1
|
Szulc N, Gąsior-Głogowska M, Żyłka P, Szefczyk M, Wojciechowski JW, Żak AM, Dyrka W, Kaczorowska A, Burdukiewicz M, Tarek M, Kotulska M. Structural effects of charge destabilization and amino acid substitutions in amyloid fragments of CsgA. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124094. [PMID: 38503257 DOI: 10.1016/j.saa.2024.124094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/21/2024]
Abstract
The most studied functional amyloid is the CsgA, major curli subunit protein, which is produced by numerous strains of Enterobacteriaceae. Although CsgA sequences are highly conserved, they exhibit species diversity, which reflects the specific evolutionary and functional adaptability of the major curli subunit. Herein, we performed bioinformatics analyses to uncover the differences in the amyloidogenic properties of the R4 fragments in Escherichia coli and Salmonella enterica and proposed four mutants for more detailed studies: M1, M2, M3, and M4. The mutated sequences were characterized by various experimental techniques, such as circular dichroism, ATR-FTIR, FT-Raman, thioflavin T, transmission electron microscopy and confocal microscopy. Additionally, molecular dynamics simulations were performed to determine the role of buffer ions in the aggregation process. Our results demonstrated that the aggregation kinetics, fibril morphology, and overall structure of the peptide were significantly affected by the positions of charged amino acids within the repeat sequences of CsgA. Notably, substituting glycine with lysine resulted in the formation of distinctive spherically packed globular aggregates. The differences in morphology observed are attributed to the influence of phosphate ions, which disrupt the local electrostatic interaction network of the polypeptide chains. This study provides knowledge on the preferential formation of amyloid fibrils based on charge states within the polypeptide chain.
Collapse
Affiliation(s)
- Natalia Szulc
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland; CNRS, University of Lorraine, F-5400 Nancy, France; Department of Physics and Biophysics, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Marlena Gąsior-Głogowska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Paweł Żyłka
- Department of Electrical Engineering Fundamentals, Faculty of Electrical Engineering, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Monika Szefczyk
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Jakub W Wojciechowski
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Andrzej M Żak
- Institute of Advanced Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Witold Dyrka
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Aleksandra Kaczorowska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland; Laboratory of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Michał Burdukiewicz
- Institute of Biotechnology and Biomedicine, Autonomous University of Barcelona, Campus Universitat Autònoma de Barcelona Plaça Cívica Bellaterra, s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain; Clinical Research Centre, Medical University of Bialystok, Jana Kilinskiego 1, 15-089 Bialystok, Poland
| | - Mounir Tarek
- CNRS, University of Lorraine, F-5400 Nancy, France.
| | - Malgorzata Kotulska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland.
| |
Collapse
|
2
|
Hua C, Qiu L. Polymersomes for Therapeutic Protein and Peptide Delivery: Towards Better Loading Properties. Int J Nanomedicine 2024; 19:2317-2340. [PMID: 38476284 PMCID: PMC10929215 DOI: 10.2147/ijn.s444910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/24/2024] [Indexed: 03/14/2024] Open
Abstract
Therapeutics based on proteins and peptides have profoundly transformed the landscape of treatment for diseases, from diabetes mellitus to cancers, yet the short half-life and low bioavailability of therapeutic proteins and peptides hinder their wide applications. To break through this bottleneck, biomolecules-loaded polymersomes with strong adjustability and versatility have attracted more and more attentions recently. Loading proteins or peptides into polymersomes is the first but extremely important step towards developing high-quality formulation products. However, increasing protein and peptide loading content is quite challenging due to the inherent nature of self-assembled vesicle formation mechanism and physiochemical characteristics of biomacromolecules. This review highlights the potential of polymersomes as the next-generation therapeutic proteins and peptides carrier and emphatically introduces novel approaches and recent progress to achieve satisfactory encapsulation capability of polymersomes for proteins and peptides. On the one hand, with the help of intermolecular interactions, such as electrostatic, lipid-protein, and hydrophobic interactions, the drug loading could be significantly improved. On the other hand, loading improvement could be attained through innovation of preparation methods, ranging from modified traditional film hydration techniques to the novel phase-guided assembly method.
Collapse
Affiliation(s)
- Chengxu Hua
- Ministry of Educational (MOE) Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, People’s Republic of China
| | - Liyan Qiu
- Ministry of Educational (MOE) Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, People’s Republic of China
| |
Collapse
|
3
|
López-Ortiz S, Caruso G, Emanuele E, Menéndez H, Peñín-Grandes S, Guerrera CS, Caraci F, Nisticò R, Lucia A, Santos-Lozano A, Lista S. Digging into the intrinsic capacity concept: Can it be applied to Alzheimer's disease? Prog Neurobiol 2024; 234:102574. [PMID: 38266702 DOI: 10.1016/j.pneurobio.2024.102574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 01/09/2024] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
Historically, aging research has largely centered on disease pathology rather than promoting healthy aging. The World Health Organization's (WHO) policy framework (2015-2030) underscores the significance of fostering the contributions of older individuals to their families, communities, and economies. The WHO has introduced the concept of intrinsic capacity (IC) as a key metric for healthy aging, encompassing five primary domains: locomotion, vitality, sensory, cognitive, and psychological. Past AD research, constrained by methodological limitations, has focused on single outcome measures, sidelining the complexity of the disease. Our current scientific milieu, however, is primed to adopt the IC concept. This is due to three critical considerations: (I) the decline in IC is linked to neurocognitive disorders, including AD, (II) cognition, a key component of IC, is deeply affected in AD, and (III) the cognitive decline associated with AD involves multiple factors and pathophysiological pathways. Our study explores the application of the IC concept to AD patients, offering a comprehensive model that could revolutionize the disease's diagnosis and prognosis. There is a dearth of information on the biological characteristics of IC, which are a result of complex interactions within biological systems. Employing a systems biology approach, integrating omics technologies, could aid in unraveling these interactions and understanding IC from a holistic viewpoint. This comprehensive analysis of IC could be leveraged in clinical settings, equipping healthcare providers to assess AD patients' health status more effectively and devise personalized therapeutic interventions in accordance with the precision medicine paradigm. We aimed to determine whether the IC concept could be extended from older individuals to patients with AD, thereby presenting a model that could significantly enhance the diagnosis and prognosis of this disease.
Collapse
Affiliation(s)
- Susana López-Ortiz
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012 Valladolid, Spain
| | - Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; Neuropharmacology and Translational Neurosciences Research Unit, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | | | - Héctor Menéndez
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012 Valladolid, Spain
| | - Saúl Peñín-Grandes
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012 Valladolid, Spain
| | - Claudia Savia Guerrera
- Department of Educational Sciences, University of Catania, 95125 Catania, Italy; Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; Neuropharmacology and Translational Neurosciences Research Unit, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Robert Nisticò
- School of Pharmacy, University of Rome "Tor Vergata", 00133 Rome, Italy; Laboratory of Pharmacology of Synaptic Plasticity, EBRI Rita Levi-Montalcini Foundation, 00143 Rome, Italy
| | - Alejandro Lucia
- Research Institute of the Hospital 12 de Octubre ('imas12'), 28041 Madrid, Spain; Faculty of Sport Sciences, European University of Madrid, 28670 Villaviciosa de Odón, Madrid, Spain; CIBER of Frailty and Healthy Ageing (CIBERFES), 28029 Madrid, Spain
| | - Alejandro Santos-Lozano
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012 Valladolid, Spain; Research Institute of the Hospital 12 de Octubre ('imas12'), 28041 Madrid, Spain
| | - Simone Lista
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012 Valladolid, Spain.
| |
Collapse
|
4
|
Frieg B, Han M, Giller K, Dienemann C, Riedel D, Becker S, Andreas LB, Griesinger C, Schröder GF. Cryo-EM structures of lipidic fibrils of amyloid-β (1-40). Nat Commun 2024; 15:1297. [PMID: 38351005 PMCID: PMC10864299 DOI: 10.1038/s41467-023-43822-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/21/2023] [Indexed: 02/16/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive and incurable neurodegenerative disease characterized by the extracellular deposition of amyloid plaques. Investigation into the composition of these plaques revealed a high amount of amyloid-β (Aβ) fibrils and a high concentration of lipids, suggesting that fibril-lipid interactions may also be relevant for the pathogenesis of AD. Therefore, we grew Aβ40 fibrils in the presence of lipid vesicles and determined their structure by cryo-electron microscopy (cryo-EM) to high resolution. The fold of the major polymorph is similar to the structure of brain-seeded fibrils reported previously. The majority of the lipids are bound to the fibrils, as we show by cryo-EM and NMR spectroscopy. This apparent lipid extraction from vesicles observed here in vitro provides structural insights into potentially disease-relevant fibril-lipid interactions.
Collapse
Affiliation(s)
- Benedikt Frieg
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry) and JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | - Mookyoung Han
- Department of NMR-Based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Karin Giller
- Department of NMR-Based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Christian Dienemann
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Dietmar Riedel
- Laboratory of Electron Microscopy, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Stefan Becker
- Department of NMR-Based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| | - Loren B Andreas
- Department of NMR-Based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| | - Christian Griesinger
- Department of NMR-Based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
| | - Gunnar F Schröder
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry) and JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany.
