1
|
Li CC, Jhou SM, Li YC, Ciou JW, Lin YY, Hung SC, Chang JH, Chang JC, Sun DS, Chou ML, Chang HH. Exposure to low levels of photocatalytic TiO 2 nanoparticles enhances seed germination and seedling growth of amaranth and cruciferous vegetables. Sci Rep 2022; 12:18228. [PMID: 36309586 PMCID: PMC9617883 DOI: 10.1038/s41598-022-23179-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/26/2022] [Indexed: 12/31/2022] Open
Abstract
Titanium dioxide (TiO2) is one of the most common compounds on Earth, and it is used in natural forms or engineered bulks or nanoparticles (NPs) with increasing rates. However, the effect of TiO2 NPs on plants remains controversial. Previous studies demonstrated that TiO2 NPs are toxic to plants, because the photocatalytic property of TiO2 produces biohazardous reactive oxygen species. In contrast, another line of evidence suggested that TiO2 NPs are beneficial to plant growth. To verify this argument, in this study, we used seed germination of amaranth and cruciferous vegetables as a model system. Intriguingly, our data suggested that the controversy was due to the dosage effect. The photocatalytic activity of TiO2 NPs positively affected seed germination and growth through gibberellins in a plant-tolerable range (0.1 and 0.2 mg/cm2), whereas overdosing (1 mg/cm2) induced tissue damage. Given that plants are the foundations of the ecosystem; these findings are useful for agricultural application, sustainable development and maintenance of healthy environments.
Collapse
Affiliation(s)
- Chi-Cheng Li
- grid.414692.c0000 0004 0572 899XDepartment of Hematology and Oncology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan ,Center of Stem Cell & Precision Medicine, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - Sian-Ming Jhou
- grid.411824.a0000 0004 0622 7222Tzu-Chi Senior High School Affiliated With Tzu-Chi University, Hualien, Taiwan
| | - Yi-Chen Li
- grid.411824.a0000 0004 0622 7222Tzu-Chi Senior High School Affiliated With Tzu-Chi University, Hualien, Taiwan
| | - Jhih-Wei Ciou
- grid.411824.a0000 0004 0622 7222Tzu-Chi Senior High School Affiliated With Tzu-Chi University, Hualien, Taiwan
| | - You-Yen Lin
- grid.411824.a0000 0004 0622 7222Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
| | - Shih-Che Hung
- grid.411824.a0000 0004 0622 7222Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan ,grid.411824.a0000 0004 0622 7222Institute of Medical Sciences, Tzu-Chi University, Hualien, Taiwan
| | - Jen-Hsiang Chang
- grid.445052.20000 0004 0639 3773Department and Graduate School of Computer Science, National Pingtung University, Pingtung, Taiwan
| | | | - Der-Shan Sun
- grid.411824.a0000 0004 0622 7222Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan ,grid.411824.a0000 0004 0622 7222Institute of Medical Sciences, Tzu-Chi University, Hualien, Taiwan
| | - Ming-Lun Chou
- grid.411824.a0000 0004 0622 7222Department of Life Sciences, Tzu-Chi University, Hualien, Taiwan
| | - Hsin-Hou Chang
- grid.411824.a0000 0004 0622 7222Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan ,grid.411824.a0000 0004 0622 7222Institute of Medical Sciences, Tzu-Chi University, Hualien, Taiwan
| |
Collapse
|
2
|
Sarraf M, Vishwakarma K, Kumar V, Arif N, Das S, Johnson R, Janeeshma E, Puthur JT, Aliniaeifard S, Chauhan DK, Fujita M, Hasanuzzaman M. Metal/Metalloid-Based Nanomaterials for Plant Abiotic Stress Tolerance: An Overview of the Mechanisms. PLANTS (BASEL, SWITZERLAND) 2022; 11:316. [PMID: 35161297 PMCID: PMC8839771 DOI: 10.3390/plants11030316] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 05/09/2023]
Abstract
In agriculture, abiotic stress is one of the critical issues impacting the crop productivity and yield. Such stress factors lead to the generation of reactive oxygen species, membrane damage, and other plant metabolic activities. To neutralize the harmful effects of abiotic stress, several strategies have been employed that include the utilization of nanomaterials. Nanomaterials are now gaining attention worldwide to protect plant growth against abiotic stresses such as drought, salinity, heavy metals, extreme temperatures, flooding, etc. However, their behavior is significantly impacted by the dose in which they are being used in agriculture. Furthermore, the action of nanomaterials in plants under various stresses still require understanding. Hence, with this background, the present review envisages to highlight beneficial role of nanomaterials in plants, their mode of action, and their mechanism in overcoming various abiotic stresses. It also emphasizes upon antioxidant activities of different nanomaterials and their dose-dependent variability in plants' growth under stress. Nevertheless, limitations of using nanomaterials in agriculture are also presented in this review.
