1
|
Machado FR, Bortolotto VC, Araujo SM, Dahleh MMM, Fernandes EJ, Musachio EAS, Funguetto-Ribeiro AC, Haas SE, Guerra GP, Prigol M, Boeira SP. Toxicological analysis of chronic exposure to polymeric nanocapsules with different coatings in Drosophila melanogaster. Comp Biochem Physiol C Toxicol Pharmacol 2024; 283:109939. [PMID: 38723702 DOI: 10.1016/j.cbpc.2024.109939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/23/2024] [Accepted: 05/06/2024] [Indexed: 06/01/2024]
Abstract
Nanotechnology involves the utilization of nanomaterials, including polymeric nanocapsules (NCs) that are drug carriers. For modify drug release and stability, nanoformulations can feature different types of polymers as surface coatings: Polysorbate 80 (P80), Polyethylene glycol (PEG), Chitosan (CS) and Eudragit (EUD). Although nanoencapsulation aims to reduce side effects, these polymers can interact with living organisms, inducing events in the antioxidant system. Thus far, little has been described about the impacts of chronic exposure, with Drosophila melanogaster being an in vivo model for characterizing the toxicology of these polymers. This study analyzes the effects of chronic exposure to polymeric NCs with different coatings. Flies were exposed to 10, 50, 100, and 500 μL of NCP80, NCPEG, NCCS, or EUD. The survival rate, locomotor changes, oxidative stress markers, cell viability, and Nrf2 expression were evaluated. Between the coatings, NCPEG had minimal effects, as only 500 μL affected the levels of reactive species (RS) and the enzymatic activities of catalase (CAT) and glutathione S-transferase (GST) without reducing Nrf2 expression. However, NCEUD significantly impacted the total flies killed, RS, CAT, and Superoxide dismutase from 100 μL. In part, the toxicity mechanisms of these coatings can be explained by the imbalance of the antioxidant system. This research provided initial evidence on the chronic toxicology of these nanomaterials in D. melanogaster to clarify the nanosafety profile of these polymers in future nanoformulations. Further investigations are essential to characterize possible biochemical pathways involved in the toxicity of these polymeric coatings.
Collapse
Affiliation(s)
- Franciéle Romero Machado
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactives Molecules - LaftamBio, Federal University of Pampa, Itaqui, RS 97650-000, Brazil
| | - Vandreza Cardoso Bortolotto
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactives Molecules - LaftamBio, Federal University of Pampa, Itaqui, RS 97650-000, Brazil
| | - Stífani Machado Araujo
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactives Molecules - LaftamBio, Federal University of Pampa, Itaqui, RS 97650-000, Brazil
| | - Mustafa Munir Mustafa Dahleh
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactives Molecules - LaftamBio, Federal University of Pampa, Itaqui, RS 97650-000, Brazil
| | - Eliana Jardim Fernandes
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactives Molecules - LaftamBio, Federal University of Pampa, Itaqui, RS 97650-000, Brazil
| | - Elize Aparecida Santos Musachio
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactives Molecules - LaftamBio, Federal University of Pampa, Itaqui, RS 97650-000, Brazil
| | | | - Sandra Elisa Haas
- Pharmacology Laboratory - LABFAR, Federal University of Pampa, Uruguaiana, RS 22 97650-970, Brazil
| | - Gustavo Petri Guerra
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactives Molecules - LaftamBio, Federal University of Pampa, Itaqui, RS 97650-000, Brazil
| | - Marina Prigol
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactives Molecules - LaftamBio, Federal University of Pampa, Itaqui, RS 97650-000, Brazil
| | - Silvana Peterini Boeira
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactives Molecules - LaftamBio, Federal University of Pampa, Itaqui, RS 97650-000, Brazil.
