1
|
Chen M, Tieng QM, Du J, Edwards SR, Maskey D, Peshtenski E, Reutens D. Effects of C1-INH Treatment on Neurobehavioral Sequelae and Late Seizures After Traumatic Brain Injury in a Mouse Model of Controlled Cortical Impact. Neurotrauma Rep 2023; 4:124-136. [PMID: 36941878 PMCID: PMC10024590 DOI: 10.1089/neur.2022.0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
C1 human-derived C1 esterase inhibitor (C1-INH) is a U.S. Food and Drig Administration-approved drug with anti-inflammatory actions. In the present study, we investigated the therapeutic effects of C1-INH on acute and chronic neurobehavioral outcomes and on seizures in the chronic stage in a mouse traumatic brain injury (TBI) model. Adult male CD1 mice were subjected to controlled cortical impact and randomly allocated to receive C1-INH or vehicle solution 1 h post-TBI. Effects of C1-INH treatment on inflammatory responses and brain damage after TBI were examined using the Cytometric Bead Array, C5a enzyme-linked immunosorbent assay, Fluoro-Jade C staining, and Nissl staining. Neurobehavioral outcomes after TBI were assessed with modified neurological severity scores, the rotarod and open field tests, and the active place avoidance task. Video-electroencephalographic monitoring was performed in the 15th and 16th weeks after TBI to document epileptic seizures. We found that C1-INH treatment reduced TNFα expression and alleviated brain damage. Treatment with C1-INH improved neurological functions, increased locomotor activity, alleviated anxiety-like behavior, and exhibited an effect on seizures in the chronic stage after TBI. These findings suggest that C1-INH has beneficial effects on the treatment of TBI.
Collapse
Affiliation(s)
- Min Chen
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| | - Quang M. Tieng
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| | - Jiaxin Du
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| | - Stephen R. Edwards
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| | - Dhiraj Maskey
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| | - Emil Peshtenski
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| | - David Reutens
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
- Address correspondence to: David Reutens, MD, Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
2
|
Chen M, Edwards SR, Reutens DC. Complement in the Development of Post-Traumatic Epilepsy: Prospects for Drug Repurposing. J Neurotrauma 2021; 37:692-705. [PMID: 32000582 DOI: 10.1089/neu.2019.6942] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Targeting neuroinflammation is a novel frontier in the prevention and treatment of epilepsy. A substantial body of evidence supports a key role for neuroinflammation in epileptogenesis, the pathological process that leads to the development and progression of spontaneous recurrent epileptic seizures. It is also well recognized that traumatic brain injury (TBI) induces a vigorous neuroinflammatory response and that a significant proportion of patients with TBI suffer from debilitating post-traumatic epilepsy. The complement system is a potent effector of innate immunity and a significant contributor to secondary tissue damage and to epileptogenesis following central nervous system injury. Several therapeutic agents targeting the complement system are already on the market to treat other central nervous system disorders or are well advanced in their development. The purpose of this review is to summarize findings on complement activation in experimental TBI and epilepsy models, highlighting the potential of drug repurposing in the development of therapeutics to ameliorate post-traumatic epileptogenesis.
Collapse
Affiliation(s)
- Min Chen
- Center for Advanced Imaging, University of Queensland, St. Lucia, Queensland, Australia
| | - Stephen R Edwards
- Center for Advanced Imaging, University of Queensland, St. Lucia, Queensland, Australia
| | - David C Reutens
- Center for Advanced Imaging, University of Queensland, St. Lucia, Queensland, Australia
| |
Collapse
|
3
|
Nishimura S, Teratani M, Igarashi T, Nakahara M, Hazama Y, Ohtani S, Fujita H. A novel modified thaw-siphon method for extracting cryoprecipitate: The Bokutoh-siphon method. Transfusion 2021; 61:1035-1040. [PMID: 33634868 DOI: 10.1111/trf.16331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/29/2020] [Accepted: 12/03/2020] [Indexed: 12/01/2022]
Abstract
BACKGROUND Cryoprecipitate (CRYO) is neither produced nor supplied by the Japanese Red Cross Society. A novel CRYO extraction method established in-house by modifying a thaw-siphon technique was demonstrated in this study. STUDY DESIGN AND METHODS A pack of fresh frozen plasma was thawed and equally divided into two bags for CRYO extraction by different methods. CRYO was extracted from the blood plasma using a standard centrifugation method and our modified thaw-siphon method (Bokutoh-siphon method; B method). The two different CRYOs extracted were analyzed to compare the differences in the amount of fibrinogen recovered, clotting factors extracted, and clotting activity. RESULTS The amount of fibrinogen in the CRYO extracted using the B-siphon method was similar to that obtained using the standard method (recovery of fibrinogen: B-siphon method: 71.2% vs. standard method: 61.0%). The amount of clotting XIII factor extracted using the B-siphon method was significantly lower than those extracted using the standard method. On the other hand, clotting II, V factors, and C1q esterase inhibitor not concentrated in CRYO content from the B-siphon method were significantly higher than that from the standard method. CONCLUSION A new in-house CRYO preparation method was established by modifying a previously used thaw-siphon method. A coagulation factor-rich CRYO was extracted from plasma frozen at -40°C along with the first fraction of thawed plasma, without using a large-capacity refrigerated centrifuge for blood bags.