Collapse
Affiliation(s)
- Mohammad Sarraf
- Department of Horticulture Science, Shiraz Branch, Islamic Azad University, Shiraz 71987-74731, Iran;
| | - Kanchan Vishwakarma
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida 201313, India;
| | - Vinod Kumar
- Department of Botany, Government Degree College, Ramban 182144, India;
| | - Namira Arif
- D. D. Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Prayagraj 211002, India; (N.A.); (D.K.C.)
| | - Susmita Das
- Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, India;
| | - Riya Johnson
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C.U. Campus P.O., Kozhikode 673635, India; (R.J.); (E.J.); (J.T.P.)
| | - Edappayil Janeeshma
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C.U. Campus P.O., Kozhikode 673635, India; (R.J.); (E.J.); (J.T.P.)
| | - Jos T. Puthur
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C.U. Campus P.O., Kozhikode 673635, India; (R.J.); (E.J.); (J.T.P.)
| | - Sasan Aliniaeifard
- Photosynthesis Laboratory, Department of Horticulture, Aburaihan Campus, University of Tehran, Tehran 33916-53755, Iran;
| | - Devendra Kumar Chauhan
- D. D. Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Prayagraj 211002, India; (N.A.); (D.K.C.)
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| |
Collapse
|
3
|
Khan M, Khan AU, Bogdanchikova N, Garibo D. Antibacterial and Antifungal Studies of Biosynthesized Silver Nanoparticles against Plant Parasitic Nematode Meloidogyne incognita, Plant Pathogens Ralstonia solanacearum and Fusarium oxysporum. Molecules 2021; 26:2462. [PMID: 33922577 PMCID: PMC8122930 DOI: 10.3390/molecules26092462] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 12/19/2022] Open
Abstract
The possibility of using silver nanoparticles (AgNPs) to enhance the plants growth, crop production, and control of plant diseases is currently being researched. One of the most effective approaches for the production of AgNPs is green synthesis. Herein, we report a green and phytogenic synthesis of AgNPs by using aqueous extract of strawberry waste (solid waste after fruit juice extraction) as a novel bioresource, which is a non-hazardous and inexpensive that can act as a reducing, capping, and stabilizing agent. Successful biosynthesis of AgNPs was monitored by UV-visible spectroscopy showing a surface plasmon resonance (SPR) peak at ~415 nm. The X-ray diffraction studies confirm the face-centered cubic crystalline AgNPs. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques confirm the rectangular shape with an average size of ~55 nm. The antibacterial and antifungal efficacy and inhibitory impact of the biosynthesized AgNPs were tested against nematode, Meloidogyne incognita, plant pathogenic bacterium, Ralstonia solanacearum and fungus, Fusarium oxysporum. These results confirm that biosynthesized AgNPs can significantly control these plant pathogens.
