1
|
Bal U, Bal A, Moral ÖT, Düzgün F, Gürbüz N. A deep learning feature extraction-based hybrid approach for detecting pediatric pneumonia in chest X-ray images. Phys Eng Sci Med 2024; 47:109-117. [PMID: 37991696 DOI: 10.1007/s13246-023-01347-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 10/12/2023] [Indexed: 11/23/2023]
Abstract
Pneumonia is a disease caused by bacteria, viruses, and fungi that settle in the alveolar sacs of the lungs and can lead to serious health complications in humans. Early detection of pneumonia is necessary for early treatment to manage and cure the disease. Recently, machine learning-based pneumonia detection methods have focused on pneumonia in adults. Machine learning relies on manual feature engineering, whereas deep learning can automatically detect and extract features from data. This study proposes a deep learning feature extraction-based hybrid approach that combines deep learning and machine learning to detect pediatric pneumonia, which is difficult to standardize. The proposed hybrid approach enhances the accuracy of detecting pediatric pneumonia and simplifies the approach by eliminating the requirement for advanced feature extraction. The experiments indicate that the hybrid approach using a Medium Neural Network based on AlexNet feature extraction achieved a 97.9% accuracy rate and 98.0% sensitivity rate. The results show that the proposed approach achieved higher accuracy rates than state-of-the-art approaches.
Collapse
Affiliation(s)
- Ufuk Bal
- Osmaniye Korkut Ata University Electrical and Electronics Engineering Department, Osmaniye, Turkey.
| | - Alkan Bal
- Manisa Celal Bayar University Pediatrics Department, Manisa, Turkey
| | - Özge Taylan Moral
- Vocational School of Technical Sciences, Electronics Technology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Fatih Düzgün
- Department of Radiology, Manisa Celal Bayar University, Manisa, Turkey
| | - Nida Gürbüz
- Manisa Celal Bayar University Pediatrics Department, Manisa, Turkey
| |
Collapse
|
2
|
Chen J, Han J. A study on the recognition of monkeypox infection based on deep convolutional neural networks. Front Immunol 2023; 14:1225557. [PMID: 38130718 PMCID: PMC10733491 DOI: 10.3389/fimmu.2023.1225557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/23/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction The World Health Organization (WHO) has assessed the global public risk of monkeypox as moderate, and 71 WHO member countries have reported more than 14,000 cases of monkeypox infection. At present, the identification of clinical symptoms of monkeypox mainly depends on traditional medical means, which has the problems of low detection efficiency and high detection cost. The deep learning algorithm is excellent in image recognition and can extract and recognize image features quickly and reliably. Methods Therefore, this paper proposes a residual convolutional neural network based on the λ function and contextual transformer (LaCTResNet) for the image recognition of monkeypox cases. Results The average recognition accuracy of the neural network model is 91.85%, which is 15.82% higher than that of the baseline model ResNet50 and better than the classical convolutional neural networks models such as AlexNet, VGG16, Inception-V3, and EfficientNet-B5. Discussion This method realizes high-precision identification of skin symptoms of the monkeypox virus to provide a fast and reliable auxiliary diagnosis method for monkeypox cases for front-line medical staff.
Collapse
Affiliation(s)
| | - Junying Han
- College of Information Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
3
|
Beyraghi S, Ghorbani F, Shabanpour J, Lajevardi ME, Nayyeri V, Chen PY, Ramahi OM. Microwave bone fracture diagnosis using deep neural network. Sci Rep 2023; 13:16957. [PMID: 37805642 PMCID: PMC10560237 DOI: 10.1038/s41598-023-44131-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023] Open
Abstract
This paper studies the feasibility of a deep neural network (DNN) approach for bone fracture diagnosis based on the non-invasive propagation of radio frequency waves. In contrast to previous "semi-automated" techniques, where X-ray images were used as the network input, in this work, we use S-parameters profiles for DNN training to avoid labeling and data collection problems. Our designed network can simultaneously classify different complex fracture types (normal, transverse, oblique, and comminuted) and estimate the length of the cracks. The proposed system can be used as a portable device in ambulances, retirement houses, and low-income settings for fast preliminary diagnosis in emergency locations when expert radiologists are not available. Using accurate modeling of the human body as well as changing tissue diameters to emulate various anatomical regions, we have created our datasets. Our numerical results show that our design DNN is successfully trained without overfitting. Finally, for the validation of the numerical results, different sets of experiments have been done on the sheep femur bones covered by the liquid phantom. Experimental results demonstrate that fracture types can be correctly classified without using potentially harmful and ionizing X-rays.
Collapse
Affiliation(s)
- Sina Beyraghi
- Department of Information and Communications Technologies, Pompeu Fabra University, Barcelona, Spain
| | - Fardin Ghorbani
- School of Electrical Engineering, Iran University of Science and Technology, Tehran, 1684613114, Iran
| | - Javad Shabanpour
- Department of Electronics and Nanoengineering, School of Electrical Engineering, Aalto University, 02150, Espoo, Finland
| | - Mir Emad Lajevardi
- Department of Electrical Engineering, Faculty of Electrical and Electronics, South Tehran Branch, Islamic Azad University, Tehran, 113654435, Iran
| | - Vahid Nayyeri
- School of Advanced Technologies, Iran University of Science and Technology, Tehran, 1684613114, Iran.