| |
Collapse
|
2
|
Vidal LM, Pimentel E, Escobar-Alarcón L, Cruces MP, Jiménez E, Suárez H, Leyva Y. Toxicity evaluation of novel imidacloprid nanoribbons, using somatic mutation and fitness indexes in Drosophila melanogaster. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:398-418. [PMID: 38385605 DOI: 10.1080/15287394.2024.2316649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Nanoribbons of imidacloprid, a systemic and chloronicotinyl insecticide, were successfully synthesized by laser-induced fragmentation/exfoliation of imidacloprid powders suspended in water, with widths ranging from 160 to 470 nm, lengths in the micron scale, and thickness of a few atoms layers. The aim of the present study was to examine the effects of acute and chronic exposure to imidacloprid (IMC) bulk and compare its effects with synthesized imidacloprid nanoribbons (IMCNR) on larval and adult viability, developmental time, olfactory capacity, longevity, productivity, and genotoxicity in Drosophila melanogaster. Larvae or adults were exposed at 0.01, 0.02, or 0.03 ppm to IMC or IMCNR. Results demonstrated that IMCNR produced a significant reduction in viability and olfactory ability. IMC did not significantly alter viability and olfactory ability. Similarly, marked differences on longevity were detected between treatment with IMC and IMCNR where the lifespan of males treated with IMC was significantly higher than control while IMCNR produced a reduction. As for productivity, developmental time, and genotoxicity, no marked differences were found between both forms of IMC.
Collapse
Affiliation(s)
- Luz M Vidal
- Departamento de Biología, Instituto Nacional de Investigaciones Nucleares (ININ), Ocoyoacac, México
| | - Emilio Pimentel
- Departamento de Biología, Instituto Nacional de Investigaciones Nucleares (ININ), Ocoyoacac, México
| | - Luis Escobar-Alarcón
- Departamento de Física, Instituto Nacional de Investigaciones Nucleares (ININ), Ocoyoacac, México
| | - Martha P Cruces
- Departamento de Biología, Instituto Nacional de Investigaciones Nucleares (ININ), Ocoyoacac, México
| | - Elizabeth Jiménez
- Facultad de Ciencias, Universidad Autónoma del Estado de México, Toluca, México
| | - Hugo Suárez
- Departamento de Biología, Instituto Nacional de Investigaciones Nucleares (ININ), Ocoyoacac, México
| | - Yosary Leyva
- Departamento de Biología, Instituto Nacional de Investigaciones Nucleares (ININ), Ocoyoacac, México
| |
Collapse
|
3
|
Demir E, Turna Demir F. Genotoxicity responses of single and mixed exposure to heavy metals (cadmium, silver, and copper) as environmental pollutants in Drosophila melanogaster. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 106:104390. [PMID: 38367919 DOI: 10.1016/j.etap.2024.104390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
Heavy metals are now persistently present in living things' environments, in addition to their potential toxicity. Therefore, the aim of this study was to utilize D. melanogaster to determine the biological effects induced by different heavy metals including cadmium chloride (CdCl2), copper (II) sulfate pentahydrate (CuSO 4.5 H2O), and silver nitrate (AgNO3). In vivo experiments were conducted utilizing three low and environmentally relevant concentrations from 0.01 to 0.5 mM under single and combined exposure scenarios on D. melanogaster larvae. The endpoints measured included viability, reactive oxygen species (ROS) generation and genotoxic effects using Comet assay and the wing-spot test. Results indicated that tested heavy metals were not toxic in the egg-to adult viability. However, combined exposure (CdCl2+AgNO3 and CdCl2+AgNO3+CuSO 4.5 H2O) resulted in significant genotoxic and unfavorable consequences, as well as antagonistic and/or synergistic effects on oxidative damage and genetic damage.