Collapse
Affiliation(s)
- Shigeko Nishimura
- Department of Transfusion Medicine, Tokyo Metropolitan Bokutoh Hospital, Tokyo, Japan
| | - Miyuki Teratani
- Clinical Laboratory, Tokyo Metropolitan Bokutoh Hospital, Tokyo, Japan
| | - Tomoko Igarashi
- Clinical Laboratory, Tokyo Metropolitan Bokutoh Hospital, Tokyo, Japan
| | - Michiyo Nakahara
- Clinical Laboratory, Tokyo Metropolitan Bokutoh Hospital, Tokyo, Japan
| | - Yuki Hazama
- Clinical Laboratory, Tokyo Metropolitan Bokutoh Hospital, Tokyo, Japan
| | - Sae Ohtani
- Clinical Laboratory, Tokyo Metropolitan Bokutoh Hospital, Tokyo, Japan
| | - Hiroshi Fujita
- Department of Transfusion Medicine, Tokyo Metropolitan Bokutoh Hospital, Tokyo, Japan
| |
Collapse
|
4
|
Initiators of Classical and Lectin Complement Pathways Are Differently Engaged after Traumatic Brain Injury-Time-Dependent Changes in the Cortex, Striatum, Thalamus and Hippocampus in a Mouse Model. Int J Mol Sci 2020; 22:ijms22010045. [PMID: 33375205 PMCID: PMC7793095 DOI: 10.3390/ijms22010045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 12/16/2022] Open
Abstract
The complement system is involved in promoting secondary injury after traumatic brain injury (TBI), but the roles of the classical and lectin pathways leading to complement activation need to be clarified. To this end, we aimed to determine the ability of the brain to activate the synthesis of classical and lectin pathway initiators in response to TBI and to examine their expression in primary microglial cell cultures. We have modeled TBI in mice by controlled cortical impact (CCI), a clinically relevant experimental model. Using Real-time quantitative polymerase chain reaction (RT-qPCR) we analyzed the expression of initiators of classical the complement component 1q, 1r and 1s (C1q, C1r, and C1s) and lectin (mannose binding lectin A, mannose binding lectin C, collectin 11, ficolin A, and ficolin B) complement pathways and other cellular markers in four brain areas (cortex, striatum, thalamus and hippocampus) of mice exposed to CCI from 24 h and up to 5 weeks. In all murine ipsilateral brain structures assessed, we detected long-lasting, time- and area-dependent significant increases in the mRNA levels of all classical (C1q, C1s, C1r) and some lectin (collectin 11, ficolin A, ficolin B) initiator molecules after TBI. In parallel, we observed significantly enhanced expression of cellular markers for neutrophils (Cd177), T cells (Cd8), astrocytes (glial fibrillary acidic protein—GFAP), microglia/macrophages (allograft inflammatory factor 1—IBA-1), and microglia (transmembrane protein 119—TMEM119); moreover, we detected astrocytes (GFAP) and microglia/macrophages (IBA-1) protein level strong upregulation in all analyzed brain areas. Further, the results obtained in primary microglial cell cultures suggested that these cells may be largely responsible for the biosynthesis of classical pathway initiators. However, microglia are unlikely to be responsible for the production of the lectin pathway initiators. Immunofluorescence analysis confirmed that at the site of brain injury, the C1q is localized in microglia/macrophages and neurons but not in astroglial cells. In sum, the brain strongly reacts to TBI by activating the local synthesis of classical and lectin complement pathway activators. Thus, the brain responds to TBI with a strong, widespread and persistent upregulation of complement components, the targeting of which may provide protection in TBI.