- Physics Department, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
5
|
Majou D, Dermenghem AL. Effects of DHA (omega-3 fatty acid) and estradiol on amyloid β-peptide regulation in the brain. Brain Res 2024; 1823:148681. [PMID: 37992797 DOI: 10.1016/j.brainres.2023.148681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
In the early stages of sporadic Alzheimer's disease (SAD), there is a strong correlation between memory impairment and cortical levels of soluble amyloid-β peptide oligomers (Aβ). It has become clear that Aβ disrupt glutamatergic synaptic function, which can in turn lead to the characteristic cognitive deficits of SAD, but the actual pathways are still not well understood. This opinion article describes the pathogenic mechanisms underlying cerebral amyloidosis. These mechanisms are dependent on the amyloid precursor protein and concern the synthesis of Aβ peptides with competition between the non-amyloidogenic pathway and the amyloidogenic pathway (i.e. a competition between the ADAM10 and BACE1 enzymes), on the one hand, and the various processes of Aβ residue clearance, on the other hand. This clearance mobilizes both endopeptidases (NEP, and IDE) and removal transporters across the blood-brain barrier (LRP1, ABCB1, and RAGE). Lipidated ApoE also plays a major role in all processes. The disturbance of these pathways induces an accumulation of Aβ. The description of the mechanisms reveals two key molecules in particular: (i) free estradiol, which has genomic and non-genomic action, and (ii) free DHA as a preferential ligand of PPARα-RXRα and PPARɣ-RXRα heterodimers. DHA and free estradiol are also self-regulating, and act in synergy. When a certain level of chronic DHA and free estradiol deficiency is reached, a permanent imbalance is established in the central nervous system. The consequences of these deficits are revealed in particular by the presence of Aβ peptide deposits, as well as other markers of the etiology of SAD.
Collapse
Affiliation(s)
- Didier Majou
- ACTIA, 149, rue de Bercy, 75595 Paris Cedex 12, France.
| | | |
Collapse
|
6
|
Numaguchi Y, Tsukakoshi K, Takeuchi N, Suzuki Y, Ikebukuro K, Kawano R. Real-time monitoring of the amyloid β 1-42 monomer-to-oligomer channel transition using a lipid bilayer system. PNAS NEXUS 2024; 3:pgad437. [PMID: 38156289 PMCID: PMC10753159 DOI: 10.1093/pnasnexus/pgad437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/06/2023] [Indexed: 12/30/2023]
Abstract
This study describes the observation of the transformation of monomeric amyloid β1-42 (Aβ42) into oligomers in a lipid membrane utilizing a lipid bilayer system for electrophysiological measurement. The relevance of oligomers and protofibrils in Alzheimer's disease (AD) is underscored given their significant neurotoxicity. By closely monitoring the shift of Aβ42 from its monomeric state to forming oligomeric channels in phospholipid membranes, we noted that this transformation transpired within a 2-h frame. We manipulated the lipid membrane's constitution with components such as glycerophospholipid, porcine brain total lipid extract, sphingomyelin (SM), and cholesterol (Chol.) to effectively imitate nerve cell membranes. Interesting findings showcased Chol.'s ability to foster stable oligomeric channel formation in the lipid membrane, with SM and GM1 lipids potentially enhancing channel formation as well. Additionally, the study identified the potential of a catechin derivative, epigallocatechin gallate (EGCG), in obstructing oligomerization. With EGCG present in the outer solution of the Aβ42-infused membrane, a noteworthy reduction in channel current was observed, suggesting the successful inhibition of oligomerization. This conclusion held true in both, prior and subsequent, stages of oligomerization. Our findings shed light on the toxicity of oligomers, promising invaluable information for future advancements in AD treatment strategies.
Collapse
Affiliation(s)
- Yuri Numaguchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo 184-0011, Japan
| | - Kaori Tsukakoshi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo 184-0011, Japan
| | - Nanami Takeuchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo 184-0011, Japan
| | - Yuki Suzuki
- Department of Chemistry for Materials, Graduate School of Engineering, Mie University, Mie 514-0102, Japan
| | - Kazunori Ikebukuro
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo 184-0011, Japan
| | - Ryuji Kawano
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo 184-0011, Japan
| |
Collapse
|
7
|
Prajapati KP, Ansari M, Mittal S, Anand BG, Kar K. Initiation of Brain Extract Fibrillation and Effective Cellular Internalization of Tryptophan Fibrils Unveils Its Neurotoxicity Risk. ACS Chem Neurosci 2023; 14:4274-4281. [PMID: 37962955 DOI: 10.1021/acschemneuro.3c00367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
Recent discoveries on the self-assembly of aromatic amino acids into amyloid-like neurotoxic nanostructures have initiated a quest to decode the molecular mechanisms for the initiation of neurodegeneration. Moreover, the multicomponent nature of the amyloid deposits still questions the existing and well-defined amyloid cascade hypothesis. Hence, deciphering the neurotoxicity of amyloid-like nanostructures of aromatic amino acids becomes crucial for understanding the etiology of amyloidogenesis. Here, we demonstrate the cellular internalization and consequential damaging effects of self-assembled amyloid-like tryptophan nanostructures on human neuroblastoma cells. The cell-damaging potential of tryptophan nanostructure seems to be facilitated via ROS generation, necrosis and apoptosis mediated cell death. Further, tryptophan nanostructures were found to be seeding competent conformers, which triggered aggressive aggregation of brain extract components. The early stage intermediate nanostructures possess a higher cross-seeding efficacy than the seeding potential of the matured tryptophan fibrils. In addition to the cell-damaging and cross-seeding effects, tryptophan fibrils were found to catalyze oxidation of neuromodulator dopamine. These findings add more insights into the specific role of tryptophan self-assembly during the pathogenesis of hypertryptophanemia and other amyloid-associated neurodegenerative complications.
Collapse
Affiliation(s)
- Kailash Prasad Prajapati
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Masihuzzaman Ansari
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Shikha Mittal
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Bibin Gnanadhason Anand
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Karunakar Kar
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
8
|
Fantini J. Lipid rafts and human diseases: why we need to target gangliosides. FEBS Open Bio 2023; 13:1636-1650. [PMID: 37052878 PMCID: PMC10476576 DOI: 10.1002/2211-5463.13612] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/02/2023] [Accepted: 04/12/2023] [Indexed: 04/14/2023] Open
Abstract
Gangliosides are functional components of membrane lipid rafts that control critical functions in cell communication. Many pathologies involve raft gangliosides, which therefore represent an approach of choice for developing innovative therapeutic strategies. Beginning with a discussion of what a disease is (and is not), this review lists the major human pathologies that involve gangliosides, which includes cancer, diabetes, and infectious and neurodegenerative diseases. In most cases, the problem is due to a protein whose binding to gangliosides either creates a pathological condition or impairs a physiological function. Then, I draw up an inventory of the different molecular mechanisms of protein-ganglioside interactions. I propose to classify the ganglioside-binding domains of proteins into four categories, which I name GBD-1, GBD-2, GBD-3, and GBD-4. This structural and functional classification could help to rationalize the design of innovative molecules capable of disrupting the binding of selected proteins to gangliosides without generating undesirable effects. The biochemical specificities of gangliosides expressed in the human brain must also be taken into account to improve the reliability of animal models (or any animal-free alternative) of Alzheimer's and Parkinson's diseases.
Collapse
|
9
|
Ma L, Li X, Petersen RB, Peng A, Huang K. Probing the interactions between amyloidogenic proteins and bio-membranes. Biophys Chem 2023; 296:106984. [PMID: 36889133 DOI: 10.1016/j.bpc.2023.106984] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/11/2023] [Accepted: 02/22/2023] [Indexed: 03/01/2023]
Abstract
Protein misfolding diseases (PMDs) in humans are characterized by the deposition of protein aggregates in tissues, including Alzheimer's disease, Parkinson's disease, type 2 diabetes, and amyotrophic lateral sclerosis. Misfolding and aggregation of amyloidogenic proteins play a central role in the onset and progression of PMDs, and these processes are regulated by multiple factors, especially the interaction between proteins and bio-membranes. Bio-membranes induce conformational changes in amyloidogenic proteins and affect their aggregation; on the other hand, the aggregates of amyloidogenic proteins may cause membrane damage or dysfunction leading to cytotoxicity. In this review, we summarize the factors that affect the binding of amyloidogenic proteins and membranes, the effects of bio-membranes on the aggregation of amyloidogenic proteins, mechanisms of membrane disruption by amyloidogenic aggregates, technical approaches for detecting these interactions, and finally therapeutic strategies targeting membrane damage caused by amyloidogenic proteins.
Collapse
Affiliation(s)
- Liang Ma
- Department of Pharmacy, Wuhan Mental Health Center, Wuhan, China; Department of Pharmacy, Wuhan Hospital for Psychotherapy, Wuhan, China
| | - Xi Li
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Robert B Petersen
- Foundational Sciences, Central Michigan University College of Medicine, Mount Pleasant, MI, USA
| | - Anlin Peng
- Department of Pharmacy, The Third Hospital of Wuhan, Tongren Hospital of Wuhan University, Wuhan, China.