Collapse
Affiliation(s)
- Eşref Demir
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Department of Medical Services and Techniques, Medical Laboratory Techniques Programme, Vocational School of Health Services, Antalya Bilim University, Dosemealti, Antalya 07190, Turkey.
| | - Fatma Turna Demir
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA; Department of Medical Services and Techniques, Medical Laboratory Techniques Programme, Vocational School of Health Services, Antalya Bilim University, Dosemealti, Antalya 07190, Turkey
| |
Collapse
|
4
|
Shabir S, Sehgal A, Dutta J, Devgon I, Singh SK, Alsanie WF, Alamri AS, Alhomrani M, Alsharif A, Basalamah MAM, Faidah H, Bantun F, Saati AA, Vamanu E, Singh MP. Therapeutic Potential of Green-Engineered ZnO Nanoparticles on Rotenone-Exposed D. melanogaster (Oregon R +): Unveiling Ameliorated Biochemical, Cellular, and Behavioral Parameters. Antioxidants (Basel) 2023; 12:1679. [PMID: 37759981 PMCID: PMC10525955 DOI: 10.3390/antiox12091679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/20/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Nanotechnology holds significant ameliorative potential against neurodegenerative diseases, as it can protect the therapeutic substance and allow for its sustained release. In this study, the reducing and capping agents of Urtica dioica (UD), Matricaria chamomilla (MC), and Murraya koenigii (MK) extracts were used to synthesize bio-mediated zinc oxide nanoparticles (ZnO-NPs) against bacteria (Staphylococcus aureus and Escherichia coli) and against rotenone-induced toxicities in D. melanogaster for the first time. Their optical and structural properties were analyzed via FT-IR, DLS, XRD, EDS, SEM, UV-Vis, and zeta potential. The antioxidant and antimicrobial properties of the fabricated ZnO-NPs were evaluated employing cell-free models (DPPH and ABTS) and the well diffusion method, respectively. Rotenone (500 µM) was administered to Drosophila third instar larvae and freshly emerged flies for 24-120 h, either alone or in combination with plant extracts (UD, MC, an MK) and their biogenic ZnO-NPs. A comparative study on the protective effects of synthesized NPs was undertaken against rotenone-induced neurotoxic, cytotoxic, and behavioral alterations using an acetylcholinesterase inhibition assay, dye exclusion test, and locomotor parameters. The findings revealed that among the plant-derived ZnO-NPs, MK-ZnO NPs exhibit strong antimicrobial and antioxidant activities, followed by UD-ZnO NPs and MC-ZnO NPs. In this regard, ethno-nano medicinal therapeutic uses mimic similar effects in D. melanogaster by suppressing oxidative stress by restoring biochemical parameters (AchE and proteotoxicity activity) and lower cellular toxicity. These findings suggest that green-engineered ZnO-NPs have the potential to significantly enhance outcomes, with the promise of effective therapies for neurodegeneration, and could be used as a great alternative for clinical development.
Collapse
Affiliation(s)
- Shabnam Shabir
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Amit Sehgal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Joydeep Dutta
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Inderpal Devgon
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Sandeep K. Singh
- Indian Scientific Education and Technology Foundation, Lucknow 226002, Uttar Pradesh, India
| | - Walaa F. Alsanie
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif 21944, Saudi Arabia
| | - Abdulhakeem S. Alamri
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif 21944, Saudi Arabia
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif 21944, Saudi Arabia
| | - Abdulaziz Alsharif
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif 21944, Saudi Arabia
| | | | - Hani Faidah
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Farkad Bantun
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Abdullah Ali Saati
- Department of Community Medicine & Pilgrims Healthcare, Faculty of Medicine, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Emanuel Vamanu
- Faculty of Biotechnology, University of Agricultural Sciences and Veterinary Medicine, 011464 Bucharest, Romania
| | - Mahendra P. Singh
- Department of Zoology and Centre of Genomics and Bioinformatics, DDU Gorakhpur University, Gorakhpur 273009, Uttar Pradesh, India
| |
Collapse
|
5
|
Demir E, Turna Demir F. Drosophila melanogaster as a dynamic in vivo model organism reveals the hidden effects of interactions between microplastic/nanoplastic and heavy metals. J Appl Toxicol 2023; 43:212-219. [PMID: 35644834 DOI: 10.1002/jat.4353] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 01/17/2023]
Abstract
Plastic waste in different environments has been constantly transforming into microplastic/nanoplastic (MNPLs). As they may coexist with other contaminants, they may behave as vectors that transport various toxic trace elements, including metals. Because the impact of exposure to such matter on health still remains elusive, the abundant presence of MNPLs has lately become a pressing environmental issue. Researchers have been utilizing Drosophila melanogaster as a dynamic in vivo model in genetic research for some time. The fly has also recently gained wider recognition in toxicology and nanogenotoxicity studies. The use of nanoparticles in numerous medical and consumer products raises serious concern, since many in vitro studies have shown their toxic potential. However, there is rather limited in vivo research into nanomaterial genotoxicity using mice or other mammalians owing to high costs and ethical concerns. In this context, Drosophila, thanks to its genetic tractability, short life span, with its entire life cycle lasting about 10 days, and distinct developmental stages, renders this organism an excellent model in testing toxic effects mediated by MNPLs. This review therefore aims to encourage research entities to employ Drosophila as a model in their nanogenotoxicity experiments focusing on impact of MNPLs at the molecular level.