Collapse
|
5
|
Weiss E, Dhir T, Collett A, Reola M, Kaplan M, Minimo C, Omert L, Leung P. Effect of complement C1-esterase inhibitor on brain edema and inflammation after mild traumatic brain injury in an animal model. Clin Exp Emerg Med 2020; 7:87-94. [PMID: 32635699 PMCID: PMC7348678 DOI: 10.15441/ceem.19.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/26/2019] [Indexed: 01/05/2023] Open
Abstract
Objective Traumatic brain injury (TBI) is characterized by damage to the blood-brain barrier, inflammation, and edema formation. In this pilot study, we aimed to investigate the effects of a complement inhibitor, C1-esterase inhibitor (C1 INH), on brain edema and inflammation in a rat model of mild TBI. Methods Thirty-six male Sprague Dawley rats were randomly assigned to control, TBI, or TBI plus C1 INH groups. TBI and TBI plus C1 INH rats received an injection of saline or 25 IU/kg C1 INH, respectively, with TBI using a weight drop model. Control rats received saline only. Rats were subsequently euthanized and their brain tissue harvested for analysis. The primary outcome was the extent of edema as assessed by the brain’s water content. Secondary outcomes included enzyme-linked immunosorbent assays to determine levels of pro-inflammatory mediators. Results Tumor necrosis factor-α levels were significantly greater in TBI rats than control rats, indicating that inflammation was generated by the weight drop impact. Brain water content following TBI was significantly different between TBI rats treated with C1-INH (78.7%±0.12), untreated TBI rats (79.3%±0.12), and control rats (78.6%±0.15, P=0.001). There was a significant decrease in C3a and interleukin 2 levels among C1 INH–treated rats compared with untreated TBI rats, but no change in levels of tumor necrosis factor-α and S100β. Conclusion C1-INH inhibited the complement pathway, suggesting that C1-INH may have a therapeutic benefit in TBI. Further studies are needed to investigate the effect of C1-INH on clinical outcomes.
Collapse
Affiliation(s)
- Eric Weiss
- Department of Surgery, Einstein Healthcare Network, Philadelphia, PA, USA
| | - Teena Dhir
- Department of Surgery, Einstein Healthcare Network, Philadelphia, PA, USA
| | - Abigail Collett
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA
| | - Michal Reola
- Department of Surgery, Einstein Healthcare Network, Philadelphia, PA, USA
| | - Mark Kaplan
- Department of Surgery, Einstein Healthcare Network, Philadelphia, PA, USA.,Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA
| | - Corrado Minimo
- Department of Surgery, Einstein Healthcare Network, Philadelphia, PA, USA
| | - Laurel Omert
- Department of Surgery, Einstein Healthcare Network, Philadelphia, PA, USA
| | - Pak Leung
- Department of Surgery, Einstein Healthcare Network, Philadelphia, PA, USA.,Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
6
|
Carpanini SM, Torvell M, Morgan BP. Therapeutic Inhibition of the Complement System in Diseases of the Central Nervous System. Front Immunol 2019; 10:362. [PMID: 30886620 PMCID: PMC6409326 DOI: 10.3389/fimmu.2019.00362] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/12/2019] [Indexed: 12/14/2022] Open
Abstract
The complement system plays critical roles in development, homeostasis, and regeneration in the central nervous system (CNS) throughout life; however, complement dysregulation in the CNS can lead to damage and disease. Complement proteins, regulators, and receptors are widely expressed throughout the CNS and, in many cases, are upregulated in disease. Genetic and epidemiological studies, cerebrospinal fluid (CSF) and plasma biomarker measurements and pathological analysis of post-mortem tissues have all implicated complement in multiple CNS diseases including multiple sclerosis (MS), neuromyelitis optica (NMO), neurotrauma, stroke, amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). Given this body of evidence implicating complement in diverse brain diseases, manipulating complement in the brain is an attractive prospect; however, the blood-brain barrier (BBB), critical to protect the brain from potentially harmful agents in the circulation, is also impermeable to current complement-targeting therapeutics, making drug design much more challenging. For example, antibody therapeutics administered systemically are essentially excluded from the brain. Recent protocols have utilized "Trojan horse" techniques to transport therapeutics across the BBB or used osmotic shock or ultrasound to temporarily disrupt the BBB. Most research to date exploring the impact of complement inhibition on CNS diseases has been in animal models, and some of these studies have generated convincing data; for example, in models of MS, NMO, and stroke. There have been a few recent clinical trials of available anti-complement drugs in CNS diseases associated with BBB impairment, for example the use of the anti-C5 monoclonal antibody (mAb) eculizumab in NMO, but for most CNS diseases there have been no human trials of anti-complement therapies. Here we will review the evidence implicating complement in diverse CNS disorders, from acute, such as traumatic brain or spine injury, to chronic, including demyelinating, neuroinflammatory, and neurodegenerative diseases. We will discuss the particular problems of drug access into the CNS and explore ways in which anti-complement therapies might be tailored for CNS disease.