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
10
|
Zhang H, Li X, Wang X, Xu J, Elefant F, Wang J. Cellular response to β-amyloid neurotoxicity in Alzheimer's disease and implications in new therapeutics. Animal Model Exp Med 2023; 6:3-9. [PMID: 36872303 PMCID: PMC9986234 DOI: 10.1002/ame2.12313] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/07/2023] [Indexed: 03/07/2023] Open
Abstract
β-Amyloid (Aβ) is a specific pathological hallmark of Alzheimer's disease (AD). Because of its neurotoxicity, AD patients exhibit multiple brain dysfunctions. Disease-modifying therapy (DMT) is the central concept in the development of AD therapeutics today, and most DMT drugs that are currently in clinical trials are anti-Aβ drugs, such as aducanumab and lecanemab. Therefore, understanding Aβ's neurotoxic mechanism is crucial for Aβ-targeted drug development. Despite its total length of only a few dozen amino acids, Aβ is incredibly diverse. In addition to the well-known Aβ1-42 , N-terminally truncated, glutaminyl cyclase (QC) catalyzed, and pyroglutamate-modified Aβ (pEAβ) is also highly amyloidogenic and far more cytotoxic. The extracellular monomeric Aβx-42 (x = 1-11) initiates the aggregation to form fibrils and plaques and causes many abnormal cellular responses through cell membrane receptors and receptor-coupled signal pathways. These signal cascades further influence many cellular metabolism-related processes, such as gene expression, cell cycle, and cell fate, and ultimately cause severe neural cell damage. However, endogenous cellular anti-Aβ defense processes always accompany the Aβ-induced microenvironment alterations. Aβ-cleaving endopeptidases, Aβ-degrading ubiquitin-proteasome system (UPS), and Aβ-engulfing glial cell immune responses are all essential self-defense mechanisms that we can leverage to develop new drugs. This review discusses some of the most recent advances in understanding Aβ-centric AD mechanisms and suggests prospects for promising anti-Aβ strategies.
Collapse
Affiliation(s)
- Haolin Zhang
- Faculty of Environment and LifeBeijing University of TechnologyBeijingChina
| | - Xianghua Li
- Faculty of Environment and LifeBeijing University of TechnologyBeijingChina
| | - Xiaoli Wang
- Faculty of Environment and LifeBeijing University of TechnologyBeijingChina
| | - Jiayu Xu
- Faculty of Environment and LifeBeijing University of TechnologyBeijingChina
| | - Felice Elefant
- Department of BiologyDrexel UniversityPhiladelphiaPennsylvaniaUSA
| | - Juan Wang
- Faculty of Environment and LifeBeijing University of TechnologyBeijingChina
| |
Collapse
|
11
|
AmyP53 Prevents the Formation of Neurotoxic β-Amyloid Oligomers through an Unprecedent Mechanism of Interaction with Gangliosides: Insights for Alzheimer's Disease Therapy. Int J Mol Sci 2023; 24:ijms24021760. [PMID: 36675271 PMCID: PMC9864847 DOI: 10.3390/ijms24021760] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
A broad range of data identify Ca2+-permeable amyloid pores as the most neurotoxic species of Alzheimer's β-amyloid peptide (Aβ1-42). Following the failures of clinical trials targeting amyloid plaques by immunotherapy, a consensus is gradually emerging to change the paradigm, the strategy, and the target to cure Alzheimer's disease. In this context, the therapeutic peptide AmyP53 was designed to prevent amyloid pore formation driven by lipid raft microdomains of the plasma membrane. Here, we show that AmyP53 outcompetes Aβ1-42 binding to lipid rafts through a unique mode of interaction with gangliosides. Using a combination of cellular, physicochemical, and in silico approaches, we unraveled the mechanism of action of AmyP53 at the atomic, molecular, and cellular levels. Molecular dynamics simulations (MDS) indicated that AmyP53 rapidly adapts its conformation to gangliosides for an optimal interaction at the periphery of a lipid raft, where amyloid pore formation occurs. Hence, we define it as an adaptive peptide. Our results describe for the first time the kinetics of AmyP53 interaction with lipid raft gangliosides at the atomic level. Physicochemical studies and in silico simulations indicated that Aβ1-42 cannot interact with lipid rafts in presence of AmyP53. These data demonstrated that AmyP53 prevents amyloid pore formation and cellular Ca2+ entry by competitive inhibition of Aβ1-42 binding to lipid raft gangliosides. The molecular details of AmyP53 action revealed an unprecedent mechanism of interaction with lipid rafts, offering innovative therapeutic opportunities for lipid raft and ganglioside-associated diseases, including Alzheimer's, Parkinson's, and related proteinopathies.
Collapse
|
12
|
The co-effect of copper and lipid vesicles on Aβ aggregation. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184082. [PMID: 36374760 DOI: 10.1016/j.bbamem.2022.184082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 10/15/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
Both metal ions and lipid membranes have a wide distribution in amyloid plaques and play significant roles in AD pathogenesis. Although influences of different metal ions or lipid vesicles on the aggregation of Aβ peptides have been extensively studied, their combined effects are less understood. In this study, we reported a unique effect of copper ion on Aβ aggregation in the presence of lipid vesicles, different from other divalent metal ions. Cu2+ in a super stoichiometric amount leads to the rapid formation of β-sheet rich structure, containing abundant low molecular weight (LMW) oligomers. We demonstrated that oligomerization of Aβ40 induced by Cu2+ binding was an essential prerequisite for the rapid conformation transition. Overall, the finding provided a new view on the complex triple system of Aβ, copper ion and lipid vesicles, which might help understanding of Aβ pathologies.
Collapse
|
13
|
Shang Y, Sun X, Chen X, Wang Q, Wang EJ, Miller E, Xu R, Pieper AA, Qi X. A CHCHD6-APP axis connects amyloid and mitochondrial pathology in Alzheimer's disease. Acta Neuropathol 2022; 144:911-938. [PMID: 36104602 PMCID: PMC9547808 DOI: 10.1007/s00401-022-02499-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 01/26/2023]
Abstract
The mechanistic relationship between amyloid-beta precursor protein (APP) processing and mitochondrial dysfunction in Alzheimer's disease (AD) has long eluded the field. Here, we report that coiled-coil-helix-coiled-coil-helix domain containing 6 (CHCHD6), a core protein of the mammalian mitochondrial contact site and cristae organizing system, mechanistically connects these AD features through a circular feedback loop that lowers CHCHD6 and raises APP processing. In cellular and animal AD models and human AD brains, the APP intracellular domain fragment inhibits CHCHD6 transcription by binding its promoter. CHCHD6 and APP bind and stabilize one another. Reduced CHCHD6 enhances APP accumulation on mitochondria-associated ER membranes and accelerates APP processing, and induces mitochondrial dysfunction and neuronal cholesterol accumulation, promoting amyloid pathology. Compensation for CHCHD6 loss in an AD mouse model reduces AD-associated neuropathology and cognitive impairment. Thus, CHCHD6 connects APP processing and mitochondrial dysfunction in AD. This provides a potential new therapeutic target for patients.
Collapse
Affiliation(s)
- Yutong Shang
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave, E516, Cleveland, OH, 44106-4970, USA
| | - Xiaoyan Sun
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave, E516, Cleveland, OH, 44106-4970, USA
| | - Xiaoqin Chen
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave, E516, Cleveland, OH, 44106-4970, USA
| | - Quanqiu Wang
- Center for Artificial Intelligence in Drug Discovery, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Evan J Wang
- Center for Artificial Intelligence in Drug Discovery, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- Beachwood High School, Beachwood, OH, 44122, USA
| | - Emiko Miller
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
- Department of Psychiatry, Geriatric Research Education and Clinical Centers, Case Western Reserve University, Louis Stokes Cleveland VAMC, Cleveland, OH, 44106, USA
| | - Rong Xu
- Center for Artificial Intelligence in Drug Discovery, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Andrew A Pieper
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
- Department of Psychiatry, Geriatric Research Education and Clinical Centers, Case Western Reserve University, Louis Stokes Cleveland VAMC, Cleveland, OH, 44106, USA
| | - Xin Qi
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave, E516, Cleveland, OH, 44106-4970, USA.