Collapse
Affiliation(s)
- Eşref Demir
- Department of Medical Services and Techniques, Medical Laboratory Techniques Programme, Vocational School of Health Services, Antalya Bilim University, Dosemealti, Antalya, Turkey
| | - Fatma Turna Demir
- Department of Medical Services and Techniques, Medical Laboratory Techniques Programme, Vocational School of Health Services, Antalya Bilim University, Dosemealti, Antalya, Turkey
| |
Collapse
|
6
|
Ahmed N, Niaz B, Ahmed S, Javid MT, Ali M, Tariq M. Mechanically robust and highly elastic thermally induced shape memory polyurethane based composites for smart and sustainable robotic applications. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Naveed Ahmed
- School of Packaging Michigan State University East Lansing Michigan USA
- Department of Chemistry Hazara University Mansehra Khyber Pakhtunkhwa Pakistan
| | - Basit Niaz
- Department of Chemistry Hazara University Mansehra Khyber Pakhtunkhwa Pakistan
| | - Saad Ahmed
- State Key Laboratory Breeding Base of Green Chemistry‐Synthesis Technology, Zhejiang Province Key Laboratory of Biofuel, Biodiesel Laboratory of China Petroleum and Chemical Industry Federation, College of Chemical Engineering Zhejiang University of Technology Hangzhou People's Republic of China
| | | | - Muhammad Ali
- State Key Laboratory Breeding Base of Green Chemistry‐Synthesis Technology, Zhejiang Province Key Laboratory of Biofuel, Biodiesel Laboratory of China Petroleum and Chemical Industry Federation, College of Chemical Engineering Zhejiang University of Technology Hangzhou People's Republic of China
- Shanghai Key Laboratory for Advanced Polymeric Materials School of Materials Science and Engineering, East China University of Science and Technology Shanghai China
| | - Muhammad Tariq
- State Key Laboratory Breeding Base of Green Chemistry‐Synthesis Technology, Zhejiang Province Key Laboratory of Biofuel, Biodiesel Laboratory of China Petroleum and Chemical Industry Federation, College of Chemical Engineering Zhejiang University of Technology Hangzhou People's Republic of China
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Processes School of Resources and Environmental Engineering, East China University of Science and Technology Shanghai China
| |
Collapse
|
7
|
Tonk-Rügen M, Vilcinskas A, Wagner AE. Insect Models in Nutrition Research. Biomolecules 2022; 12:1668. [PMID: 36421682 PMCID: PMC9687203 DOI: 10.3390/biom12111668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 09/08/2024] Open
Abstract
Insects are the most diverse organisms on earth, accounting for ~80% of all animals. They are valuable as model organisms, particularly in the context of genetics, development, behavior, neurobiology and evolutionary biology. Compared to other laboratory animals, insects are advantageous because they are inexpensive to house and breed in large numbers, making them suitable for high-throughput testing. They also have a short life cycle, facilitating the analysis of generational effects, and they fulfil the 3R principle (replacement, reduction and refinement). Many insect genomes have now been sequenced, highlighting their genetic and physiological similarities with humans. These factors also make insects favorable as whole-animal high-throughput models in nutritional research. In this review, we discuss the impact of insect models in nutritional science, focusing on studies investigating the role of nutrition in metabolic diseases and aging/longevity. We also consider food toxicology and the use of insects to study the gut microbiome. The benefits of insects as models to study the relationship between nutrition and biological markers of fitness and longevity can be exploited to improve human health.