Collapse
Affiliation(s)
- Sarah M Carpanini
- UK Dementia Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Megan Torvell
- UK Dementia Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Bryan Paul Morgan
- UK Dementia Research Institute, Cardiff University, Cardiff, United Kingdom.,Division of Infection and Immunity, School of Medicine, Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
7
|
Albert-Weissenberger C, Hopp S, Nieswandt B, Sirén AL, Kleinschnitz C, Stetter C. How is the formation of microthrombi after traumatic brain injury linked to inflammation? J Neuroimmunol 2018; 326:9-13. [PMID: 30445364 DOI: 10.1016/j.jneuroim.2018.10.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 09/20/2018] [Accepted: 10/24/2018] [Indexed: 02/01/2023]
Abstract
Traumatic brain injury (TBI) is characterized by mechanical disruption of brain tissue due to an external force and by subsequent secondary injury. Secondary brain injury events include inflammatory responses and the activation of coagulation resulting in microthrombi formation in the brain vasculature. Recent research suggests that these mechanisms do not work independently. There is strong evidence that FXII and platelet activation connects both, inflammation and the formation of microthrombi. This review summarizes the current knowledge on posttraumatic microthrombus formation and its link to inflammation.
Collapse
Affiliation(s)
- Christiane Albert-Weissenberger
- Institute of Physiology, Department of Neurophysiology, Julius Maximilian University, Würzburg, Germany; Department of Neurosurgery, University Hospital of Würzburg, Würzburg, Germany.
| | - Sarah Hopp
- Department of Neurosurgery, University Hospital of Würzburg, Würzburg, Germany; Department of Neurology, University Hospital of Würzburg, Würzburg, Germany.
| | - Bernhard Nieswandt
- Rudolf Virchow Center, DFG Research Center for Experimental Biomedicine, Julius Maximilian University, Würzburg, Germany.
| | - Anna-Leena Sirén
- Department of Neurosurgery, University Hospital of Würzburg, Würzburg, Germany.
| | - Christoph Kleinschnitz
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany; Department of Neurology, University Duisburg-Essen, Essen, Germany.
| | - Christian Stetter
- Department of Neurosurgery, University Hospital of Würzburg, Würzburg, Germany.
| |
Collapse
|
8
|
Nokkari A, Abou-El-Hassan H, Mechref Y, Mondello S, Kindy MS, Jaffa AA, Kobeissy F. Implication of the Kallikrein-Kinin system in neurological disorders: Quest for potential biomarkers and mechanisms. Prog Neurobiol 2018; 165-167:26-50. [PMID: 29355711 PMCID: PMC6026079 DOI: 10.1016/j.pneurobio.2018.01.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/15/2018] [Indexed: 01/06/2023]
Abstract
Neurological disorders represent major health concerns in terms of comorbidity and mortality worldwide. Despite a tremendous increase in our understanding of the pathophysiological processes involved in disease progression and prevention, the accumulated knowledge so far resulted in relatively moderate translational benefits in terms of therapeutic interventions and enhanced clinical outcomes. Aiming at specific neural molecular pathways, different strategies have been geared to target the development and progression of such disorders. The kallikrein-kinin system (KKS) is among the most delineated candidate systems due to its ubiquitous roles mediating several of the pathophysiological features of these neurological disorders as well as being implicated in regulating various brain functions. Several experimental KKS models revealed that the inhibition or stimulation of the two receptors of the KKS system (B1R and B2R) can exhibit neuroprotective and/or adverse pathological outcomes. This updated review provides background details of the KKS components and their functions in different neurological disorders including temporal lobe epilepsy, traumatic brain injury, stroke, spinal cord injury, Alzheimer's disease, multiple sclerosis and glioma. Finally, this work will highlight the putative roles of the KKS components as potential neurotherapeutic targets and provide future perspectives on the possibility of translating these findings into potential clinical biomarkers in neurological disease.
Collapse
Affiliation(s)
- Amaly Nokkari
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Lebanon
| | - Hadi Abou-El-Hassan
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Mark S Kindy
- Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, FL, USA; James A. Haley VA Medical Center, Tampa, FL, USA
| | - Ayad A Jaffa
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Lebanon; Department of Medicine, Medical University of South, Charleston, SC, USA.