| | - Pai-Yen Chen
- Department of Electrical and Computer Engineering, University of Illinois, Chicago, IL, 60607, USA
| | - Omar M Ramahi
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, N2L3G1, Canada
| |
Collapse
|
4
|
Aljawarneh SA, Al-Quraan R. Pneumonia Detection Using Enhanced Convolutional Neural Network Model on Chest X-Ray Images. BIG DATA 2023. [PMID: 37074075 DOI: 10.1089/big.2022.0261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Pneumonia, caused by microorganisms, is a severely contagious disease that damages one or both the lungs of the patients. Early detection and treatment are typically favored to recover infected patients since untreated pneumonia can lead to major complications in the elderly (>65 years) and children (<5 years). The objectives of this work are to develop several models to evaluate big X-ray images (XRIs) of the chest, to determine whether the images show/do not show signs of pneumonia, and to compare the models based on their accuracy, precision, recall, loss, and receiver operating characteristic area under the ROC curve scores. Enhanced convolutional neural network (CNN), VGG-19, ResNet-50, and ResNet-50 with fine-tuning are some of the deep learning (DL) algorithms employed in this study. By training the transfer learning model and enhanced CNN model using a big data set, these techniques are used to identify pneumonia. The data set for the study was obtained from Kaggle. It should be noted that the data set has been expanded to include further records. This data set included 5863 chest XRIs, which were categorized into 3 different folders (i.e., train, val, test). These data are produced every day from personnel records and Internet of Medical Things devices. According to the experimental findings, the ResNet-50 model showed the lowest accuracy, that is, 82.8%, while the enhanced CNN model showed the highest accuracy of 92.4%. Owing to its high accuracy, enhanced CNN was regarded as the best model in this study. The techniques developed in this study outperformed the popular ensemble techniques, and the models showed better results than those generated by cutting-edge methods. Our study implication is that a DL models can detect the progression of pneumonia, which improves the general diagnostic accuracy and gives patients new hope for speedy treatment. Since enhanced CNN and ResNet-50 showed the highest accuracy compared with other algorithms, it was concluded that these techniques could be effectively used to identify pneumonia after performing fine-tuning.
Collapse
Affiliation(s)
| | - Romesaa Al-Quraan
- CIS, CIT, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
5
|
Automated methods for sella turcica segmentation on cephalometric radiographic data using deep learning (CNN) techniques. Oral Radiol 2023; 39:248-265. [PMID: 35737215 DOI: 10.1007/s11282-022-00629-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/18/2022] [Indexed: 10/17/2022]
Abstract
OBJECTIVE The objective of this work is to present a novel technique using convolutional neural network (CNN) architectures for automatic segmentation of sella turcica (ST) on cephalometric radiographic image dataset. The proposed work suggests possible deep learning approaches to distinguish ST on complex cephalometric radiographs using deep learning techniques. MATERIALS AND METHODS The dataset of 525 lateral cephalometric images was employed and randomly split into different training and testing subset ratios. The ground truth (annotated images) represents pixel-wise annotation of the ST using an online annotation platform by dental specialists. This study compared convolutional neural network architectures based on fine-tuned versions of the VGG19, ResNet34, InceptionV3, and ResNext50 architectures to select an appropriate model for autonomous segmentation of the nonlinear structure of ST. RESULTS The study compared training and prediction results of the selected models: VGG19, ResNet34, InceptionV3, and ResNext50. The mean IoU scores for VGG19, ResNet34, InceptionV3 and ResNext50 are 0.7651, 0.7241, 0.4717, 0.4287, dice coefficients are 0.7794, 0.7487, 0.4714, 0.4363 and loss scores are 0.0973, 0.1299, 0.2049 and 0.2251, respectively. CONCLUSION The obtained findings suggest that the VGG19 and Resnet34 architectures (mean IoU and dice coefficient > 75%) comparatively outperformed the InceptionV3 and ResNext50 architectures (mean IoU and dice coefficients is around 45%) for considered cephalometric radiographic dataset. The study findings can be used as a reference model for future investigation of non-linear ST morphological characteristics and related biological anomalies.
Collapse
|
6
|
Ouifak H, Idri A. On the performance and interpretability of Mamdani and Takagi-Sugeno-Kang based neuro-fuzzy systems for medical diagnosis. SCIENTIFIC AFRICAN 2023. [DOI: 10.1016/j.sciaf.2023.e01610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
|
7
|
Mahesh Kumar N, Premalatha K, Suvitha S. Lung disease detection using Self-Attention Generative Adversarial Capsule network optimized with sun flower Optimization Algorithm. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Kawakubo M, Waki H, Shirasaka T, Kojima T, Mikayama R, Hamasaki H, Akamine H, Kato T, Baba S, Ushiro S, Ishigami K. A deep learning model based on fusion images of chest radiography and X-ray sponge images supports human visual characteristics of retained surgical items detection. Int J Comput Assist Radiol Surg 2022:10.1007/s11548-022-02816-8. [PMID: 36583837 DOI: 10.1007/s11548-022-02816-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 12/19/2022] [Indexed: 12/31/2022]
Abstract
PURPOSE Although a novel deep learning software was proposed using post-processed images obtained by the fusion between X-ray images of normal post-operative radiography and surgical sponge, the association of the retained surgical item detectability with human visual evaluation has not been sufficiently examined. In this study, we investigated the association of retained surgical item detectability between deep learning and human subjective evaluation. METHODS A deep learning model was constructed from 2987 training images and 1298 validation images, which were obtained from post-processing of the image fusion between X-ray images of normal post-operative radiography and surgical sponge. Then, another 800 images were used, i.e., 400 with and 400 without surgical sponge. The detection characteristics of retained sponges between the model and a general observer with 10-year clinical experience were analyzed using the receiver operator characteristics. RESULTS The following values from the deep learning model and observer were, respectively, derived: Cutoff values of probability were 0.37 and 0.45; areas under the curves were 0.87 and 0.76; sensitivity values were 85% and 61%; and specificity values were 73% and 92%. CONCLUSION For the detection of surgical sponges, we concluded that the deep learning model has higher sensitivity, while the human observer has higher specificity. These characteristics indicate that the deep learning system that is complementary to humans could support the clinical workflow in operation rooms for prevention of retained surgical items.