Collapse
Affiliation(s)
- Miray Tonk-Rügen
- Institute of Nutritional Science, Justus Liebig University, Wilhelmstrasse 20, 35392 Giessen, Germany
- Institute for Insect Biotechnology, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Andreas Vilcinskas
- Institute for Insect Biotechnology, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Branch of Bioresources, Ohlebergsweg 12, 35392 Giessen, Germany
| | - Anika E. Wagner
- Institute of Nutritional Science, Justus Liebig University, Wilhelmstrasse 20, 35392 Giessen, Germany
| |
Collapse
|
8
|
Turna Demir F, Demir E. Genotoxicity mechanism of food preservative propionic acid in the in vivo Drosophila model: gut damage, oxidative stress, cellular immune response and DNA damage. Toxicol Mech Methods 2022; 33:327-336. [PMID: 36253933 DOI: 10.1080/15376516.2022.2137871] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Propionic acid is a short-chain fatty acid that is the main fermentation product of the enteric microbiome. It is found naturally and added to foods as a preservative and evaluated by health authorities as safe for use in foods. However, propionic acid has been reported in the literature to be associated with both health and disease. The purpose of this work is to better understand how propionic acid affects Drosophila melanogaster by examining some of the effects of this compound on the D. melanogaster hemocytes. D. melanogaster was chosen as a suitable in vivo model to detect potential risks of propionic acid (at five concentrations ranging from 0.1 to 10 mM) used as a food preservative. Toxicity, cellular immune response, intracellular oxidative stress (reactive oxygen species, ROS), gut damage, and DNA damage (via Comet assay) were the end-points evaluated. Significant genotoxic effects were detected in selected cell targets in a concentration dependent manner, especially at two highest concentrations (5 and 10 mM) of propionic acid. This study is the first study reporting genotoxicity data in the hemocytes of Drosophila larvae, emphasizing the importance of D. melanogaster as a model organism in investigating the different biological effects caused by the ingested food preservative product.
Collapse
Affiliation(s)
- Fatma Turna Demir
- Department of Medical Services and Techniques, Medical Laboratory Techniques Programme, Vocational School of Health Services, Antalya Bilim University, Dosemealti, Turkey
| | - Eşref Demir
- Department of Medical Services and Techniques, Medical Laboratory Techniques Programme, Vocational School of Health Services, Antalya Bilim University, Dosemealti, Turkey
| |
Collapse
|
9
|
Turna Demir F, Akkoyunlu G, Demir E. Interactions of Ingested Polystyrene Microplastics with Heavy Metals (Cadmium or Silver) as Environmental Pollutants: A Comprehensive In Vivo Study Using Drosophila melanogaster. BIOLOGY 2022; 11:1470. [PMID: 36290374 PMCID: PMC9598744 DOI: 10.3390/biology11101470] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/28/2022] [Accepted: 10/01/2022] [Indexed: 11/16/2022]
Abstract
Living organisms are now constantly exposed to microplastics and nanoplastics (MNPLs), and besides their toxic potential, they can also act as carriers of various hazardous elements such as heavy metals. Therefore, this study explored possible interactions between polystyrene microplastics (PSMPLs) and two metal pollutants: cadmium chloride (CdCl2) and silver nitrate (AgNO3). To better understand the extent of biological effects caused by different sizes of PSMPLs, we conducted in vivo experiments with five doses (from 0.01 to 10 mM) that contained polystyrene particles measuring 4, 10, and 20 µm in size on Drosophila larvae. Additional experiments were performed by exposing larvae to two individual metals, CdCl2 (0.5 mM) and AgNO3 (0.5 mM), as well as combined exposure to PSMPLs (0.01 and 10 mM) and these metals, in an attempt to gain new insight into health risks of such co-exposure. Using transmission electron microscopy imaging, we managed to visualize the biodistribution of ingested PSMPLs throughout the fly's body, observing the interactions of such plastics with Drosophila intestinal lumen, cellular uptake by gut enterocytes, the passage of plastic particles through the intestinal barrier to leak into the hemolymph, and cellular uptake by hemocytes. Observations detected size and shape changes in the ingested PSMPLs. Egg-to-adult viability screening revealed no significant toxicity upon exposure to individual doses of tested materials; however, the combined exposure to plastic and metal particles induced aggravated genotoxic effects, including intestinal damage, genetic damage, and intracellular oxidative stress (ROS generation), with smaller sized plastic particles + metals (cadmium and silver) causing greater damage.
