discuss some of the drugs that can be repurposed to specifically target the inflammatory pathway of NSCLC utilizing its well-defined inflammatory tumor microenvironment. Continuous inflammatory conditions are responsible to induce DNA damage and enhance cell division rate in lung tissues. There are existing anti-inflammatory drugs which were found suitable for repurposing in non-small cell lung carcinoma (NSCLC) treatment and drug modification for delivery via inhalation. Repurposing anti-inflammatory drugs and their delivery through the airway is a promising strategy to treat NSCLC. In this review, suitable drug candidates that can be repurposed to treat inflammation-mediated NSCLC will be comprehensively discussed together with their administration via inhalation from physico-chemical and nanocarrier perspectives.
Collapse
Affiliation(s)
- Thiviyadarshini Rajasegaran
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Chee Wun How
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| | - Anoosha Saud
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Azhar Ali
- Cancer Science Institute Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Jonathan Chee Woei Lim
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Correspondence:
| |
Collapse
|
7
|
Shirani M, Talebi S, Shojaei M, Askari G, Bagherniya M, Guest PC, Sathyapalan T, Sahebkar A. Spices and Biomarkers of COVID-19: A Mechanistic and Therapeutic Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1412:375-395. [PMID: 37378778 DOI: 10.1007/978-3-031-28012-2_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
In the face of the COVID-19 pandemic, many people around the world have increased their healthy behaviors to prevent transmission of the virus and potentially improve their immune systems. Therefore, the role of diet and food compounds such as spices with bioactive and antiviral properties may be important in these efforts. In this chapter, we review the efficacy of spices such as turmeric (curcumin), cinnamon, ginger, black pepper, saffron, capsaicin, and cumin by investigating the effects of these compounds of COVID-19 disease severity biomarkers.
Collapse
Affiliation(s)
- Masha Shirani
- Students' Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shokoofeh Talebi
- Students' Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehrnaz Shojaei
- Students' Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Askari
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | | | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Nasir Ahmed M, Hughes K. Role of ethno-phytomedicine knowledge in healthcare of COVID-19: advances in traditional phytomedicine perspective. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022; 11:96. [PMID: 35966214 PMCID: PMC9362587 DOI: 10.1186/s43088-022-00277-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/25/2022] [Indexed: 12/26/2022] Open
Abstract
Background Since the outbreak of the COVID-19 virus, ethnomedicinal plants have been used in diverse geographical locations for their purported prophylactic and pharmacological effects. Medicinal plants have been relied on by people around the globe for centuries, as 80% of the world’s population rely on herbal medicines for some aspect of their primary health care needs, according to the World Health Organization.
Main body This review portrays advances in traditional phytomedicine by bridging the knowledge of ethno-phytomedicine and COVID-19 healthcare. Ethnomedicinal plants have been used for symptoms related to COVID-19 as antiviral, anti-infective, anti-inflammatory, anti-oxidant, antipyretic, and lung–gut immune boosters. Traditionally used medicinal plants have the ability to inhibit virus entry and viral assembly, bind to spike proteins, membrane proteins, and block viral replications and enzymes. The efficacy of traditional medicinal plants in the terms of COVID-19 management can be evaluated by in vitro, in vivo as well as different in silico techniques (molecular docking, molecular dynamics simulations, machine learning, etc.) which have been applied extensively to the quest and design of effective biotherapeutics rapidly. Other advances in traditional phytomedicines against COVID-19 are controlled clinical trials, and notably the roles in the gut microbiome. Targeting the gut microbiome via medicinal plants as prebiotics is also found to be an alternative and potential strategy in the search for a COVID-19 combat strategy. Conclusions Since medicinal plants are the sources of modern biotherapeutics development, it is essential to build collaborations among ethnobotanists, scientists, and technologists toward developing the most efficient and the safest adjuvant therapeutics against the pandemic of the twenty-first century, COVID-19.
Collapse
|
9
|
Gu DT, Tung TH, Jiesisibieke ZL, Chien CW, Liu WY. Safety of Cinnamon: An Umbrella Review of Meta-Analyses and Systematic Reviews of Randomized Clinical Trials. Front Pharmacol 2022; 12:790901. [PMID: 35115937 PMCID: PMC8804376 DOI: 10.3389/fphar.2021.790901] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/16/2021] [Indexed: 11/16/2022] Open
Abstract
Purpose: Many evidence-based studies have indicated that cinnamon has therapeutic effects. However, it may not be entirely safe and its adverse effects may be ignored. The present umbrella review was conducted to elucidate the safety of cinnamon. Methods: Pertinent meta-analyses and systematic reviews of randomized controlled trials on cinnamon use in humans were identified by searching PubMed, EMBASE, and the Cochrane Library from their inception to September 15, 2021. All meta-analyses and systematic reviews on the safety or adverse effects of cinnamon were considered. PRISMA 2020 was used as the standard of reporting (PRISMA registration ID: 286746). Results: We identified three meta-analyses and one systematic review that described the safety of cinnamon. The quality of the meta-analysis and systematic reviews was evaluated using “Assessing the Methodological Quality of Systematic Reviews.” Their quality was rated as low in two (50%) instances and moderate in two (50%). There were no significant toxic- or side effects between cinnamon group and placebo group regardless of dose and duration. Conclusion: There is evidence to support that the use of cinnamon has no adverse reactions. It can improve the health status of patients as an adjuvant treatment. Future studies exploring better profile risks and protective factors for cinnamon use-related adverse effect are needed, in order that preventive approaches can be developed.
Collapse
Affiliation(s)
- Dan-Tong Gu
- Institute of Otolaryngology, Clinical Research Center, Fudan University Affiliated Eye and ENT Hospital, Shanghai, China
| | - Tao-Hsin Tung
- Evidence-based Medicine Center, Taizhou Hospital of Zhejiang Province Affiliated with Wenzhou Medical University, Linhai, China
| | | | - Ching-Wen Chien
- Institute for Hospital Management, Tsing Hua University, Shenzhen, China
| | - Wen-Yi Liu
- Institute for Hospital Management, Tsing Hua University, Shenzhen, China
- Department of Health Policy and Management, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
- Shanghai Bluecross Medical Science Institute, Shanghai, China
- *Correspondence: Wen-Yi Liu,
| |
Collapse
|