Collapse
Affiliation(s)
- Masateru Kawakubo
- Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka, 812-8582, Japan.
| | - Hiroto Waki
- Department of Radiological Technology, Hyogo Medical University Hospital, Kobe, Japan
| | - Takashi Shirasaka
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan.,Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Tsukasa Kojima
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan.,Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryoji Mikayama
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan
| | - Hiroshi Hamasaki
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan.,Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroshi Akamine
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan.,Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toyoyuki Kato
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan
| | - Shingo Baba
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shin Ushiro
- Division of Patient Safety, Kyushu University Hospital, Fukuoka, Japan.,Japan Council for Quality Health Care, Tokyo, Japan
| | - Kousei Ishigami
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
9
|
Prakash JA, Ravi V, Sowmya V, Soman KP. Stacked ensemble learning based on deep convolutional neural networks for pediatric pneumonia diagnosis using chest X-ray images. Neural Comput Appl 2022; 35:8259-8279. [PMID: 36532883 PMCID: PMC9734540 DOI: 10.1007/s00521-022-08099-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022]
Abstract
Pneumonia is an acute respiratory infection caused by bacteria, viruses, or fungi and has become very common in children ranging from 1 to 5 years of age. Common symptoms of pneumonia include difficulty breathing due to inflamed or pus and fluid-filled alveoli. The United Nations Children's Fund reports nearly 800,000 deaths in children due to pneumonia. Delayed diagnosis and overpriced tests are the prime reason for the high mortality rate, especially in underdeveloped countries. A time and cost-efficient diagnosis tool: Chest X-rays, was thus accepted as the standard diagnostic test for pediatric pneumonia. However, the lower radiation levels for diagnosis in children make the task much more onerous and time-consuming. The mentioned challenges initiate the need for a computer-aided detection model that is instantaneous and accurate. Our work proposes a stacked ensemble learning of deep learning-based features for pediatric pneumonia classification. The extracted features from the global average pooling layer of the fine-tuned Xception model pretrained on ImageNet weights are sent to the Kernel Principal Component Analysis for dimensionality reduction. The dimensionally reduced features are further trained and validated on the stacking classifier. The stacking classifier consists of two stages; the first stage uses the Random-Forest classifier, K-Nearest Neighbors, Logistic Regression, XGB classifier, Support Vector Classifier (SVC), Nu-SVC, and MLP classifier. The second stage operates on Logistic Regression using the first stage predictions for the final classification with Stratified K-fold cross-validation to prevent overfitting. The model was tested on the publicly available pediatric pneumonia dataset, achieving an accuracy of 98.3%, precision of 99.29%, recall of 98.36%, F1-score of 98.83%, and an AUC score of 98.24%. The performance shows its reliability for real-time deployment in assisting radiologists and physicians.
Collapse
Affiliation(s)
- J. Arun Prakash
- Center for Computational Engineering and Networking (CEN), Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India
| | - Vinayakumar Ravi
- Center for Artificial Intelligence, Prince Mohammad Bin Fahd University, Khobar, Saudi Arabia
| | - V. Sowmya
- Center for Computational Engineering and Networking (CEN), Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India
| | - K. P. Soman
- Center for Computational Engineering and Networking (CEN), Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India
| |
Collapse
|
10
|
Mostafa FA, Elrefaei LA, Fouda MM, Hossam A. A Survey on AI Techniques for Thoracic Diseases Diagnosis Using Medical Images. Diagnostics (Basel) 2022; 12:3034. [PMID: 36553041 PMCID: PMC9777249 DOI: 10.3390/diagnostics12123034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Thoracic diseases refer to disorders that affect the lungs, heart, and other parts of the rib cage, such as pneumonia, novel coronavirus disease (COVID-19), tuberculosis, cardiomegaly, and fracture. Millions of people die every year from thoracic diseases. Therefore, early detection of these diseases is essential and can save many lives. Earlier, only highly experienced radiologists examined thoracic diseases, but recent developments in image processing and deep learning techniques are opening the door for the automated detection of these diseases. In this paper, we present a comprehensive review including: types of thoracic diseases; examination types of thoracic images; image pre-processing; models of deep learning applied to the detection of thoracic diseases (e.g., pneumonia, COVID-19, edema, fibrosis, tuberculosis, chronic obstructive pulmonary disease (COPD), and lung cancer); transfer learning background knowledge; ensemble learning; and future initiatives for improving the efficacy of deep learning models in applications that detect thoracic diseases. Through this survey paper, researchers may be able to gain an overall and systematic knowledge of deep learning applications in medical thoracic images. The review investigates a performance comparison of various models and a comparison of various datasets.
Collapse
Affiliation(s)
- Fatma A. Mostafa
- Department of Electrical Engineering, Faculty of Engineering at Shoubra, Benha University, Cairo 11672, Egypt
| | - Lamiaa A. Elrefaei
- Department of Electrical Engineering, Faculty of Engineering at Shoubra, Benha University, Cairo 11672, Egypt
| | - Mostafa M. Fouda
- Department of Electrical and Computer Engineering, College of Science and Engineering, Idaho State University, Pocatello, ID 83209, USA
| | - Aya Hossam
- Department of Electrical Engineering, Faculty of Engineering at Shoubra, Benha University, Cairo 11672, Egypt
| |
Collapse
|
11
|
Addo D, Zhou S, Jackson JK, Nneji GU, Monday HN, Sarpong K, Patamia RA, Ekong F, Owusu-Agyei CA. EVAE-Net: An Ensemble Variational Autoencoder Deep Learning Network for COVID-19 Classification Based on Chest X-ray Images. Diagnostics (Basel) 2022; 12:2569. [PMID: 36359413 PMCID: PMC9689048 DOI: 10.3390/diagnostics12112569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 09/08/2024] Open
Abstract
The COVID-19 pandemic has had a significant impact on many lives and the economies of many countries since late December 2019. Early detection with high accuracy is essential to help break the chain of transmission. Several radiological methodologies, such as CT scan and chest X-ray, have been employed in diagnosing and monitoring COVID-19 disease. Still, these methodologies are time-consuming and require trial and error. Machine learning techniques are currently being applied by several studies to deal with COVID-19. This study exploits the latent embeddings of variational autoencoders combined with ensemble techniques to propose three effective EVAE-Net models to detect COVID-19 disease. Two encoders are trained on chest X-ray images to generate two feature maps. The feature maps are concatenated and passed to either a combined or individual reparameterization phase to generate latent embeddings by sampling from a distribution. The latent embeddings are concatenated and passed to a classification head for classification. The COVID-19 Radiography Dataset from Kaggle is the source of chest X-ray images. The performances of the three models are evaluated. The proposed model shows satisfactory performance, with the best model achieving 99.19% and 98.66% accuracy on four classes and three classes, respectively.