| |
Collapse
|
14
|
Theiss EL, Griebsch LV, Lauer AA, Janitschke D, Erhardt VKJ, Haas EC, Kuppler KN, Radermacher J, Walzer O, Portius D, Grimm HS, Hartmann T, Grimm MOW. Vitamin B12 Attenuates Changes in Phospholipid Levels Related to Oxidative Stress in SH-SY5Y Cells. Cells 2022; 11:cells11162574. [PMID: 36010649 PMCID: PMC9406929 DOI: 10.3390/cells11162574] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/18/2022] [Accepted: 08/15/2022] [Indexed: 01/04/2023] Open
Abstract
Oxidative stress is closely linked to Alzheimer’s disease (AD), and is detected peripherally as well as in AD-vulnerable brain regions. Oxidative stress results from an imbalance between the generation and degradation of reactive oxidative species (ROS), leading to the oxidation of proteins, nucleic acids, and lipids. Extensive lipid changes have been found in post mortem AD brain tissue; these changes include the levels of total phospholipids, sphingomyelin, and ceramide, as well as plasmalogens, which are highly susceptible to oxidation because of their vinyl ether bond at the sn-1 position of the glycerol-backbone. Several lines of evidence indicate that a deficiency in the neurotropic vitamin B12 is linked with AD. In the present study, treatment of the neuroblastoma cell line SH-SY5Y with vitamin B12 resulted in elevated levels of phosphatidylcholine, phosphatidylethanolamine, sphingomyelin, and plasmalogens. Vitamin B12 also protected plasmalogens from hydrogen peroxide (H2O2)-induced oxidative stress due to an elevated expression of the ROS-degrading enzymes superoxide-dismutase (SOD) and catalase (CAT). Furthermore, vitamin B12 elevates plasmalogen synthesis by increasing the expression of alkylglycerone phosphate synthase (AGPS) and choline phosphotransferase 1 (CHPT1) in SH-SY5Y cells exposed to H2O2-induced oxidative stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Oliver Walzer
- Experimental Neurology, Saarland University, 66424 Homburg, Germany
| | - Dorothea Portius
- Nutrition Therapy and Counseling, Campus Gera, SRH University of Applied Health Science, 07548 Gera, Germany
| | | | - Tobias Hartmann
- Experimental Neurology, Saarland University, 66424 Homburg, Germany
- Deutsches Institut für DemenzPrävention, Saarland University, 66424 Homburg, Germany
| | - Marcus Otto Walter Grimm
- Experimental Neurology, Saarland University, 66424 Homburg, Germany
- Deutsches Institut für DemenzPrävention, Saarland University, 66424 Homburg, Germany
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany
- Correspondence: or
| |
Collapse
|
15
|
Casas-Fernández E, Peña-Bautista C, Baquero M, Cháfer-Pericás C. Lipids as Early and Minimally Invasive Biomarkers for Alzheimer's Disease. Curr Neuropharmacol 2022; 20:1613-1631. [PMID: 34727857 PMCID: PMC9881089 DOI: 10.2174/1570159x19666211102150955] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/09/2021] [Accepted: 10/19/2021] [Indexed: 11/22/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder worldwide. Specifically, typical late-onset AD is a sporadic form with a complex etiology that affects over 90% of patients. The current gold standard for AD diagnosis is based on the determination of amyloid status by analyzing cerebrospinal fluid samples or brain positron emission tomography. These procedures can be used widely as they have several disadvantages (expensive, invasive). As an alternative, blood metabolites have recently emerged as promising AD biomarkers. Small molecules that cross the compromised AD blood-brain barrier could be determined in plasma to improve clinical AD diagnosis at early stages through minimally invasive techniques. Specifically, lipids could play an important role in AD since the brain has a high lipid content, and they are present ubiquitously inside amyloid plaques. Therefore, a systematic review was performed with the aim of identifying blood lipid metabolites as potential early AD biomarkers. In conclusion, some lipid families (fatty acids, glycerolipids, glycerophospholipids, sphingolipids, lipid peroxidation compounds) have shown impaired levels at early AD stages. Ceramide levels were significantly higher in AD subjects, and polyunsaturated fatty acids levels were significantly lower in AD. Also, high arachidonic acid levels were found in AD patients in contrast to low sphingomyelin levels. Consequently, these lipid biomarkers could be used for minimally invasive and early AD clinical diagnosis.
Collapse
Affiliation(s)
| | | | - Miguel Baquero
- Division of Neurology, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Consuelo Cháfer-Pericás
- Health Research Institute La Fe, Valencia, Spain;,Address correspondence to this author at the Health Research Institute La Fe, Avenida Fernando Abril Martorell 106, Valencia E46026, Spain;, Tel: +34-96 1246721; E-mail:
| |
Collapse
|
16
|
Zhao Y, Hu D, Wang R, Sun X, Ropelewski P, Hubler Z, Lundberg K, Wang Q, Adams DJ, Xu R, Qi X. ATAD3A oligomerization promotes neuropathology and cognitive deficits in Alzheimer's disease models. Nat Commun 2022; 13:1121. [PMID: 35236834 PMCID: PMC8891325 DOI: 10.1038/s41467-022-28769-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 02/11/2022] [Indexed: 12/12/2022] Open
Abstract
Predisposition to Alzheimer's disease (AD) may arise from lipid metabolism perturbation, however, the underlying mechanism remains elusive. Here, we identify ATPase family AAA-domain containing protein 3A (ATAD3A), a mitochondrial AAA-ATPase, as a molecular switch that links cholesterol metabolism impairment to AD phenotypes. In neuronal models of AD, the 5XFAD mouse model and post-mortem AD brains, ATAD3A is oligomerized and accumulated at the mitochondria-associated ER membranes (MAMs), where it induces cholesterol accumulation by inhibiting gene expression of CYP46A1, an enzyme governing brain cholesterol clearance. ATAD3A and CYP46A1 cooperate to promote APP processing and synaptic loss. Suppressing ATAD3A oligomerization by heterozygous ATAD3A knockout or pharmacological inhibition with DA1 restores neuronal CYP46A1 levels, normalizes brain cholesterol turnover and MAM integrity, suppresses APP processing and synaptic loss, and consequently reduces AD neuropathology and cognitive deficits in AD transgenic mice. These findings reveal a role for ATAD3A oligomerization in AD pathogenesis and suggest ATAD3A as a potential therapeutic target for AD.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Di Hu
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Rihua Wang
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Xiaoyan Sun
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Philip Ropelewski
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Zita Hubler
- Department of Genetics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Kathleen Lundberg
- Proteomics Center, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Quanqiu Wang
- Center for Artificial Intelligence in Drug Discovery, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Drew J Adams
- Department of Genetics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Rong Xu
- Center for Artificial Intelligence in Drug Discovery, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Xin Qi
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
17
|
Strazdaite S, Roeters SJ, Sakalauskas A, Sneideris T, Kirschner J, Pedersen KB, Schiøtt B, Jensen F, Weidner T, Smirnovas V, Niaura G. Interaction of Amyloid-β-(1-42) Peptide and Its Aggregates with Lipid/Water Interfaces Probed by Vibrational Sum-Frequency Generation Spectroscopy. J Phys Chem B 2021; 125:11208-11218. [PMID: 34597059 DOI: 10.1021/acs.jpcb.1c04882] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, we use surface-sensitive vibrational sum-frequency generation (VSFG) spectroscopy to investigate the interaction between model lipid monolayers and Aβ(1-42) in its monomeric and aggregated states. Combining VSFG with atomic force microscopy (AFM) and thioflavin T (ThT) fluorescence measurements, we found that only small aggregates with probably a β-hairpin-like structure adsorbed to the zwitterionic lipid monolayer (DOPC). In contrast, larger aggregates with an extended β-sheet structure adsorbed to a negatively charged lipid monolayer (DOPG). The adsorption of small, initially formed aggregates strongly destabilized both monolayers, but only the DOPC monolayer was completely disrupted. We showed that the intensity of the amide-II' band in achiral (SSP) and chiral (SPP) polarization combinations increased in time when Aβ(1-42) aggregates accumulated at the DOPG monolayer. Nevertheless, almost no adsorption of preformed mature fibrils to DOPG monolayers was detected. By performing spectral VSFG calculations, we revealed a clear correlation between the amide-II' signal and the degree of amyloid aggregates (e.g., oligomers or (proto)fibrils) of various Aβ(1-42) structures. The calculations showed that only structures with a significant amyloid β-sheet content have a strong amide-II' intensity, in line with previous Raman studies. The combination of the presented results substantiates the amide-II(') band as a legitimate amyloid marker.
Collapse
Affiliation(s)
- S Strazdaite
- Department of Organic Chemistry, Center for Physical Sciences and Technology, Sauletekio Ave. 3, Vilnius LT-10257, Lithuania
| | - S J Roeters
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - A Sakalauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio 7, LT-10257 Vilnius, Lithuania
| | - T Sneideris
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio 7, LT-10257 Vilnius, Lithuania
| | - J Kirschner
- Institute of Solid State Physics, TU Wien, Wiedner Hauptstrasse 8-10, 1040 Vienna, Austria
| | - K B Pedersen
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - B Schiøtt
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - F Jensen
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - T Weidner
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - V Smirnovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio 7, LT-10257 Vilnius, Lithuania
| | - G Niaura
- Department of Organic Chemistry, Center for Physical Sciences and Technology, Sauletekio Ave. 3, Vilnius LT-10257, Lithuania
| |
Collapse
|
18
|
Chai AB, Lam HHJ, Kockx M, Gelissen IC. Apolipoprotein E isoform-dependent effects on the processing of Alzheimer's amyloid-β. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158980. [PMID: 34044125 DOI: 10.1016/j.bbalip.2021.158980] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/16/2021] [Accepted: 05/20/2021] [Indexed: 12/28/2022]
Abstract
Since the identification of the apolipoprotein E (apoE) *ε4 allele as a major genetic risk factor for late-onset Alzheimer's disease, significant efforts have been aimed at elucidating how apoE4 expression confers greater brain amyloid-β (Aβ) burden, earlier disease onset and worse clinical outcomes compared to apoE2 and apoE3. ApoE primarily functions as a lipid carrier to regulate cholesterol metabolism in circulation as well as in the brain. However, it has also been suggested to interact with hydrophobic Aβ peptides to influence their processing in an isoform-dependent manner. Here, we review evidence from in vitro and in vivo studies extricating the effects of the three apoE isoforms, on different stages of the Aβ processing pathway including synthesis, aggregation, deposition, clearance and degradation. ApoE4 consistently correlates with impaired Aβ clearance, however data regarding Aβ synthesis and aggregation are conflicting and likely reflect inconsistencies in experimental approaches across studies. We further discuss the physical and chemical properties of apoE that may explain the inherent differences in activity between the isoforms. The lipidation status and lipid transport function of apoE are intrinsically linked with its ability to interact with Aβ. Traditionally, apoE-oriented therapeutic strategies for Alzheimer's disease have been proposed to non-specifically enhance or inhibit apoE activity. However, given the wide-ranging physiological functions of apoE in the brain and periphery, a more viable approach may be to specifically target and neutralise the pathological apoE4 isoform.