Collapse
Affiliation(s)
- Masudulla Khan
- School of Life and Basic Sciences, SIILAS, Jaipur National University, Jaipur 302017, India;
| | - Azhar U. Khan
- School of Life and Basic Sciences, SIILAS, Jaipur National University, Jaipur 302017, India;
| | - Nina Bogdanchikova
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, 22800 Ensenada, Baja California, Mexico;
| | - Diana Garibo
- CONACYT Research Fellow at Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, 22800 Ensenada, Baja California, Mexico
| |
Collapse
|
4
|
Relative expression of microRNAs, apoptosis, and ultrastructure anomalies induced by gold nanoparticles in Trachyderma hispida (Coleoptera: Tenebrionidae). PLoS One 2020; 15:e0241837. [PMID: 33156883 PMCID: PMC7647063 DOI: 10.1371/journal.pone.0241837] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 10/21/2020] [Indexed: 01/07/2023] Open
Abstract
The extensive use of nanomaterials generates toxic effects on non-target species and the ecosystem. Although gold nanoparticles (Au-NPs) are generally expected to be safe, the recent study contains conflicting data regarding their cytotoxicity in the darkling beetles Trachyderma hispida. The study postulated cellular perturbation in the ovarian tissue of the beetles induced by a sublethal dose of Au-NPs (0.01 mg/g). When compared with the controls, a significant inhibition in the activities of the antioxidant enzymes selenium-dependent (GPOX) and selenium-independent (GSTP) glutathione peroxidases (GPx) was observed in the treated beetles. The study proposed microRNAs (miRNA-282 and miRNA-989) as genotoxic markers for the first time, reporting a significant suppression in their transcriptional levels in the treated beetles. Furthermore, TUNEL (Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling) and flow cytometry assays (annexin V-Fitc) indicated a significant increase in ovarian cell apoptosis in the treated beetles. Additionally, an ultrastructure examination revealed pathological changes in the ovarian cells of the treated beetles. The resulting anomalies in the present study may interrupt the fecundity of the beetles and lead to the future suppression of beetle populations.
Collapse
|
5
|
Anderson AJ, McLean JE, Jacobson AR, Britt DW. CuO and ZnO Nanoparticles Modify Interkingdom Cell Signaling Processes Relevant to Crop Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6513-6524. [PMID: 28481096 DOI: 10.1021/acs.jafc.7b01302] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
As the world population increases, strategies for sustainable agriculture are needed to fulfill the global need for plants for food and other commercial products. Nanoparticle formulations are likely to be part of the developing strategies. CuO and ZnO nanoparticles (NPs) offer potential as fertilizers, as they provide bioavailable essential metals, and as pesticides, because of dose-dependent toxicity. Effects of these metal oxide NPs on rhizosphere functions are the focus of this review. These NPs at doses of ≥10 mg metal/kg change the production of key metabolites involved in plant protection in a root-associated microbe, Pseudomonas chlororaphis O6. Altered synthesis occurs in the microbe for phenazines, which function in plant resistance to pathogens, the pyoverdine-like siderophore that enhances Fe bioavailability in the rhizosphere and indole-3-acetic acid affecting plant growth. In wheat seedlings, reprogramming of root morphology involves increases in root hair proliferation (CuO NPs) and lateral root formation (ZnO NPs). Systemic changes in wheat shoot gene expression point to altered regulation for metal stress resilience as well as the potential for enhanced survival under stress commonly encountered in the field. These responses to the NPs cross kingdoms involving the bacteria, fungi, and plants in the rhizosphere. Our challenge is to learn how to understand the value of these potential changes and successfully formulate the NPs for optimal activity in the rhizosphere of crop plants. These formulations may be integrated into developing practices to ensure the sustainability of crop production.