Collapse
Affiliation(s)
- Fatma Turna Demir
- Department of Medical Services and Techniques, Medical Laboratory Techniques Programme, Vocational School of Health Services, Antalya Bilim University, 07190 Antalya, Turkey
| | - Gökhan Akkoyunlu
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, 07070 Antalya, Turkey
| | - Eşref Demir
- Department of Medical Services and Techniques, Medical Laboratory Techniques Programme, Vocational School of Health Services, Antalya Bilim University, 07190 Antalya, Turkey
| |
Collapse
|
10
|
Turna Demir F, Demir E. Exposure to boron trioxide nanoparticles and ions cause oxidative stress, DNA damage, and phenotypic alterations in Drosophila melanogaster as an in vivo model. J Appl Toxicol 2022; 42:1854-1867. [PMID: 35837816 DOI: 10.1002/jat.4363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/09/2022] [Accepted: 07/09/2022] [Indexed: 11/09/2022]
Abstract
Boron trioxide nanoparticles (B2 O3 NPs) have recently been widely used in a range of applications including electronic device technologies, acousto-optic apparatus fields and as nanopowder for the production of special glasses. We propose Drosophila melanogaster as a useful in vivo model system to study the genotoxic risks associated with NP exposure. In this study we have conducted a genotoxic evaluation of B2 O3 NPs (size average 55.52 ± 1.41 nm) and its ionic form in D. melanogaster. B2 O3 NPs were supplied to third instar larvae at concentrations ranging from 0.1-10 mM. Toxicity, intracellular oxidative stress (reactive oxygen species, ROS), phenotypic alterations, genotoxic effect (via the wing somatic mutation and recombination test (SMART), and DNA damage (via Comet assay) were the end-points evaluated. B2 O3 NPs did not cause any mutagenic/recombinogenic effects in all tested non-toxic concentrations in Drosophila SMART. Negative data were also obtained with the ionic form. Exposure to B2 O3 NPs and its ionic form (at two highest concentrations, 2.5 and 5 mM) was found to induce DNA damage in Comet assay. Additionally, ROS induction in hemocytes and phenotypic alterations were determined in the mouths and legs of Drosophila. This study is the first study reporting genotoxicity data in the somatic cells of Drosophila larvae, emphasizing the importance of D. melanogaster as a model organism in investigating the different biological effects in a concentration dependent manner caused by B2 O3 NPs and its ionic form. The obtained in vivo results contribute to improvement the genotoxicity database on the B2 O3 NPs.
Collapse
Affiliation(s)
- Fatma Turna Demir
- Department of Medical Services and Techniques, Medical Laboratory Techniques Programme, Vocational School of Health Services, Antalya Bilim University, Antalya, Turkey
| | - Eşref Demir
- Department of Medical Services and Techniques, Medical Laboratory Techniques Programme, Vocational School of Health Services, Antalya Bilim University, Antalya, Turkey
| |
Collapse
|