Collapse
Affiliation(s)
- Amanda B Chai
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Hin Hei Julian Lam
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Maaike Kockx
- ANZAC Research Institute, Concord Repatriation General Hospital, University of Sydney, Concord, NSW 2139, Australia
| | - Ingrid C Gelissen
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
19
|
Saha J, Dean DN, Dhakal S, Stockmal KA, Morgan SE, Dillon KD, Adamo MF, Levites Y, Rangachari V. Biophysical characteristics of lipid-induced Aβ oligomers correlate to distinctive phenotypes in transgenic mice. FASEB J 2021; 35:e21318. [PMID: 33508158 PMCID: PMC7883479 DOI: 10.1096/fj.202002025rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/03/2020] [Accepted: 12/14/2020] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that affects cognition and memory. Recent advances have helped identify many clinical sub‐types in AD. Mounting evidence point toward structural polymorphism among fibrillar aggregates of amyloid‐β (Aβ) to being responsible for the phenotypes and clinical manifestations. In the emerging paradigm of polymorphism and prion‐like propagation of aggregates in AD, the role of low molecular weight soluble oligomers, which are long known to be the primary toxic agents, in effecting phenotypes remains inconspicuous. In this study, we present the characterization of three soluble oligomers of Aβ42, namely 14LPOs, 16LPOs, and GM1Os with discreet biophysical and biochemical properties generated using lysophosphatidyl glycerols and GM1 gangliosides. The results indicate that the oligomers share some biophysical similarities but display distinctive differences with GM1Os. Unlike the other two, GM1Os were observed to be complexed with the lipid upon isolation. It also differs mainly in detection by conformation‐sensitive dyes and conformation‐specific antibodies, temperature and enzymatic stability, and in the ability to propagate morphologically‐distinct fibrils. GM1Os also show distinguishable biochemical behavior with pronounced neuronal toxicity. Furthermore, all the oligomers induce cerebral amyloid angiopathy (CAA) and plaque burden in transgenic AD mice, which seems to be a consistent feature among all lipid‐derived oligomers, but 16LPOs and GM1Os displayed significantly higher effect than the others. These results establish a correlation between molecular features of Aβ42 oligomers and their distinguishable effects in transgenic AD mice attuned by lipid characteristics, and therefore help bridge the knowledge gap in understanding how oligomer conformers could elicit AD phenotypes.
Collapse
Affiliation(s)
- Jhinuk Saha
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, MS, USA
| | - Dexter N Dean
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, MS, USA
| | - Shailendra Dhakal
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, MS, USA
| | - Kelli A Stockmal
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS, USA
| | - Sarah E Morgan
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS, USA
| | - Kristy D Dillon
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Munir F Adamo
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Yona Levites
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Vijayaraghavan Rangachari
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, MS, USA.,Center for Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg, MS, USA
| |
Collapse
|
20
|
Sahoo BR, Panda PK, Liang W, Tang WJ, Ahuja R, Ramamoorthy A. Degradation of Alzheimer's Amyloid-β by a Catalytically Inactive Insulin-Degrading Enzyme. J Mol Biol 2021; 433:166993. [PMID: 33865867 PMCID: PMC8169600 DOI: 10.1016/j.jmb.2021.166993] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/24/2021] [Accepted: 04/06/2021] [Indexed: 02/06/2023]
Abstract
It is known that insulin-degrading-enzyme (IDE) plays a crucial role in the clearance of Alzheimer's amyloid-β (Aβ). The cysteine-free IDE mutant (cf-E111Q-IDE) is catalytically inactive against insulin, but its effect on Aβ degradation is unknown that would help in the allosteric modulation of the enzyme activity. Herein, the degradation of Aβ(1-40) by cf-E111Q-IDE via a non-chaperone mechanism is demonstrated by NMR and LC-MS, and the aggregation of fragmented peptides is characterized using fluorescence and electron microscopy. cf-E111Q-IDE presented a reduced effect on the aggregation kinetics of Aβ(1-40) when compared with the wild-type IDE. Whereas LC-MS and diffusion ordered NMR spectroscopy revealed the generation of Aβ fragments by both wild-type and cf-E111Q-IDE. The aggregation propensities and the difference in the morphological phenotype of the full-length Aβ(1-40) and its fragments are explained using multi-microseconds molecular dynamics simulations. Notably, our results reveal that zinc binding to Aβ(1-40) inactivates cf-E111Q-IDE's catalytic function, whereas zinc removal restores its function as evidenced from high-speed AFM, electron microscopy, chromatography, and NMR results. These findings emphasize the catalytic role of cf-E111Q-IDE on Aβ degradation and urge the development of zinc chelators as an alternative therapeutic strategy that switches on/off IDE's function.
Collapse
Affiliation(s)
- Bikash R Sahoo
- Biophysics, Department of Chemistry, Macromolecular Engineering and Science, and Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden
| | - Wenguang Liang
- Ben-May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Wei-Jen Tang
- Ben-May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Rajeev Ahuja
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden; Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology (KTH) SE-10044 Stockholm, Sweden
| | - Ayyalusamy Ramamoorthy
- Biophysics, Department of Chemistry, Macromolecular Engineering and Science, and Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
21
|
Wang S, Leem JS, Podvin S, Hook V, Kleschevnikov N, Savchenko P, Dhanani M, Zhou K, Kelly IC, Zhang T, Miyanohara A, Nguyen P, Kleschevnikov A, Wagner SL, Trojanowski JQ, Roth DM, Patel HH, Patel PM, Head BP. Synapsin-caveolin-1 gene therapy preserves neuronal and synaptic morphology and prevents neurodegeneration in a mouse model of AD. Mol Ther Methods Clin Dev 2021; 21:434-450. [PMID: 33981778 PMCID: PMC8065227 DOI: 10.1016/j.omtm.2021.03.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/24/2021] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is the most common form of neurodegeneration and cognitive dysfunction in the elderly. Identifying molecular signals that mitigate and reverse neurodegeneration in AD may be exploited therapeutically. Transgenic AD mice (PSAPP) exhibit learning and memory deficits at 9 and 11 months, respectively, with associated decreased expression of caveolin-1 (Cav-1), a membrane/lipid raft (MLR) scaffolding protein necessary for synaptic and neuroplasticity. Neuronal-targeted gene therapy using synapsin-Cav-1 cDNA (SynCav1) was delivered to the hippocampus of PSAPP mice at 3 months using adeno-associated virus serotype 9 (AAV9). Bilateral SynCav1 gene therapy was able to preserve MLRs profile, learning and memory, hippocampal dendritic arbor, synaptic ultrastructure, and axonal myelin content in 9- and 11-month PSAPP mice, independent of reducing toxic amyloid deposits and astrogliosis. Our data indicate that SynCav1 gene therapy may be an option for AD and potentially in other forms of neurodegeneration of unknown etiology.
Collapse
Affiliation(s)
- Shanshan Wang
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA
| | - Joseph S. Leem
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA
| | - Sonia Podvin
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Natalia Kleschevnikov
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA
| | - Paul Savchenko
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA
| | - Mehul Dhanani
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA
| | - Kimberly Zhou
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA
| | - Isabella C. Kelly
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA
| | - Tong Zhang
- Campus Microscopy & Imaging Facility (CMIF)/Microscopy Shared Resource (MSR), The Ohio State University, OH, USA
| | - Atsushi Miyanohara
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA
| | - Phuong Nguyen
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | | | - Steve L. Wagner
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - John Q. Trojanowski
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104-4283, USA
| | - David M. Roth
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA
| | - Hemal H. Patel
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA
| | - Piyush M. Patel
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA
| | - Brian P. Head
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA
| |
Collapse
|
22
|
Pei YA, Davies J, Zhang M, Zhang HT. The Role of Synaptic Dysfunction in Alzheimer's Disease. J Alzheimers Dis 2021; 76:49-62. [PMID: 32417776 DOI: 10.3233/jad-191334] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Deemed as incurable, Alzheimer's disease (AD) research is becoming less convoluted as our understanding of its pathology increases. With current treatments focusing on merely mitigating the symptoms of AD, there have been many attempts to find a molecular culprit to serve as the single underlying cause and therapeutic target for clinical applications to approach the disease from its roots. Indeed, over the course of decades, the endless search for a singular target culprit in AD has uncovered a cascade of pathological defects, adding on to each other throughout the progression of the disease. The developmental patterns of amyloid-β (Aβ) oligomers have been studied as a means to discover the complex molecular interplay between various immune responses, genetic mutations, pathway disturbances, and regulating factors that disturb synapse homeostasis before disease manifestation. This new understanding has shifted the underlying goal of the research community from merely removing Aβ oligomers to finding methods that can predict high risk individuals and resorting to cocktail-drug treatments in an attempt to regulate multiple pathways that cumulatively result in the debilitating symptoms of the disease. By utilizing various assays from immuno-targeting to molecular biomarkers, we then interfere in the molecular cascades in an endeavor to avoid synapse dysfunction before disease maturity. Here, we review the current literature supporting the importance of synapses in AD, our current understanding of the molecular interactions leading up to clinical diagnoses, and the techniques used in targeted therapies.