Collapse
Affiliation(s)
- Daniel Addo
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 610056, China
| | - Shijie Zhou
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 610056, China
| | - Jehoiada Kofi Jackson
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 610056, China
| | - Grace Ugochi Nneji
- Department of Computing, Oxford Brookes College of Chengdu University of Technology, Chengdu 610059, China
| | - Happy Nkanta Monday
- Department of Computing, Oxford Brookes College of Chengdu University of Technology, Chengdu 610059, China
| | - Kwabena Sarpong
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 610056, China
| | - Rutherford Agbeshi Patamia
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 610056, China
| | - Favour Ekong
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 610056, China
| | | |
Collapse
|
12
|
Arun Prakash J, Asswin CR, Ravi V, Sowmya V, Soman KP. Pediatric pneumonia diagnosis using stacked ensemble learning on multi-model deep CNN architectures. MULTIMEDIA TOOLS AND APPLICATIONS 2022; 82:21311-21351. [PMID: 36281318 PMCID: PMC9581770 DOI: 10.1007/s11042-022-13844-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/17/2022] [Accepted: 09/06/2022] [Indexed: 05/27/2023]
Abstract
Pediatric pneumonia has drawn immense awareness due to the high mortality rates over recent years. The acute respiratory infection caused by bacteria, viruses, or fungi infects the lung region and hinders oxygen transport, making breathing difficult due to inflamed or pus and fluid-filled alveoli. Being non-invasive and painless, chest X-rays are the most common modality for pediatric pneumonia diagnosis. However, the low radiation levels for diagnosis in children make accurate detection challenging. This challenge initiates the need for an unerring computer-aided diagnosis model. Our work proposes Contrast Limited Adaptive Histogram Equalization for image enhancement and a stacking classifier based on the fusion of deep learning-based features for pediatric pneumonia diagnosis. The extracted features from the global average pooling layers of the fine-tuned MobileNet, DenseNet121, DenseNet169, and DenseNet201 are concatenated for the final classification using a stacked ensemble classifier. The stacking classifier uses Support Vector Classifier, Nu-SVC, Logistic Regression, K-Nearest Neighbor, Random Forest Classifier, Gaussian Naïve Bayes, AdaBoost classifier, Bagging Classifier, and Extra-trees Classifier for the first stage, and Nu-SVC as the meta-classifier. The stacking classifier validated using Stratified K-Fold cross-validation achieves an accuracy of 98.62%, precision of 98.99%, recall of 99.53%, F1 score of 99.26%, and an AUC score of 93.17% on the publicly available pediatric pneumonia dataset. We expect this model to greatly help the real-time diagnosis of pediatric pneumonia.
Collapse
Affiliation(s)
- J Arun Prakash
- Center for Computational Engineering and Networking (CEN), Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India
| | - CR Asswin
- Center for Computational Engineering and Networking (CEN), Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India
| | - Vinayakumar Ravi
- Center for Artificial Intelligence, Prince Mohammad Bin Fahd University, Khobar, Saudi Arabia
| | - V Sowmya
- Center for Computational Engineering and Networking (CEN), Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India
| | - KP Soman
- Center for Computational Engineering and Networking (CEN), Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India
| |
Collapse
|
13
|
Ukwuoma CC, Qin Z, Belal Bin Heyat M, Akhtar F, Bamisile O, Muad AY, Addo D, Al-Antari MA. A Hybrid Explainable Ensemble Transformer Encoder for Pneumonia Identification from Chest X-ray Images. J Adv Res 2022:S2090-1232(22)00202-8. [PMID: 36084812 DOI: 10.1016/j.jare.2022.08.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/11/2022] [Accepted: 08/31/2022] [Indexed: 10/14/2022] Open
Abstract
INTRODUCTION Pneumonia is a microorganism infection that causes chronic inflammation of the human lung cells. Chest X-ray imaging is the most well-known screening approach used for detecting pneumonia in the early stages. While chest-Xray images are mostly blurry with low illumination, a strong feature extraction approach is required for promising identification performance. OBJECTIVES A new hybrid explainable deep learning framework is proposed for accurate pneumonia disease identification using chest X-ray images. METHODS The proposed hybrid workflow is developed by fusing the capabilities of both ensemble convolutional networks and the Transformer Encoder mechanism. The ensemble learning backbone is used to extract strong features from the raw input X-ray images in two different scenarios: ensemble A (i.e., DenseNet201, VGG16, and GoogleNet) and ensemble B (i.e., DenseNet201, InceptionResNetV2, and Xception). Whereas, the Transformer Encoder is built based on the self-attention mechanism with multilayer perceptron (MLP) for accurate disease identification. The visual explainable saliency maps are derived to emphasize the crucial predicted regions on the input X-ray images. The end-to-end training process of the proposed deep learning models over all scenarios is performed for binary and multi-class classification tasks. RESULTS The proposed hybrid deep learning model recorded 99.21% classification performance in terms of overall accuracy and F1-score for the binary classification task, while it achieved 98.19% accuracy and 97.29% F1-score for multi-classification task. For the ensemble binary identification scenario, ensemble A recorded 97.22% accuracy and 97.14% F1-score, while ensemble B achieved 96.44% for both accuracy and F1-score. For the ensemble, multiclass identification scenario, ensemble A recorded 97.2% accuracy and 95.8% F1-score, while ensemble B recorded 96.4% accuracy and 94.9% F1-score. CONCLUSION The proposed hybrid deep learning framework could provide promising and encouraging explainable identification performance comparing with individual, ensemble models, or even the latest models in the literature. The code is available here: https://github.com/chiagoziemchima/Pneumonia_Identificaton.