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Lebanon; Center for Neuroproteomics & Biomarkers Research, Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
9
|
Streijger F, Skinnider MA, Rogalski JC, Balshaw R, Shannon CP, Prudova A, Belanger L, Ritchie L, Tsang A, Christie S, Parent S, Mac-Thiong JM, Bailey C, Urquhart J, Ailon T, Paquette S, Boyd M, Street J, Fisher CG, Dvorak MF, Borchers CH, Foster LJ, Kwon BK. A Targeted Proteomics Analysis of Cerebrospinal Fluid after Acute Human Spinal Cord Injury. J Neurotrauma 2017; 34:2054-2068. [DOI: 10.1089/neu.2016.4879] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Femke Streijger
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael A. Skinnider
- Department of Biochemistry & Molecular Biology and Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Genome Sciences & Technologies Graduate Program, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jason C. Rogalski
- Department of Biochemistry & Molecular Biology and Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Robert Balshaw
- BC Center for Disease Control, Vancouver, British Columbia, Canada
- PROOF Centre of Excellence, Vancouver, British Columbia, Canada
| | | | - Anna Prudova
- Department of Biochemistry & Molecular Biology and Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lise Belanger
- Vancouver Spine Program, Vancouver, British Columbia, Canada
| | - Leanna Ritchie
- Vancouver Spine Program, Vancouver, British Columbia, Canada
| | - Angela Tsang
- Vancouver Spine Program, Vancouver, British Columbia, Canada
| | - Sean Christie
- Division of Neurosurgery, Dalhousie University, Halifax Infirmary Halifax, Halifax, Nova Scotia, Canada
| | - Stefan Parent
- Department of Surgery, Hôpital du Sacré-Coeur de Montréal, Université de Montréal, Montréal, Quebec, Canada
- Chu Sainte-Justine, Department of Surgery, Université de Montréal, Montréal, Quebec, Canada
| | - Jean-Marc Mac-Thiong
- Department of Surgery, Hôpital du Sacré-Coeur de Montréal, Université de Montréal, Montréal, Quebec, Canada
- Chu Sainte-Justine, Department of Surgery, Université de Montréal, Montréal, Quebec, Canada
| | - Christopher Bailey
- Division of Orthopaedic Surgery, London Health Sciences Centre, University of Western Ontario, London, Ontario, Canada
| | - Jennifer Urquhart
- Division of Orthopaedic Surgery, London Health Sciences Centre, University of Western Ontario, London, Ontario, Canada
| | - Tamir Ailon
- Vancouver Spine Surgery Institute, Division of Neurosurgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Scott Paquette
- Vancouver Spine Surgery Institute, Division of Neurosurgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael Boyd
- Vancouver Spine Surgery Institute, Division of Neurosurgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - John Street
- Department of Orthopaedics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Charles G. Fisher
- Department of Orthopaedics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Marcel F. Dvorak
- Department of Orthopaedics, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Leonard J. Foster
- Department of Biochemistry & Molecular Biology and Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian K. Kwon
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Orthopaedics, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
10
|
Hopp S, Nolte MW, Stetter C, Kleinschnitz C, Sirén AL, Albert-Weissenberger C. Alleviation of secondary brain injury, posttraumatic inflammation, and brain edema formation by inhibition of factor XIIa. J Neuroinflammation 2017; 14:39. [PMID: 28219400 PMCID: PMC5319055 DOI: 10.1186/s12974-017-0815-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 02/08/2017] [Indexed: 11/15/2022] Open
Abstract
Background Traumatic brain injury (TBI) is a devastating neurological condition and a frequent cause of permanent disability. Posttraumatic inflammation and brain edema formation, two pathological key events contributing to secondary brain injury, are mediated by the contact-kinin system. Activation of this pathway in the plasma is triggered by activated factor XII. Hence, we set out to study in detail the influence of activated factor XII on the abovementioned pathophysiological features of TBI. Methods Using a cortical cryogenic lesion model in mice, we investigated the impact of genetic deficiency of factor XII and inhibition of activated factor XII with a single bolus injection of recombinant human albumin-fused Infestin-4 on the release of bradykinin, the brain lesion size, and contact-kinin system-dependent pathological events. We determined protein levels of bradykinin, intracellular adhesion molecule-1, CC-chemokine ligand 2, and interleukin-1β by enzyme-linked immunosorbent assays and mRNA levels of genes related to inflammation by quantitative real-time PCR. Brain lesion size was determined by tetrazolium chloride staining. Furthermore, protein levels of the tight junction protein occludin, integrity of the blood-brain barrier, and brain water content were assessed by Western blot analysis, extravasated Evans Blue dye, and the wet weight-dry weight method, respectively. Infiltration of neutrophils and microglia/activated macrophages into the injured brain lesions was quantified by immunohistological stainings. Results We show that both genetic deficiency of factor XII and inhibition of activated factor XII in mice diminish brain injury-induced bradykinin release by the contact-kinin system and minimize brain lesion size, blood-brain barrier leakage, brain edema formation, and inflammation in our brain injury model. Conclusions Stimulation of bradykinin release by activated factor XII probably plays a prominent role in expanding secondary brain damage by promoting brain edema formation and inflammation. Pharmacological blocking of activated factor XII could be a useful therapeutic principle in the treatment of TBI-associated pathologic processes by alleviating posttraumatic inflammation and brain edema formation.