Collapse
Affiliation(s)
- Yixuan Amy Pei
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Julie Davies
- Department of Physiology, Anatomy & Genetics, Oxford University, Oxford, UK
| | - Melanie Zhang
- Department of Neurobiology, Northwestern University Feinberg School of Medicine, Evanston, IL, USA
| | - Han-Ting Zhang
- Departments of Neuroscience and Behavioral Medicine & Psychiatry, Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, USA
| |
Collapse
|
23
|
Errasti-Murugarren E, Bartoccioni P, Palacín M. Membrane Protein Stabilization Strategies for Structural and Functional Studies. MEMBRANES 2021; 11:membranes11020155. [PMID: 33671740 PMCID: PMC7926488 DOI: 10.3390/membranes11020155] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 02/07/2023]
Abstract
Accounting for nearly two-thirds of known druggable targets, membrane proteins are highly relevant for cell physiology and pharmacology. In this regard, the structural determination of pharmacologically relevant targets would facilitate the intelligent design of new drugs. The structural biology of membrane proteins is a field experiencing significant growth as a result of the development of new strategies for structure determination. However, membrane protein preparation for structural studies continues to be a limiting step in many cases due to the inherent instability of these molecules in non-native membrane environments. This review describes the approaches that have been developed to improve membrane protein stability. Membrane protein mutagenesis, detergent selection, lipid membrane mimics, antibodies, and ligands are described in this review as approaches to facilitate the production of purified and stable membrane proteins of interest for structural and functional studies.
Collapse
Affiliation(s)
- Ekaitz Errasti-Murugarren
- Laboratory of Amino acid Transporters and Disease, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain;
- CIBERER (Centro Español en Red de Biomedicina de Enfermedades Raras), 28029 Barcelona, Spain
- Correspondence: (E.E.-M.); (M.P.)
| | - Paola Bartoccioni
- Laboratory of Amino acid Transporters and Disease, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain;
- CIBERER (Centro Español en Red de Biomedicina de Enfermedades Raras), 28029 Barcelona, Spain
| | - Manuel Palacín
- Laboratory of Amino acid Transporters and Disease, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain;
- CIBERER (Centro Español en Red de Biomedicina de Enfermedades Raras), 28029 Barcelona, Spain
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, 08028 Barcelona, Spain
- Correspondence: (E.E.-M.); (M.P.)
| |
Collapse
|
24
|
The interaction of Aβ42 peptide in monomer, oligomer or fibril forms with sphingomyelin/cholesterol/ganglioside bilayers. Int J Biol Macromol 2020; 168:611-619. [PMID: 33217464 DOI: 10.1016/j.ijbiomac.2020.11.112] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022]
Abstract
Aβ42 peptide binds neuronal membranes and aggregates into plaques that are characteristic of Alzheimer's disease. Aβ42 peptide has been proposed to be generated in membrane (nano) domains in the liquid-ordered phase, ganglioside GM1 being a major facilitator of peptide binding to the membrane. The peptide exists in solution in various degrees of aggregation, either monomers, oligomers or fibrils, of which oligomers appear to be particularly toxic. The present study reports on the binding of Aβ42 peptide, in monomer, oligomer or fibril form, to model membranes (lipid vesicles or monolayers), composed of sphingomyelin and cholesterol in equimolar ratios, to which 1-5 mol% of different gangliosides were incorporated. Thermodynamic binding parameters obtained from calorimetric data indicate a strong tendency to bind the membrane (ΔG ≈ 7 kcal/mol peptide), in a process dominated in most cases by the increase in entropy. ΔG was virtually invariant with the ganglioside species and the aggregation state of the peptide. The Langmuir balance demonstrated the capacity of all peptide preparations to become inserted in lipid monolayers of any composition and initial π in the range 10-30 mN/m, although fibrils were less capable to do so than oligomers or monomers, their maximum initial π being ≈25 mN/m.
Collapse
|
25
|
Asiri MMH, Engelsman S, Eijkelkamp N, Höppener JWM. Amyloid Proteins and Peripheral Neuropathy. Cells 2020; 9:E1553. [PMID: 32604774 PMCID: PMC7349787 DOI: 10.3390/cells9061553] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022] Open
Abstract
Painful peripheral neuropathy affects millions of people worldwide. Peripheral neuropathy develops in patients with various diseases, including rare familial or acquired amyloid polyneuropathies, as well as some common diseases, including type 2 diabetes mellitus and several chronic inflammatory diseases. Intriguingly, these diseases share a histopathological feature-deposits of amyloid-forming proteins in tissues. Amyloid-forming proteins may cause tissue dysregulation and damage, including damage to nerves, and may be a common cause of neuropathy in these, and potentially other, diseases. Here, we will discuss how amyloid proteins contribute to peripheral neuropathy by reviewing the current understanding of pathogenic mechanisms in known inherited and acquired (usually rare) amyloid neuropathies. In addition, we will discuss the potential role of amyloid proteins in peripheral neuropathy in some common diseases, which are not (yet) considered as amyloid neuropathies. We conclude that there are many similarities in the molecular and cell biological defects caused by aggregation of the various amyloid proteins in these different diseases and propose a common pathogenic pathway for "peripheral amyloid neuropathies".
Collapse
Affiliation(s)
- Mohammed M. H. Asiri
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands; (M.M.H.A.); (S.E.); (J.W.M.H.)
- The National Centre for Genomic Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology, P.O. Box 6086, 11461 Riyadh, Saudi Arabia
| | - Sjoukje Engelsman
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands; (M.M.H.A.); (S.E.); (J.W.M.H.)
| | - Niels Eijkelkamp
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands; (M.M.H.A.); (S.E.); (J.W.M.H.)
| | - Jo W. M. Höppener
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands; (M.M.H.A.); (S.E.); (J.W.M.H.)
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands
| |
Collapse
|
26
|
Yan G, Sun J, Wang Z, Qian PY, He L. Insights into the Synthesis, Secretion and Curing of Barnacle Cyprid Adhesive via Transcriptomic and Proteomic Analyses of the Cement Gland. Mar Drugs 2020; 18:E186. [PMID: 32244485 PMCID: PMC7230167 DOI: 10.3390/md18040186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/27/2020] [Accepted: 03/29/2020] [Indexed: 02/06/2023] Open
Abstract
Barnacles represent one of the model organisms used for antifouling research, however, knowledge regarding the molecular mechanisms underlying barnacle cyprid cementation is relatively scarce. Here, RNA-seq was used to obtain the transcriptomes of the cement glands where adhesive is generated and the remaining carcasses of Megabalanus volcano cyprids. Comparative transcriptomic analysis identified 9060 differentially expressed genes, with 4383 upregulated in the cement glands. Four cement proteins, named Mvcp113k, Mvcp130k, Mvcp52k and Mvlcp1-122k, were detected in the cement glands. The salivary secretion pathway was significantly enriched in the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the differentially expressed genes, implying that the secretion of cyprid adhesive might be analogous to that of saliva. Lysyl oxidase had a higher expression level in the cement glands and was speculated to function in the curing of cyprid adhesive. Furthermore, the KEGG enrichment analysis of the 352 proteins identified in the cement gland proteome partially confirmed the comparative transcriptomic results. These results present insights into the molecular mechanisms underlying the synthesis, secretion and curing of barnacle cyprid adhesive and provide potential molecular targets for the development of environmentally friendly antifouling compounds.
Collapse
Affiliation(s)
- Guoyong Yan
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China;
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jin Sun
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of The Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong 999077, China; (J.S.); (P.-Y.Q.)
| | - Zishuai Wang
- Department of Computer Science, City University of Hong Kong, Hong Kong 999077, China;
| | - Pei-Yuan Qian
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of The Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong 999077, China; (J.S.); (P.-Y.Q.)
| | - Lisheng He
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China;
| |
Collapse
|
27
|
Pastore A, Raimondi F, Rajendran L, Temussi PA. Why does the Aβ peptide of Alzheimer share structural similarity with antimicrobial peptides? Commun Biol 2020; 3:135. [PMID: 32193491 PMCID: PMC7081199 DOI: 10.1038/s42003-020-0865-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/02/2020] [Indexed: 12/11/2022] Open
Abstract
The Aβ peptides causally associated with Alzheimer disease have been seen as seemingly purposeless species produced by intramembrane cleavage under both physiological and pathological conditions. However, it has been increasingly suggested that they could instead constitute an ancient, highly conserved effector component of our innate immune system, dedicated to protecting the brain against microbial attacks. In this antimicrobial protection hypothesis, Aβ aggregation would switch from an abnormal stochastic event to a dysregulated innate immune response. In this perspective, we approach the problem from a different and complementary perspective by comparing the structure and sequence of Aβ(1-42) with those of bona fide antimicrobial peptides. We demonstrate that Aβ(1-42) bears convincing structural similarities with both viral fusion domains and antimicrobial peptides, as well as sequence similarities with a specific family of bacterial bacteriocins. We suggest a model of the mechanism by which Aβ peptides could elicit the immune response against microbes. Pastore et al. provide independent evidence that the Alzheimer Aβ peptides could function as antimicrobial peptides based on convincing structural and sequence similarities with viral fusion domains and established antimicrobial peptides. Aβ could dispatch an antimicrobial function through a mechanism that involves membrane pore formation.