Collapse
Affiliation(s)
- Chiagoziem C Ukwuoma
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Zhiguang Qin
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| | - Md Belal Bin Heyat
- IoT Research Center, College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China; International Institute of Information Technology, Hyderabad, Telangana 500032, India; Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| | - Faijan Akhtar
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Olusola Bamisile
- Sichuan Industrial Internet Intelligent Monitoring and Application Engineering Technology Research Center, Chengdu University of Technology, China
| | - Abdullah Y Muad
- Department of Studies in Computer Science, University of Mysore, Manasagangothri, Mysore, India
| | - Daniel Addo
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Mugahed A Al-Antari
- Department of Artificial Intelligence, College of Software & Convergence Technology, Daeyang AI Center, Sejong University, Seoul 05006, Korea.
| |
Collapse
|
14
|
Mahaboob Basha S, Lira Neto AV, Alshathri S, Elaziz MA, Hashmitha Mohisin S, De Albuquerque VHC. Multithreshold Segmentation and Machine Learning Based Approach to Differentiate COVID-19 from Viral Pneumonia. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:2728866. [PMID: 36039344 PMCID: PMC9420061 DOI: 10.1155/2022/2728866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/13/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022]
Abstract
Coronavirus disease (COVID-19) has created an unprecedented devastation and the loss of millions of lives globally. Contagious nature and fatalities invariably pose challenges to physicians and healthcare support systems. Clinical diagnostic evaluation using reverse transcription-polymerase chain reaction and other approaches are currently in use. The Chest X-ray (CXR) and CT images were effectively utilized in screening purposes that could provide relevant data on localized regions affected by the infection. A step towards automated screening and diagnosis using CXR and CT could be of considerable importance in these turbulent times. The main objective is to probe a simple threshold-based segmentation approach to identify possible infection regions in CXR images and investigate intensity-based, wavelet transform (WT)-based, and Laws based texture features with statistical measures. Further feature selection strategy using Random Forest (RF) then selected features used to create Machine Learning (ML) representation with Support Vector Machine (SVM) and a Random Forest (RF) to make different COVID-19 from viral pneumonia (VP). The results obtained clearly indicate that the intensity and WT-based features vary in the two pathologies that are better differentiated with the combined features trained using SVM and RF classifiers. Classifier performance measures like an Area Under the Curve (AUC) of 0.97 and by and large classification accuracy of 0.9 using the RF model clearly indicate that the methodology implemented is useful in characterizing COVID-19 and Viral Pneumonia.
Collapse
Affiliation(s)
- Shaik Mahaboob Basha
- Department of Electronics and Communication Engineering, Geethanjali Institute of Science and Technology, Nellore, India
- Graduation Program in Telecommunication Engineering, Federal Institute of Ceará, Fortaleza, CE, Brazil
| | - Aloísio Vieira Lira Neto
- Graduation Program in Telecommunication Engineering, Federal Institute of Ceará, Fortaleza, CE, Brazil
| | - Samah Alshathri
- Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mohamed Abd Elaziz
- Faculty of Computer Science and Engineering, Galala University, Suez 435611, Egypt
| | - Shaik Hashmitha Mohisin
- Department of Electrical and Electronics Engineering, National Institute of Technology Calicut, Kozhikode 673601, India
| | | |
Collapse
|
15
|
Gupta V, Jain N, Sachdeva J, Gupta M, Mohan S, Bajuri MY, Ahmadian A. Improved COVID-19 detection with chest x-ray images using deep learning. MULTIMEDIA TOOLS AND APPLICATIONS 2022; 81:37657-37680. [PMID: 35968409 PMCID: PMC9361266 DOI: 10.1007/s11042-022-13509-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/18/2021] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
The novel coronavirus disease, which originated in Wuhan, developed into a severe public health problem worldwide. Immense stress in the society and health department was advanced due to the multiplying numbers of COVID carriers and deaths. This stress can be lowered by performing a high-speed diagnosis for the disease, which can be a crucial stride for opposing the deadly virus. A good large amount of time is consumed in the diagnosis. Some applications that use medical images like X-Rays or CT-Scans can pace up the time used in diagnosis. Hence, this paper aims to create a computer-aided-design system that will use the chest X-Ray as input and further classify it into one of the three classes, namely COVID-19, viral Pneumonia, and healthy. Since the COVID-19 positive chest X-Rays dataset was low, we have exploited four pre-trained deep neural networks (DNNs) to find the best for this system. The dataset consisted of 2905 images with 219 COVID-19 cases, 1341 healthy cases, and 1345 viral pneumonia cases. Out of these images, the models were evaluated on 30 images of each class for the testing, while the rest of them were used for training. It is observed that AlexNet attained an accuracy of 97.6% with an average precision, recall, and F1 score of 0.98, 0.97, and 0.98, respectively.
Collapse
Affiliation(s)
- Vedika Gupta
- Jindal Global Business School, O.P. Jindal Global University, Haryana, India
| | - Nikita Jain
- Bharati Vidyapeeth’s College of Engineering, Delhi, India
| | - Jatin Sachdeva
- Bharati Vidyapeeth’s College of Engineering, Delhi, India
| | - Mudit Gupta
- Bharati Vidyapeeth’s College of Engineering, Delhi, India
| | - Senthilkumar Mohan
- School of Information Technology and Engineering, Vellore Institute of Technology, Vellore, India
| | - Mohd Yazid Bajuri
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Ali Ahmadian
- Decision Lab, Mediterranea University of Reggio Calabria, 89124 Reggio Calabria, Italy
- Department of Mathematics, Near East University, Nicosia, TRNC, Mersin 10, Turkey
| |
Collapse
|
16
|
Meraihi Y, Gabis AB, Mirjalili S, Ramdane-Cherif A, Alsaadi FE. Machine Learning-Based Research for COVID-19 Detection, Diagnosis, and Prediction: A Survey. SN COMPUTER SCIENCE 2022; 3:286. [PMID: 35578678 PMCID: PMC9096341 DOI: 10.1007/s42979-022-01184-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/30/2022] [Indexed: 12/12/2022]
Abstract
The year 2020 experienced an unprecedented pandemic called COVID-19, which impacted the whole world. The absence of treatment has motivated research in all fields to deal with it. In Computer Science, contributions mainly include the development of methods for the diagnosis, detection, and prediction of COVID-19 cases. Data science and Machine Learning (ML) are the most widely used techniques in this area. This paper presents an overview of more than 160 ML-based approaches developed to combat COVID-19. They come from various sources like Elsevier, Springer, ArXiv, MedRxiv, and IEEE Xplore. They are analyzed and classified into two categories: Supervised Learning-based approaches and Deep Learning-based ones. In each category, the employed ML algorithm is specified and a number of used parameters is given. The parameters set for each of the algorithms are gathered in different tables. They include the type of the addressed problem (detection, diagnosis, or detection), the type of the analyzed data (Text data, X-ray images, CT images, Time series, Clinical data,...) and the evaluated metrics (accuracy, precision, sensitivity, specificity, F1-Score, and AUC). The study discusses the collected information and provides a number of statistics drawing a picture about the state of the art. Results show that Deep Learning is used in 79% of cases where 65% of them are based on the Convolutional Neural Network (CNN) and 17% use Specialized CNN. On his side, supervised learning is found in only 16% of the reviewed approaches and only Random Forest, Support Vector Machine (SVM) and Regression algorithms are employed.