Collapse
Affiliation(s)
- Anne J Anderson
- Department of Biology , Utah State University , Logan , Utah 84322-5305 , United States
| | - Joan E McLean
- Department of Civil and Environmental Engineering, Utah Water Research Laboratory , Utah State University , Logan , Utah 84322-8200 , United States
| | - Astrid R Jacobson
- Department of Plants, Soils and Climate , Utah State University , Logan , Utah 84322-4820 , United States
| | - David W Britt
- Department of Bioengineering , Utah State University , Logan , Utah 84322-4105 , United States
| |
Collapse
|
6
|
Karmakar RS, Lu YJ, Fu Y, Wei KC, Chan SH, Wu MC, Lee JW, Lin TK, Wang JC. Cross-Talk Immunity of PEDOT:PSS Pressure Sensing Arrays with Gold Nanoparticle Incorporation. Sci Rep 2017; 7:12252. [PMID: 28947743 PMCID: PMC5612936 DOI: 10.1038/s41598-017-12420-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/07/2017] [Indexed: 12/27/2022] Open
Abstract
In this study, the cross-talk effects and the basic piezoresistive characteristics of gold nanoparticle (Au-NP) incorporated poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) pressure sensing 2 × 2 arrays are investigated using a cross-point electrode (CPE) structure. Transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS) mappings were carried out to confirm the incorporation of Au-NPs in the PEDOT:PSS films. A solution mixing process was employed to incorporate the nanoparticles. When the diameter of the Au-NPs incorporated in the PEDOT:PSS films (Au-NPs/PEDOT:PSS) was 20 nm, the piezoresistive pressure sensing 2 × 2 arrays were almost immune to cross-talk effects, which enhances the pressure sensing accuracy of the array. The Au-NPs render the PEDOT:PSS films more resilient. This is confirmed by the high plastic resistance values using a nanoindenter, which reduce the interference between the active and passive cells. When the size of the Au-NPs is more than 20 nm, a significant cross-talk effect is observed in the pressure sensing arrays as a result of the high conductivity of the Au-NPs/PEDOT:PSS films with large Au-NPs. With the incorporation of optimally sized Au-NPs, the PEDOT:PSS piezoresistive pressure sensing arrays can be promising candidates for future high-resolution fingerprint identification system with multiple-electrode array structures.
Collapse
Affiliation(s)
- Rajat Subhra Karmakar
- Department of Electronic Engineering, Chang Gung University, Guishan Dist., 33302, Taoyuan, Taiwan
| | - Yu-Jen Lu
- Department of Neurosurgery, Chang Gung Memorial Hospital, Guishan Dist., 33305, Taoyuan, Taiwan
- School of Traditional Chinese Medicine, Chang Gung University, Guishan Dist., 33302, Taoyuan, Taiwan
| | - Yi Fu
- Department of Electronic Engineering, Chang Gung University, Guishan Dist., 33302, Taoyuan, Taiwan
| | - Kuo-Chen Wei
- Department of Neurosurgery, Chang Gung Memorial Hospital, Guishan Dist., 33305, Taoyuan, Taiwan
- School of Medicine, Chang Gung University, Guishan Dist., 33302, Taoyuan, Taiwan
| | - Shun-Hsiang Chan
- Department of Chemical and Materials Engineering, Chang Gung University, Guishan Dist., 33302, Taoyuan, Taiwan
| | - Ming-Chung Wu
- Department of Chemical and Materials Engineering, Chang Gung University, Guishan Dist., 33302, Taoyuan, Taiwan
| | - Jyh-Wei Lee
- Department of Materials Engineering, Ming Chi University of Technology, Taishan Dist., 24301, New Taipei City, Taiwan
- Center for Thin Films Technologies and Applications, Ming Chi University of Technology, Taishan Dist., 24301, New Taipei City, Taiwan
- College of Engineering, Chang Gung University, Guishan Dist., 33302, Taoyuan, Taiwan
| | - Tzu-Kang Lin
- Department of Neurosurgery, Chang Gung Memorial Hospital, Guishan Dist., 33305, Taoyuan, Taiwan
| | - Jer-Chyi Wang
- Department of Electronic Engineering, Chang Gung University, Guishan Dist., 33302, Taoyuan, Taiwan.
- Department of Neurosurgery, Chang Gung Memorial Hospital, Guishan Dist., 33305, Taoyuan, Taiwan.