Collapse
Affiliation(s)
- Sarah Hopp
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany.,Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider-Strasse 11, Würzburg, Germany
| | | | - Christian Stetter
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider-Strasse 11, Würzburg, Germany
| | - Christoph Kleinschnitz
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany.,Department of Neurology, University Duisburg-Essen, Essen, Germany
| | - Anna-Leena Sirén
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider-Strasse 11, Würzburg, Germany
| | | |
Collapse
|
11
|
Özay R, Türkoğlu E, Gürer B, Dolgun H, Evirgen O, Ergüder Bİ, Hayırlı N, Gürses L, Şekerci Z, Yılmaz ER. Does Decorin Protect Neuronal Tissue via Its Antioxidant and Antiinflammatory Activity from Traumatic Brain Injury? An Experimental Study. World Neurosurg 2016; 97:407-415. [PMID: 27744073 DOI: 10.1016/j.wneu.2016.09.115] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/27/2016] [Accepted: 09/29/2016] [Indexed: 11/17/2022]
Abstract
BACKGROUND The development of secondary brain injury via oxidative stress after traumatic brain injury (TBI) is well known. Decorin (DC) inactivates transforming growth factor β1, complement system, and tumor necrosis factor α, which are related to oxidative stress and apoptosis. Consequently, the aim of the present study was to evaluate the role of DC on TBI. METHODS A total of 24 male rats were used and divided into 4 groups as follows; control, trauma, DC, and methylprednisolone (MP). The trauma, DC, and MP groups were subjected to closed-head contusive weight-drop injuries. Rats received treatment with intraperitoneal saline, DC, or MP, respectively. All the animals were killed at the 24th hour after trauma and brain tissues were extracted. The oxidant/antioxidant parameters (malondialdehyde, glutathione peroxidase, superoxide dismutase, and NO) and caspase 3 in the cerebral tissue were analyzed, and histomorphologic evaluation of the cerebral tissue was performed. RESULTS Levels of malondialdehyde, NO, and activity of caspase 3 were significantly reduced, and in addition glutathione peroxidase and superoxide dismutase levels were increased in the DC and MP groups compared with the trauma group. The pathology scores and the percentage of degenerated neurons were statistically lower in the DC and MP groups than in the trauma group. CONCLUSIONS The results of the present study showed that DC inactivates transforming growth factor β1 and protects the brain tissue and neuronal cells after TBI.
Collapse
Affiliation(s)
- Rafet Özay
- Ministry of Health Diskapi Yildirim Beyazit Training and Research Hospital, Neurosurgery Clinic, Ankara, Turkey.
| | - Erhan Türkoğlu
- Ministry of Health Diskapi Yildirim Beyazit Training and Research Hospital, Neurosurgery Clinic, Ankara, Turkey
| | - Bora Gürer
- Ministry of Health Fatih Sultan Mehmet Training and Research Hospital, Neurosurgery Clinic, İstanbul, Turkey
| | - Habibullah Dolgun
- Ministry of Health Diskapi Yildirim Beyazit Training and Research Hospital, Neurosurgery Clinic, Ankara, Turkey
| | - Oya Evirgen
- Department of Histology and Embryology, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Berrin İmge Ergüder
- Department of Biochemistry, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Nazlı Hayırlı
- Department of Histology and Embryology, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Levent Gürses
- Ministry of Health Diskapi Yildirim Beyazit Training and Research Hospital, Neurosurgery Clinic, Ankara, Turkey
| | - Zeki Şekerci
- Ministry of Health Diskapi Yildirim Beyazit Training and Research Hospital, Neurosurgery Clinic, Ankara, Turkey
| | - Erdal Reşit Yılmaz
- Ministry of Health Diskapi Yildirim Beyazit Training and Research Hospital, Neurosurgery Clinic, Ankara, Turkey
| |
Collapse
|
12
|
Albert-Weissenberger C, Mencl S, Hopp S, Kleinschnitz C, Sirén AL. Role of the kallikrein-kinin system in traumatic brain injury. Front Cell Neurosci 2014; 8:345. [PMID: 25404891 PMCID: PMC4217500 DOI: 10.3389/fncel.2014.00345] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/06/2014] [Indexed: 12/26/2022] Open
Abstract
Traumatic brain injury (TBI) is a major cause of mortality and morbidity worldwide. Despite improvements in acute intensive care, there are currently no specific therapies to ameliorate the effects of TBI. Successful therapeutic strategies for TBI should target multiple pathophysiologic mechanisms that occur at different stages of brain injury. The kallikrein-kinin system is a promising therapeutic target for TBI as it mediates key pathologic events of traumatic brain damage, such as edema formation, inflammation, and thrombosis. Selective and specific kinin receptor antagonists and inhibitors of plasma kallikrein and coagulation factor XII have been developed, and have already shown therapeutic efficacy in animal models of stroke and TBI. However, conflicting preclinical evaluation, as well as limited and inconclusive data from clinical trials in TBI, suggests that caution should be taken before transferring observations made in animals to humans. This review summarizes current evidence on the pathologic significance of the kallikrein-kinin system during TBI in animal models and, where available, the experimental findings are compared with human data.