Collapse
Affiliation(s)
- Annalisa Pastore
- UK-Dementia Research Institute (UK-DRI) at King's College London, London, UK. .,The Maurice Wohl Institute of King's College London, 5 Cutcombe Road, SE5 9RT, London, UK.
| | | | - Lawrence Rajendran
- UK-Dementia Research Institute (UK-DRI) at King's College London, London, UK.,The Maurice Wohl Institute of King's College London, 5 Cutcombe Road, SE5 9RT, London, UK
| | - Piero Andrea Temussi
- UK-Dementia Research Institute (UK-DRI) at King's College London, London, UK. .,The Maurice Wohl Institute of King's College London, 5 Cutcombe Road, SE5 9RT, London, UK. .,Dipartimento di Scienze Chimiche, Universita' di Napoli Federico II, Napoli, Italy.
| |
Collapse
|
28
|
Ahyayauch H, de la Arada I, Masserini ME, Arrondo JLR, Goñi FM, Alonso A. The Binding of Aβ42 Peptide Monomers to Sphingomyelin/Cholesterol/Ganglioside Bilayers Assayed by Density Gradient Ultracentrifugation. Int J Mol Sci 2020; 21:ijms21051674. [PMID: 32121399 PMCID: PMC7084322 DOI: 10.3390/ijms21051674] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/26/2022] Open
Abstract
The binding of Aβ42 peptide monomers to sphingomyelin/cholesterol (1:1 mol ratio) bilayers containing 5 mol% gangliosides (either GM1, or GT1b, or a mixture of brain gangliosides) has been assayed by density gradient ultracentrifugation. This procedure provides a direct method for measuring vesicle-bound peptides after non-bound fraction separation. This centrifugation technique has rarely been used in this context previously. The results show that gangliosides increase by about two-fold the amount of Aβ42 bound to sphingomyelin/cholesterol vesicles. Complementary studies of the same systems using thioflavin T fluorescence, Langmuir monolayers or infrared spectroscopy confirm the ganglioside-dependent increased binding. Furthermore these studies reveal that gangliosides facilitate the aggregation of Aβ42 giving rise to more extended β-sheets. Thus, gangliosides have both a quantitative and a qualitative effect on the binding of Aβ42 to sphingomyelin/cholesterol bilayers.
Collapse
Affiliation(s)
- Hasna Ahyayauch
- Instituto Biofisika (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, 48080 Bilbao, Spain; (H.A.); (I.d.l.A.); (J.L.R.A.); (F.M.G.)
- Institut Supérieur des Professions Infirmières et Techniques de Santé, Oujda 60000, Morocco
- Neuroendocrinology Unit, Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Sciences, Ibn Tofail University, 14000 Kénitra, Morocco
| | - Igor de la Arada
- Instituto Biofisika (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, 48080 Bilbao, Spain; (H.A.); (I.d.l.A.); (J.L.R.A.); (F.M.G.)
| | - Massimo E. Masserini
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
| | - José L. R. Arrondo
- Instituto Biofisika (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, 48080 Bilbao, Spain; (H.A.); (I.d.l.A.); (J.L.R.A.); (F.M.G.)
| | - Félix M. Goñi
- Instituto Biofisika (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, 48080 Bilbao, Spain; (H.A.); (I.d.l.A.); (J.L.R.A.); (F.M.G.)
| | - Alicia Alonso
- Instituto Biofisika (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, 48080 Bilbao, Spain; (H.A.); (I.d.l.A.); (J.L.R.A.); (F.M.G.)
- Correspondence:
| |
Collapse
|
29
|
Perissinotto F, Stani C, De Cecco E, Vaccari L, Rondelli V, Posocco P, Parisse P, Scaini D, Legname G, Casalis L. Iron-mediated interaction of alpha synuclein with lipid raft model membranes. NANOSCALE 2020; 12:7631-7640. [PMID: 32104855 DOI: 10.1039/d0nr00287a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The aberrant misfolding and aggregation of alpha synuclein (αS) into toxic oligomeric species is one of the key features associated with the pathogenesis of Parkinson's disease (PD). It involves different biochemical and biophysical factors as plasma membrane binding and interaction with heavy metal ions. In the present work, atomic force microscopy (AFM) is combined with Fourier Transform Infrared Spectroscopy (FTIR) measurements to investigate the interaction of wild-type (WT) and A53T mutated alpha synuclein with artificial lipid bilayers mimicking lipid raft (LR) domains, before and after ferrous cations (Fe2+) treatment. In the absence of iron, protein monomers produce a thinning of the membrane, targeting the non-raft phase of the bilayer preferentially. On the contrary, iron actively promotes the formation of globular protein aggregates, resembling oligomers, targeted to LR domains. In both aggregation states, monomer and oligomer, the mutated A53T protein exhibits a greater and faster membrane-interaction. These results underlie a new mechanism of membrane-protein interaction in PD. The targeting of Fe2+-promoted αS oligomers to LRs might be functional for the disease and be helpful for the development of new therapeutic strategies.
Collapse
|
30
|
Lipid class composition of membrane and raft fractions from brains of individuals with Alzheimer's disease. Biochem Biophys Rep 2019; 20:100704. [PMID: 31867447 PMCID: PMC6895748 DOI: 10.1016/j.bbrep.2019.100704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/18/2019] [Accepted: 10/29/2019] [Indexed: 11/25/2022] Open
Abstract
Perturbation of the homeostasis of brain membrane lipids has been implicated in the pathomechanism of Alzheimer's disease (AD). The ε4 allele of the apolipoprotein E gene (APOE) confers an increased risk, in a dosage-dependent manner, for brain amyloid-β accumulation and the development of sporadic AD. An effect of the APOE genotype on brain lipid homeostasis may underlie the AD risk associated with the ε4 allele. In this research, we examined an effect of APOE ε4 on the lipid class composition of crude membranes and raft-enriched fractions of brains. We applied enzymatic reaction-based methods for the quantification of phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidic acid, and sphingomyelin. Our results indicate that brain lipid class composition was neither significantly altered in AD subjects nor affected by the presence of the APOE ε4 allele. No change was found in the composition of lipid classes of brains with Alzheimer's disease. The APOE ε4 allele did not affect lipid class composition of the brain membrane or rafts. The enzymatic measurement of phospholipids is applicable to brain tissues.
Collapse
|
31
|
Sarrafpour S, Ormseth C, Chiang A, Arakaki X, Harrington M, Fonteh A. Lipid Metabolism in Late-Onset Alzheimer's Disease Differs from Patients Presenting with Other Dementia Phenotypes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16111995. [PMID: 31195602 PMCID: PMC6603882 DOI: 10.3390/ijerph16111995] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 02/07/2023]
Abstract
Abnormal cerebrospinal fluid (CSF) levels of β-amyloid peptides (Aβ42) and Tau and cognitive decline are typical characteristics of Alzheimer’s disease (AD). Since dysregulation in lipid metabolism accompanies abnormal amyloid formation, we quantified glycerophospholipids (GP) and sphingolipids (SP) in CSF fractions from participants with late-onset AD (LOAD, n = 29) or with Other Dementia (OD, n = 10) to determine if alterations in lipid metabolism account for pathological differences. Aβ42 and total Tau levels were determined using a sandwich ELISA. Liposomal-based fluorescent assays were used to measure phospholipase A2 (PLA2) and acid or neutral sphingomyelinase (aSMase, nSMase) activities. Supernatant fluid (SF) and nanoparticle (NP) lipids were quantified using LC-MS/MS. Although CSF Aβ42 and Tau levels are similar, phosphatidylserine (PS) in SF and ceramide (CM) levels in NP are significantly higher in OD compared with LOAD. The aSMase but not the nSMase activity is higher in OD. PLA2 activity in CSF from OD subjects positively correlates with several GP classes in SF and NP fractions but not in LOAD fractions. Our data indicate differences in CSF lipid metabolism between dementia variants. Higher levels of inflammatory and apoptotic lipids may induce faster neuronal death, resulting in the earlier cognitive decline in patients with OD phenotypes.
Collapse
Affiliation(s)
- Syena Sarrafpour
- Huntington Medical Research Institutes, Pasadena, CA 91105, USA.
- School of Medicine, Tufts University, Medford, MA 02155, USA.
| | - Cora Ormseth
- Huntington Medical Research Institutes, Pasadena, CA 91105, USA.
- Department of Neurology, Yale University, New Haven, CT 06520, USA.
| | - Abby Chiang
- Huntington Medical Research Institutes, Pasadena, CA 91105, USA.
- Beckman Research Institute, City of Hope, Duarte, CA 91010, USA.
| | | | | | - Alfred Fonteh
- Huntington Medical Research Institutes, Pasadena, CA 91105, USA.
| |
Collapse
|
32
|
Wang C, Zhao F, Shen K, Wang W, Siedlak SL, Lee HG, Phelix CF, Perry G, Shen L, Tang B, Yan R, Zhu X. The sterol regulatory element-binding protein 2 is dysregulated by tau alterations in Alzheimer disease. Brain Pathol 2019; 29:530-543. [PMID: 30515907 DOI: 10.1111/bpa.12691] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 11/28/2018] [Indexed: 01/12/2023] Open
Abstract
Disturbed neuronal cholesterol homeostasis has been observed in Alzheimer disease (AD) and contributes to the pathogenesis of AD. As the master switch of cholesterol biosynthesis, the sterol regulatory element-binding protein 2 (SREBP-2) translocates to the nucleus after cleavage/activation, but its expression and activation have not been studied in AD which is the focus of the current study. We found both a significant decrease in the nuclear translocation of N-terminal SREBP-2 accompanied by a significant accumulation of C-terminal SREBP-2 in NFT-containing pyramidal neurons in AD. N-terminal- SREBP-2 is also found in dystrophic neurites around plaques in AD brain. Western blot confirmed a significantly reduced nuclear translocation of mature SREBP-2 (mSREBP-2) in AD brain. Interestingly, reduced nuclear mSREBP-2 was only found in animal models of tauopathies such as 3XTg AD mice and P301L Tau Tg mice but not in CRND8 APP transgenic mice, suggesting that tau alterations likely are involved in the changes of mSREBP-2 distribution and activation in AD. Altogether, our study demonstrated disturbed SREBP-2 signaling in AD and related models, and proved for the first time that tau alterations contribute to disturbed cholesterol homeostasis in AD likely through modulation of nuclear mSREBP-2 translocation.