- Department of Electronic Engineering, Ming Chi University of Technology, Taishan Dist., 24301, New Taipei City, Taiwan.
| |
Collapse
|
7
|
Mir M, Ishtiaq S, Rabia S, Khatoon M, Zeb A, Khan GM, Ur Rehman A, Ud Din F. Nanotechnology: from In Vivo Imaging System to Controlled Drug Delivery. NANOSCALE RESEARCH LETTERS 2017; 12:500. [PMID: 28819800 PMCID: PMC5560318 DOI: 10.1186/s11671-017-2249-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 07/26/2017] [Indexed: 05/31/2023]
Abstract
Science and technology have always been the vitals of human's struggle, utilized exclusively for the development of novel tools and products, ranging from micro- to nanosize. Nanotechnology has gained significant attention due to its extensive applications in biomedicine, particularly related to bio imaging and drug delivery. Various nanodevices and nanomaterials have been developed for the diagnosis and treatment of different diseases. Herein, we have described two primary aspects of the nanomedicine, i.e., in vivo imaging and drug delivery, highlighting the recent advancements and future explorations. Tremendous advancements in the nanotechnology tools for the imaging, particularly of the cancer cells, have recently been observed. Nanoparticles offer a suitable medium to carryout molecular level modifications including the site-specific imaging and targeting. Invention of radionuclides, quantum dots, magnetic nanoparticles, and carbon nanotubes and use of gold nanoparticles in biosensors have revolutionized the field of imaging, resulting in easy understanding of the pathophysiology of disease, improved ability to diagnose and enhanced therapeutic delivery. This high specificity and selectivity of the nanomedicine is important, and thus, the recent advancements in this field need to be understood for a better today and a more prosperous future.
Collapse
Affiliation(s)
- Maria Mir
- Department of Pharmacy, Quaid-I-Azam University, Islamabad, Pakistan
| | - Saba Ishtiaq
- Department of Pharmacy, Quaid-I-Azam University, Islamabad, Pakistan
| | - Samreen Rabia
- Department of Pharmacy, Quaid-I-Azam University, Islamabad, Pakistan
| | - Maryam Khatoon
- Department of Pharmacy, Quaid-I-Azam University, Islamabad, Pakistan
| | - Ahmad Zeb
- Department of Pharmacy, Quaid-I-Azam University, Islamabad, Pakistan
| | - Gul Majid Khan
- Department of Pharmacy, Quaid-I-Azam University, Islamabad, Pakistan
| | - Asim Ur Rehman
- Department of Pharmacy, Quaid-I-Azam University, Islamabad, Pakistan.
| | - Fakhar Ud Din
- Department of Pharmacy, Quaid-I-Azam University, Islamabad, Pakistan.
| |
Collapse
|
8
|
Khan MN, Mobin M, Abbas ZK, AlMutairi KA, Siddiqui ZH. Role of nanomaterials in plants under challenging environments. PLANT PHYSIOLOGY AND BIOCHEMISTRY 2017; 110:194-209. [PMID: 0 DOI: 10.1016/j.plaphy.2016.05.038] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 05/22/2016] [Accepted: 05/26/2016] [Indexed: 05/21/2023]
|
9
|
Hatami M, Kariman K, Ghorbanpour M. Engineered nanomaterial-mediated changes in the metabolism of terrestrial plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 571:275-291. [PMID: 27485129 DOI: 10.1016/j.scitotenv.2016.07.184] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 07/24/2016] [Accepted: 07/25/2016] [Indexed: 06/06/2023]
Abstract
Engineered nanomaterials (ENMs) possess remarkable physicochemical characteristics suitable for different applications in medicine, pharmaceuticals, biotechnology, energy, cosmetics and electronics. Because of their ultrafine size and high surface reactivity, ENMs can enter plant cells and interact with intracellular structures and metabolic pathways which may produce toxicity or promote plant growth and development by diverse mechanisms. Depending on their type and concentration, ENMs can have positive or negative effects on photosynthesis, photochemical fluorescence and quantum yield as well as photosynthetic pigments status of the plants. Some studies have shown that ENMs can improve photosynthetic efficiency via increasing chlorophyll content and light absorption and also broadening the spectrum of captured