Collapse
Affiliation(s)
- Yassine Meraihi
- LIST Laboratory, University of M’Hamed Bougara Boumerdes, Avenue of Independence, 35000 Boumerdes, Algeria
| | - Asma Benmessaoud Gabis
- Ecole nationale Supérieure d’Informatique, Laboratoire des Méthodes de Conception des Systèmes, BP 68 M, 16309 Oued-Smar, Alger Algeria
| | - Seyedali Mirjalili
- Centre for Artificial Intelligence Research and Optimisation, Torrens University Australia, Fortitude Valley, Brisbane, QLD 4006 Australia
- Yonsei Frontier Lab, Yonsei University, Seoul, Korea
| | - Amar Ramdane-Cherif
- LISV Laboratory, University of Versailles St-Quentin-en-Yvelines, 10-12 Avenue of Europe, 78140 Velizy, France
| | - Fawaz E. Alsaadi
- Information Technology Department, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
17
|
Waheed W, Saylan S, Hassan T, Kannout H, Alsafar H, Alazzam A. A deep learning-driven low-power, accurate, and portable platform for rapid detection of COVID-19 using reverse-transcription loop-mediated isothermal amplification. Sci Rep 2022; 12:4132. [PMID: 35260715 PMCID: PMC8903312 DOI: 10.1038/s41598-022-07954-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/28/2022] [Indexed: 12/24/2022] Open
Abstract
This paper presents a deep learning-driven portable, accurate, low-cost, and easy-to-use device to perform Reverse-Transcription Loop-Mediated Isothermal Amplification (RT-LAMP) to facilitate rapid detection of COVID-19. The 3D-printed device-powered using only a 5 Volt AC-DC adapter-can perform 16 simultaneous RT-LAMP reactions and can be used multiple times. Moreover, the experimental protocol is devised to obviate the need for separate, expensive equipment for RNA extraction in addition to eliminating sample evaporation. The entire process from sample preparation to the qualitative assessment of the LAMP amplification takes only 45 min (10 min for pre-heating and 35 min for RT-LAMP reactions). The completion of the amplification reaction yields a fuchsia color for the negative samples and either a yellow or orange color for the positive samples, based on a pH indicator dye. The device is coupled with a novel deep learning system that automatically analyzes the amplification results and pays attention to the pH indicator dye to screen the COVID-19 subjects. The proposed device has been rigorously tested on 250 RT-LAMP clinical samples, where it achieved an overall specificity and sensitivity of 0.9666 and 0.9722, respectively with a recall of 0.9892 for Ct < 30. Also, the proposed system can be widely used as an accurate, sensitive, rapid, and portable tool to detect COVID-19 in settings where access to a lab is difficult, or the results are urgently required.
Collapse
Affiliation(s)
- Waqas Waheed
- Department of Mechanical Engineering, Khalifa University, Abu Dhabi, UAE
| | - Sueda Saylan
- System on Chip Center (SOCC), Khalifa University, Abu Dhabi, UAE
- Department of Electrical Engineering and Computer Science, Khalifa University, Abu Dhabi, UAE
| | - Taimur Hassan
- Department of Electrical Engineering and Computer Science, Khalifa University, Abu Dhabi, UAE
- Center for Cyber-Physical Systems (C2PS), EECS Department, Khalifa University, Abu Dhabi, UAE
| | - Hussain Kannout
- Center for Biotechnology (BTC), Khalifa University, Abu Dhabi, UAE
| | - Habiba Alsafar
- Center for Biotechnology (BTC), Khalifa University, Abu Dhabi, UAE
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, UAE
| | - Anas Alazzam
- Department of Mechanical Engineering, Khalifa University, Abu Dhabi, UAE.
- System on Chip Center (SOCC), Khalifa University, Abu Dhabi, UAE.
| |
Collapse
|
18
|
A Practical Deep Learning Model in Differentiating Pneumonia-Type Lung Carcinoma from Pneumonia on CT Images: ResNet Added with Attention Mechanism. JOURNAL OF ONCOLOGY 2022; 2022:8906259. [PMID: 35251178 PMCID: PMC8890890 DOI: 10.1155/2022/8906259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/26/2021] [Accepted: 12/31/2021] [Indexed: 11/29/2022]
Abstract
Objective We aim to develop a deep neural network model to differentiate pneumonia-type lung carcinoma from pneumonia based on chest CT scanning and evaluate its performance. Materials and Methods We retrospectively analyzed 131 patients diagnosed with pneumonia-type lung carcinoma and 171 patients with pneumonia treated in Beijing Hospital from October 2019 to February 2021. The average age was 68 (±15) years old, and the proportion of men (162/302) was slightly more than that of women (140/302). In this study, a deep learning based model UNet was applied to extract lesion areas from chest CT images. Lesion areas were extracted and classified by a designed spatial attention mechanism network. The model AUC and diagnostic accuracy were analyzed based on the results of the model. We analyzed the accuracy rate, sensitivity, and specificity and compared the results of the model to the junior and senior radiologists and radiologists based on the model. Results The model has a good efficiency in detecting pneumonia-like lesions (6.31 seconds/case). The model accuracy rate, sensitivity, and specificity were 74.20%, 60.37%, and 89.36%, respectively. The junior radiologist's accuracy rate, sensitivity, and specificity were 61.00%, 48.08%, and 75.00%, respectively. The senior radiologist's accuracy rate, sensitivity, and specificity were 65.00%, 51.92%, and 79.17%, respectively. The results of junior radiologists based on the model were improved (76.00% for accuracy rate, 62.75% for sensitivity, and 89.80% for specificity). The results of senior radiologists based on the model were also improved (78.00% for accuracy rate, 64.71% for sensitivity, and 91.84% for specificity) and the diagnostic accuracy of which was statistically higher than other groups (P < 0.05). Based on the lesion texture diversity and the lesion boundary ambiguity, the algorithm produced false-positive samples (13.51%). Conclusion This deep learning model could detect pneumonia-type lung carcinoma and differentiate it from pneumonia accurately and efficiently.