Collapse
Affiliation(s)
| | - Stine Mencl
- Department of Neurology, University Hospital of Würzburg Würzburg, Germany
| | - Sarah Hopp
- Department of Neurology, University Hospital of Würzburg Würzburg, Germany
| | | | - Anna-Leena Sirén
- Department of Neurosurgery, University Hospital of Würzburg Würzburg, Germany
| |
Collapse
|
13
|
Albert-Weissenberger C, Mencl S, Schuhmann MK, Salur I, Göb E, Langhauser F, Hopp S, Hennig N, Meuth SG, Nolte MW, Sirén AL, Kleinschnitz C. C1-Inhibitor protects from focal brain trauma in a cortical cryolesion mice model by reducing thrombo-inflammation. Front Cell Neurosci 2014; 8:269. [PMID: 25249935 PMCID: PMC4158993 DOI: 10.3389/fncel.2014.00269] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 08/19/2014] [Indexed: 12/04/2022] Open
Abstract
Traumatic brain injury (TBI) induces a strong inflammatory response which includes blood-brain barrier damage, edema formation and infiltration of different immune cell subsets. More recently, microvascular thrombosis has been identified as another pathophysiological feature of TBI. The contact-kinin system represents an interface between inflammatory and thrombotic circuits and is activated in different neurological diseases. C1-Inhibitor counteracts activation of the contact-kinin system at multiple levels. We investigated the therapeutic potential of C1-Inhibitor in a model of TBI. Male and female C57BL/6 mice were subjected to cortical cryolesion and treated with C1-Inhibitor after 1 h. Lesion volumes were assessed between day 1 and day 5 and blood-brain barrier damage, thrombus formation as well as the local inflammatory response were determined post TBI. Treatment of male mice with 15.0 IU C1-Inhibitor, but not 7.5 IU, 1 h after cryolesion reduced lesion volumes by ~75% on day 1. This protective effect was preserved in female mice and at later stages of trauma. Mechanistically, C1-Inhibitor stabilized the blood-brain barrier and decreased the invasion of immune cells into the brain parenchyma. Moreover, C1-Inhibitor had strong antithrombotic effects. C1-Inhibitor represents a multifaceted anti-inflammatory and antithrombotic compound that prevents traumatic neurodegeneration in clinically meaningful settings.
Collapse
Affiliation(s)
| | - Stine Mencl
- Department of Neurology, University Hospital Würzburg Würzburg, Germany
| | | | - Irmak Salur
- Department of Neurosurgery, University Hospital Würzburg Würzburg, Germany
| | - Eva Göb
- Department of Neurology, University Hospital Würzburg Würzburg, Germany
| | | | - Sarah Hopp
- Department of Neurology, University Hospital Würzburg Würzburg, Germany
| | - Nelli Hennig
- Department of Neurosurgery, University Hospital Würzburg Würzburg, Germany
| | - Sven G Meuth
- Department of Neurology, University of Münster Münster, Germany ; Institute of Physiology I - Neuropathophysiology, University of Münster Münster, Germany
| | | | - Anna-Leena Sirén
- Department of Neurosurgery, University Hospital Würzburg Würzburg, Germany
| | | |
Collapse
|
14
|
Gold EM, Su D, López-Velázquez L, Haus DL, Perez H, Lacuesta GA, Anderson AJ, Cummings BJ. Functional assessment of long-term deficits in rodent models of traumatic brain injury. Regen Med 2014; 8:483-516. [PMID: 23826701 DOI: 10.2217/rme.13.41] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Traumatic brain injury (TBI) ranks as the leading cause of mortality and disability in the young population worldwide. The annual US incidence of TBI in the general population is estimated at 1.7 million per year, with an estimated financial burden in excess of US$75 billion a year in the USA alone. Despite the prevalence and cost of TBI to individuals and society, no treatments have passed clinical trial to clinical implementation. The rapid expansion of stem cell research and technology offers an alternative to traditional pharmacological approaches targeting acute neuroprotection. However, preclinical testing of these approaches depends on the selection and characterization of appropriate animal models. In this article we consider the underlying pathophysiology for the focal and diffuse TBI subtypes, discuss the existing preclinical TBI models and functional outcome tasks used for assessment of injury and recovery, identify criteria particular to preclinical animal models of TBI in which stem cell therapies can be tested for safety and efficacy, and review these criteria in the context of the existing TBI literature. We suggest that 2 months post-TBI is the minimum period needed to evaluate human cell transplant efficacy and safety. Comprehensive review of the published TBI literature revealed that only 32% of rodent TBI papers evaluated functional outcome ≥1 month post-TBI, and only 10% evaluated functional outcomes ≥2 months post-TBI. Not all published papers that evaluated functional deficits at a minimum of 2 months post-TBI reported deficits; hence, only 8.6% of overall TBI papers captured in this review demonstrated functional deficits at 2 months or more postinjury. A 2-month survival and assessment period would allow sufficient time for differentiation and integration of human neural stem cells with the host. Critically, while trophic effects might be observed at earlier time points, it will also be important to demonstrate the sustainability of such an effect, supporting the importance of an extended period of in vivo observation. Furthermore, regulatory bodies will likely require at least 6 months survival post-transplantation for assessment of toxicology/safety, particularly in the context of assessing cell abnormalities.