light, suggesting that photosynthesis can be nano-engineered for harnessing more solar energy. Both up- and down-regulation of primary metabolites such as proteins and carbohydrates have been observed following exposure of plants to various ENMs. The potential capacity of ENMs for changing the rate of primary metabolites lies in their close relationship with activation and biosynthesis of the key enzymes. Several classes of secondary metabolites such as phenolics, flavonoids, and alkaloids have been shown to be induced (mostly accompanied by stress-related factors) in plants exposed to different ENMs, highlighting their great potential as elicitors to enhance both quantity and quality of biologically active secondary metabolites. Considering reports on both positive and negative effects of ENMs on plant metabolism, in-depth studies are warranted to figure out the most appropriate ENMs (type, size and optimal concentration) in order to achieve the desirable effect on specific metabolites in a given plant species. In this review, we summarize the studies performed on the impacts of ENMs on biosynthesis of plant primary and secondary metabolites and mention the research gaps that currently exist in this field.
Collapse
Affiliation(s)
- Mehrnaz Hatami
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, 38156-8-8349 Arak, Iran.
| | - Khalil Kariman
- School of Earth and Environment M004, The University of Western Australia, Crawley, WA 6009, Australia
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, 38156-8-8349 Arak, Iran.
| |
Collapse
|
10
|
|
11
|
Cerrillo C, Barandika G, Igartua A, Areitioaurtena O, Mendoza G. Towards the standardization of nanoecotoxicity testing: Natural organic matter 'camouflages' the adverse effects of TiO2 and CeO2 nanoparticles on green microalgae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 543:95-104. [PMID: 26580731 DOI: 10.1016/j.scitotenv.2015.10.137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 10/27/2015] [Accepted: 10/27/2015] [Indexed: 06/05/2023]
Abstract
In the last few years, the emission of CeO2 and TiO2 nanoparticles (NPs) into the environment has been raising concerns about their potential adverse effects on wildlife and human health. Aquatic organisms constitute one of the most important pathways for the entrance of these NPs and transfer throughout the food web, but divergences exist in the experimental data published on their aquatic toxicity. The pressing need for standardization of methods to analyze their ecotoxicity requires aquatic media representing realistic environmental conditions. The present study aimed to determine the usefulness of Suwannee River natural organic matter (SR-NOM) in the assessment of the agglomeration kinetics and ecotoxicity of CeO2 and TiO2 NPs towards green microalgae Pseudokirchneriella subcapitata. SR-NOM alleviated the adverse effects of NPs on algal growth, completely in the case of TiO2 NPs and partially in the case of CeO2 NPs, suggesting a 'camouflage' of toxicity. This behavior has been observed also for other algal species and types of natural organic matter in the literature. Furthermore, SR-NOM markedly increased the stability of the NPs in algal medium, which led to a better reproducibility of the toxicity test results, and provided an electrophoretic mobility similar to that previously reported in various river and groundwaters. Thus, SR-NOM can be a representative sample of what is found in many different ecosystems, and the observed 'camouflage' of the effects of CeO2 and TiO2 NPs on algal cells might be considered as a natural interaction occurring in their standardized ecotoxicological assessment.
Collapse
Affiliation(s)
- Cristina Cerrillo
- Department of Inorganic Chemistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain; Tribology Unit, IK4-TEKNIKER, Eibar, Gipuzkoa, Spain.
| | - Gotzone Barandika
- Department of Inorganic Chemistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Amaya Igartua
- Tribology Unit, IK4-TEKNIKER, Eibar, Gipuzkoa, Spain
| | | | - Gemma Mendoza
- Tribology Unit, IK4-TEKNIKER, Eibar, Gipuzkoa, Spain
| |
Collapse
|