Collapse
|
19
|
Singh D, Kumar V, Kaur M, Kumari R. Early diagnosis of COVID-19 patients using deep learning-based deep forest model. J EXP THEOR ARTIF IN 2022. [DOI: 10.1080/0952813x.2021.2021300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Dilbag Singh
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Vijay Kumar
- Department of Computer Science & Engineering National Institute of Technology Hamirpur, Hamirpur, India
| | - Manjit Kaur
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Rajani Kumari
- Department of Computer Science, Christ (Deemed to Be University), Bangalore, India
| |
Collapse
|
20
|
Coronavirus Pneumonia Classification using X-Ray and CT Scan Images with Deep Convolutional Neural Networks Models. JOURNAL OF INFORMATION TECHNOLOGY RESEARCH 2022. [DOI: 10.4018/jitr.299391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pneumonia is a life-threatening infectious disease affecting one or both lungs in humans. There are mainly two types of pneumonia: bacterial and viral. Likewise, patients with coronavirus can develop symptoms that belong to the common flu, pneumonia, and other respiratory diseases. Chest X-rays are the common method used to diagnose coronavirus pneumonia and it needs a medical expert to evaluate the result of X-ray. Furthermore, DL has garnered great attention among researchers in recent years in a variety of application domains such as medical image processing, computer vision, bioinformatics, and many others. In this paper, we present a comparison of Deep Convolutional Neural Networks models for automatically binary classification query chest X-ray & CT images dataset with the goal of taking precision tools to health professionals based on fined recent versions of ResNet50, InceptionV3, and VGGNet. The experiments were conducted using a chest X-ray & CT open dataset of 5856 images and confusion matrices are used to evaluate model performances.
Collapse
|
21
|
Abstract
Image recognition has been applied to many fields, but it is relatively rarely applied to medical images. Recent significant deep learning progress for image recognition has raised strong research interest in medical image recognition. First of all, we found the prediction result using the VGG16 model on failed pneumonia X-ray images. Thus, this paper proposes IVGG13 (Improved Visual Geometry Group-13), a modified VGG16 model for classification pneumonia X-rays images. Open-source thoracic X-ray images acquired from the Kaggle platform were employed for pneumonia recognition, but only a few data were obtained, and datasets were unbalanced after classification, either of which can result in extremely poor recognition from trained neural network models. Therefore, we applied augmentation pre-processing to compensate for low data volume and poorly balanced datasets. The original datasets without data augmentation were trained using the proposed and some well-known convolutional neural networks, such as LeNet AlexNet, GoogLeNet and VGG16. In the experimental results, the recognition rates and other evaluation criteria, such as precision, recall and f-measure, were evaluated for each model. This process was repeated for augmented and balanced datasets, with greatly improved metrics such as precision, recall and F1-measure. The proposed IVGG13 model produced superior outcomes with the F1-measure compared with the current best practice convolutional neural networks for medical image recognition, confirming data augmentation effectively improved model accuracy.
Collapse
|
22
|
Sahoo P, Roy I, Ahlawat R, Irtiza S, Khan L. Potential diagnosis of COVID-19 from chest X-ray and CT findings using semi-supervised learning. Phys Eng Sci Med 2021; 45:31-42. [PMID: 34780042 PMCID: PMC8591440 DOI: 10.1007/s13246-021-01075-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 10/30/2021] [Indexed: 12/11/2022]
Abstract
COVID-19 is an infectious disease, which has adversely affected public health and the economy across the world. On account of the highly infectious nature of the disease, rapid automated diagnosis of COVID-19 is urgently needed. A few recent findings suggest that chest X-rays and CT scans can be used by machine learning for the diagnosis of COVID-19. Herein, we employed semi-supervised learning (SSL) approaches to detect COVID-19 cases accurately by analyzing digital chest X-rays and CT scans. On a relatively small COVID-19 radiography dataset, which contains only 219 COVID-19 positive images, 1341 normal and 1345 viral pneumonia images, our algorithm, COVIDCon, which takes advantage of data augmentation, consistency regularization, and multicontrastive learning, attains 97.07% average class prediction accuracy, with 1000 labeled images, which is 7.65% better than the next best SSL method, virtual adversarial training. COVIDCon performs even better on a larger COVID-19 CT Scan dataset that contains 82,767 images. It achieved an excellent accuracy of 99.13%, at 20,000 labels, which is 6.45% better than the next best pseudo-labeling approach. COVIDCon outperforms other state-of-the-art algorithms at every label that we have investigated. These results demonstrate COVIDCon as the benchmark SSL algorithm for potential diagnosis of COVID-19 from chest X-rays and CT-Scans. Furthermore, COVIDCon performs exceptionally well in identifying COVID-19 positive cases from a completely unseen repository with a confirmed COVID-19 case history. COVIDCon, may provide a fast, accurate, and reliable method for screening COVID-19 patients.