Collapse
Affiliation(s)
- Eric M Gold
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine 2030 Gross Hall, CA 92697-1705, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Albert-Weißenberger C, Sirén AL, Kleinschnitz C. Ischemic stroke and traumatic brain injury: the role of the kallikrein-kinin system. Prog Neurobiol 2012; 101-102:65-82. [PMID: 23274649 DOI: 10.1016/j.pneurobio.2012.11.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 11/15/2012] [Accepted: 11/20/2012] [Indexed: 12/16/2022]
Abstract
Acute ischemic stroke and traumatic brain injury are a major cause of mortality and morbidity. Due to the paucity of therapies, there is a pressing clinical demand for new treatment options. Successful therapeutic strategies for these conditions must target multiple pathophysiological mechanisms occurring at different stages of brain injury. In this respect, the kallikrein-kinin system is an ideal target linking key pathological hallmarks of ischemic and traumatic brain damage such as edema formation, inflammation, and thrombosis. In particular, the kinin receptors, plasma kallikrein, and coagulation factor XIIa are highly attractive candidates for pharmacological development, as kinin receptor antagonists or inhibitors of plasma kallikrein and coagulation factor XIIa are neuroprotective in animal models of stroke and traumatic brain injury. Nevertheless, conflicting preclinical evaluation as well as limited and inconclusive data from clinical trials suggest caution when transferring observations made in animals into the human situation. This review summarizes current evidence on the pathological significance of the kallikrein-kinin system during ischemic and traumatic brain damage, with a particular focus on experimental data derived from animal models. Experimental findings are also compared with human data if available, and potential therapeutic implications are discussed.
Collapse
|
16
|
Abstract
Activation of the complement system has been associated with tissue injury after hemorrhage and resuscitation in animals. We investigated whether administration of recombinant human C1-esterase inhibitor (rhC1-INH), a regulator of complement and contact activation systems, reduces tissue damage and cytokine release and improves metabolic acidosis in a porcine model of hemorrhagic shock. Male Yorkshire swine were assigned to experimental groups and subjected to controlled, isobaric hemorrhage to a target mean arterial pressure of 35 mmHg. Hypotension was maintained for 20 min followed by a bolus intravenous injection of rhC1-INH or vehicle; animals were then observed for 3 h. Blood chemistry and physiologic parameters were recorded. Lung and small intestine tissue samples were subjected to histopathologic evaluation and immunohistochemistry to determine the extent of injury and deposition of complement proteins. Cytokine levels and quantitative assessment of renal and hepatic function were measured via enzyme-linked immunosorbent assay and chemistry analyzer, respectively. Pharmacokinetics of rhC1-INH revealed dose proportionality for maximum concentration, half-life, and the time span in which the functional C1-INH level was greater than 1 IU/mL. Recombinant human C1-INH significantly reduced renal, intestinal, and lung tissue damage in a dose-dependent manner (100 and 250 IU/kg). In addition, rhC1-INH (250 IU/kg) markedly improved hemorrhage-induced metabolic acidosis and circulating tumor necrosis factor α. The tissue-protective effects of rhC1-INH appear to be related to its ability to reduce tissue complement activation and deposition. Recombinant human C1-INH decreased tissue complement activation and deposition in hemorrhaged animals, improved metabolic acidosis, reduced circulating tumor necrosis factor α, and attenuated tissue damage in this model. The observed beneficial effects of rhC1-INH treatment on tissue injury 20 min into severe hypotension present an attractive model of low-volume resuscitation, particularly in situations with a restrictive medical logistical footprint.
Collapse
|