Collapse
Affiliation(s)
- Pracheta Sahoo
- Department of Computer Science, The University of Texas at Dallas, Richardson, TX, 75080, USA.
| | - Indranil Roy
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3113, USA
| | - Randeep Ahlawat
- Department of Computer Science, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Saquib Irtiza
- Department of Computer Science, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Latifur Khan
- Department of Computer Science, The University of Texas at Dallas, Richardson, TX, 75080, USA
| |
Collapse
|
23
|
Mahmood AF, Mahmood SW. Auto informing COVID-19 detection result from x-ray/CT images based on deep learning. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:084102. [PMID: 34470404 DOI: 10.1063/5.0059829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
It is no secret to all that the corona pandemic has caused a decline in all aspects of the world. Therefore, offering an accurate automatic diagnostic system is very important. This paper proposed an accurate COVID-19 system by testing various deep learning models for x-ray/computed tomography (CT) medical images. A deep preprocessing procedure was done with two filters and segmentation to increase classification results. According to the results obtained, 99.94% of accuracy, 98.70% of sensitivity, and 100% of specificity scores were obtained by the Xception model in the x-ray dataset and the InceptionV3 model for CT scan images. The compared results have demonstrated that the proposed model is proven to be more successful than the deep learning algorithms in previous studies. Moreover, it has the ability to automatically notify the examination results to the patients, the health authority, and the community after taking any x-ray or CT images.
Collapse
Affiliation(s)
| | - Saja Waleed Mahmood
- University of Mosul, College of Engineering, Computer Engineering, Mosul, Iraq
| |
Collapse
|
24
|
El Asnaoui K, Chawki Y. Using X-ray images and deep learning for automated detection of coronavirus disease. J Biomol Struct Dyn 2021; 39:3615-3626. [PMID: 32397844 PMCID: PMC7256347 DOI: 10.1080/07391102.2020.1767212] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/06/2020] [Indexed: 01/12/2023]
Abstract
Coronavirus is still the leading cause of death worldwide. There are a set number of COVID-19 test units accessible in emergency clinics because of the expanding cases daily. Therefore, it is important to implement an automatic detection and classification system as a speedy elective finding choice to forestall COVID-19 spreading among individuals. Medical images analysis is one of the most promising research areas, it provides facilities for diagnosis and making decisions of a number of diseases such as Coronavirus. This paper conducts a comparative study of the use of the recent deep learning models (VGG16, VGG19, DenseNet201, Inception_ResNet_V2, Inception_V3, Resnet50, and MobileNet_V2) to deal with detection and classification of coronavirus pneumonia. The experiments were conducted using chest X-ray & CT dataset of 6087 images (2780 images of bacterial pneumonia, 1493 of coronavirus, 231 of Covid19, and 1583 normal) and confusion matrices are used to evaluate model performances. Results found out that the use of inception_Resnet_V2 and Densnet201 provide better results compared to other models used in this work (92.18% accuracy for Inception-ResNetV2 and 88.09% accuracy for Densnet201).Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Khalid El Asnaoui
- Complex System Engineering and Human System, Mohammed VI Polytechnic University, Benguerir, Morocco
| | - Youness Chawki
- Faculty of Sciences and Techniques, Moulay Ismail University, Errachidia, Morocco
| |
Collapse
|
25
|
Eldow ME. The worldwide methods of artificial intelligence for detection and diagnosis of COVID-19. LEVERAGING ARTIFICIAL INTELLIGENCE IN GLOBAL EPIDEMICS 2021. [PMCID: PMC8342405 DOI: 10.1016/b978-0-323-89777-8.00012-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This chapter aims to present and review the early and recent initiatives, researches, and applications of artificial intelligence (AI) and its methods on the detection and diagnosis of COVID-19 virus. Common methods of AI will be presented on these applications including the traditional work on artificial neural networks and the recent approaches on machine learning and deep learning. In this chapter, a survey on many examples of the application of the AI methods on the detection and diagnosis of COVID-19 will be highlighted including the early trials in China and the recent researches in other regions, beside most trials in all other regions of the World including Asia, North America, Europe, and Africa. This chapter will also show many comparisons of the explained approaches and trials based on methods, type of applications, and regions. Brief view of the future and expected applications and trends of AI in the area of detection and diagnosis of viruses and especially the COVID-19 are explained and discussed at the end of the chapter.
Collapse
|
26
|
Waleed Salehi A, Baglat P, Gupta G. Review on machine and deep learning models for the detection and prediction of Coronavirus. ACTA ACUST UNITED AC 2020; 33:3896-3901. [PMID: 32837918 PMCID: PMC7309744 DOI: 10.1016/j.matpr.2020.06.245] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 06/12/2020] [Indexed: 12/23/2022]
Abstract
The novel Coronavirus disease has increased rapidly in the Wuhan city of China in December 2019. This fatal virus has spread across the whole world like a fire in different stages and affecting millions of population and thousands of deaths worldwide. Therefore, it is essential to classify the infected people, so that they can take the precaution in the earlier stages. Also, due to the increasing cases spread of Coronavirus, there are only limited numbers of polymerase change reaction kits available in the hospitals for testing Coronavirus patients. That why it is extremely important to develop artificial intelligence-based automatic diagnostic tools to classify the Coronavirus outbreak. The objective of this paper is to know the novel disease epidemiology, major prevention from spreading of Coronavirus Severe Acute Respiratory Syndrome, and to assess the machine and deep learning-based architectures performance that is proposed in the present year for classification of Coronavirus images such as, X-Ray and computed tomography. Specifically, advanced deep learning-based algorithms known as the Convolutional neural network, which plays a great effect on extracting highly essential features, mostly in terms of medical images. This technique, with using CT and X-Ray image scans, has been adopted in most of the recently published articles on the Coronavirus with remarkable results. Furthermore, according to this paper, this can be noted and said that deep learning technology has potential clinical applications.
Collapse
Affiliation(s)
- Ahmad Waleed Salehi
- Faculty of Engineering and Technology, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Preety Baglat
- Faculty of Engineering and Technology, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Gaurav Gupta
- Faculty of Engineering and Technology, Shoolini University, Solan, Himachal Pradesh 173229, India
| |
Collapse
|