Collapse
Affiliation(s)
- Chunyu Wang
- Department of Neurology, The second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - Fanpeng Zhao
- Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - Katie Shen
- Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - Wenzhang Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - Sandra L Siedlak
- Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - Hyoung-Gon Lee
- Department of Biology, College of Science, University of Texas at San Antonio, San Antonio, TX
| | - Clyde F Phelix
- Department of Biology, College of Science, University of Texas at San Antonio, San Antonio, TX
| | - George Perry
- Department of Biology, College of Science, University of Texas at San Antonio, San Antonio, TX
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Riqiang Yan
- Department of Neurosciences, University of Connecticut, Farmington, CT
| | - Xiongwei Zhu
- Department of Pathology, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
33
|
Mohamed A, Robinson H, Erramouspe PJ, Hill MM. Advances and challenges in understanding the role of the lipid raft proteome in human health. Expert Rev Proteomics 2018; 15:1053-1063. [PMID: 30403891 DOI: 10.1080/14789450.2018.1544895] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Phase separation as a biophysical principle drives the formation of liquid-ordered 'lipid raft' membrane microdomains in cellular membranes, including organelles. Given the critical role of cellular membranes in both compartmentalization and signaling, clarifying the roles of membrane microdomains and their mutual regulation of/by membrane proteins is important in understanding the fundamentals of biology, and has implications for health. Areas covered: This article will consider the evidence for lateral membrane phase separation in model membranes and organellar membranes, critically evaluate the current methods for lipid raft proteomics and discuss the biomedical implications of lipid rafts. Expert commentary: Lipid raft homeostasis is perturbed in numerous chronic conditions; hence, understanding the precise roles and regulation of the lipid raft proteome is important for health and medicine. The current technical challenges in performing lipid raft proteomics can be overcome through well-controlled experimental design and careful interpretation. Together with technical developments in mass spectrometry and microscopy, our understanding of lipid raft biology and function will improve through recognition of the similarity between organelle and plasma membrane lipid rafts and considered integration of published lipid raft proteomics data.
Collapse
Affiliation(s)
- Ahmed Mohamed
- a Precision & Systems Biomedicine Laboratory , QIMR Berghofer Medical Research Institute , Brisbane , Australia
| | - Harley Robinson
- a Precision & Systems Biomedicine Laboratory , QIMR Berghofer Medical Research Institute , Brisbane , Australia.,b Faculty of Medicine , The University of Queensland , Brisbane , Australia
| | - Pablo Joaquin Erramouspe
- c Department of Emergency Medicine , University of California, Davis Medical Center , Sacramento , CA , USA
| | - Michelle M Hill
- a Precision & Systems Biomedicine Laboratory , QIMR Berghofer Medical Research Institute , Brisbane , Australia.,d The University of Queensland Diamantina Institute, Faculty of Medicine , Translational Research Institute, The University of Queensland , Brisbane , Australia
| |
Collapse
|
34
|
Elhaik Goldman S, Goez D, Last D, Naor S, Liraz Zaltsman S, Sharvit-Ginon I, Atrakchi-Baranes D, Shemesh C, Twitto-Greenberg R, Tsach S, Lotan R, Leikin-Frenkel A, Shish A, Mardor Y, Schnaider Beeri M, Cooper I. High-fat diet protects the blood-brain barrier in an Alzheimer's disease mouse model. Aging Cell 2018; 17:e12818. [PMID: 30079520 PMCID: PMC6156545 DOI: 10.1111/acel.12818] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 06/12/2018] [Accepted: 06/24/2018] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes (T2D) is associated with increased risk of Alzheimer's disease (AD). There is evidence for impaired blood-brain barrier (BBB) in both diseases, but its role in the interplay between them is not clear. Here, we investigated the effects of high-fat diet (HFD), a model for T2D, on the Tg2576 mouse model of AD, in regard to BBB function. We showed that HFD mice had higher weight, more insulin resistance, and higher serum HDL cholesterol levels, primarily in Tg2576 mice, which also had higher brain lipids content. In terms of behavior, Tg2576 HFD mice were less active and more anxious, but had better learning in the Morris Water Maze compared to Tg2576 on regular diet. HFD had no effect on the level of amyloid beta 1-42 in the cortex of Tg2576 mice, but increased the transcription level of insulin receptor in the hippocampus. Tg2576 mice on regular diet demonstrated more BBB disruption at 8 and 12 months accompanied by larger lateral ventricles volume in contrast to Tg2576 HFD mice, whose BBB leakage and ventricular volume were similar to wild-type (WT) mice. Our results suggest that in AD, HFD may promote better cognitive function through improvements of BBB function and of brain atrophy but not of amyloid beta levels. Lipid metabolism in the CNS and peripheral tissues and brain insulin signaling may underlie this protection.
Collapse
Affiliation(s)
- Shirin Elhaik Goldman
- The Joseph Sagol Neuroscience Center, Sheba Medical Center; Tel Hashomer; Ramat Gan Israel
- Gonda Brain Research Center; Bar Ilan University; Ramat-Gan Israel
| | - David Goez
- The Advanced Technology Center, Sheba Medical Center; Tel-Hashomer; Ramat-Gan Israel
| | - David Last
- The Advanced Technology Center, Sheba Medical Center; Tel-Hashomer; Ramat-Gan Israel
| | - Sharone Naor
- The Joseph Sagol Neuroscience Center, Sheba Medical Center; Tel Hashomer; Ramat Gan Israel
| | - Sigal Liraz Zaltsman
- The Joseph Sagol Neuroscience Center, Sheba Medical Center; Tel Hashomer; Ramat Gan Israel
- Pharmacology Division, Faculty of Medicine, The Institute for Drug Research, School of Pharmacy; Hebrew University of Jerusalem; Jerusalem Israel
| | - Inbal Sharvit-Ginon
- The Joseph Sagol Neuroscience Center, Sheba Medical Center; Tel Hashomer; Ramat Gan Israel
- Department of Psychology; Bar Ilan University; Ramat-Gan Israel
| | - Dana Atrakchi-Baranes
- The Joseph Sagol Neuroscience Center, Sheba Medical Center; Tel Hashomer; Ramat Gan Israel
| | - Chen Shemesh
- The Joseph Sagol Neuroscience Center, Sheba Medical Center; Tel Hashomer; Ramat Gan Israel
| | - Rachel Twitto-Greenberg
- The Joseph Sagol Neuroscience Center, Sheba Medical Center; Tel Hashomer; Ramat Gan Israel
- The Bert W. Strassburger Lipid Center, Sheba Medical Center; Tel-Hashomer; Ramat-Gan Israel
| | - Shoval Tsach
- The Joseph Sagol Neuroscience Center, Sheba Medical Center; Tel Hashomer; Ramat Gan Israel
| | - Roni Lotan
- The Joseph Sagol Neuroscience Center, Sheba Medical Center; Tel Hashomer; Ramat Gan Israel
| | - Alicia Leikin-Frenkel
- The Bert W. Strassburger Lipid Center, Sheba Medical Center; Tel-Hashomer; Ramat-Gan Israel
- Sackler Faculty of Medicine; Tel-Aviv University; Tel-Aviv Israel
| | - Aviv Shish
- The Bert W. Strassburger Lipid Center, Sheba Medical Center; Tel-Hashomer; Ramat-Gan Israel
| | - Yael Mardor
- The Advanced Technology Center, Sheba Medical Center; Tel-Hashomer; Ramat-Gan Israel
- Sackler Faculty of Medicine; Tel-Aviv University; Tel-Aviv Israel
| | - Michal Schnaider Beeri
- The Joseph Sagol Neuroscience Center, Sheba Medical Center; Tel Hashomer; Ramat Gan Israel
- Department of Psychiatry; The Icahn School of Medicine at Mount Sinai; New York New York
- The Interdisciplinary Center; Herzliya Israel
| | - Itzik Cooper
- The Joseph Sagol Neuroscience Center, Sheba Medical Center; Tel Hashomer; Ramat Gan Israel
- The Interdisciplinary Center; Herzliya Israel
| |
Collapse
|
35
|
Wilkins JM, Trushina E. Application of Metabolomics in Alzheimer's Disease. Front Neurol 2018; 8:719. [PMID: 29375465 PMCID: PMC5770363 DOI: 10.3389/fneur.2017.00719] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/13/2017] [Indexed: 12/22/2022] Open
Abstract
Progress toward the development of efficacious therapies for Alzheimer’s disease (AD) is halted by a lack of understanding early underlying pathological mechanisms. Systems biology encompasses several techniques including genomics, epigenomics, transcriptomics, proteomics, and metabolomics. Metabolomics is the newest omics platform that offers great potential for the diagnosis and prognosis of neurodegenerative diseases as an individual’s metabolome reflects alterations in genetic, transcript, and protein profiles and influences from the environment. Advancements in the field of metabolomics have demonstrated the complexity of dynamic changes associated with AD progression underscoring challenges with the development of efficacious therapeutic interventions. Defining systems-level alterations in AD could provide insights into disease mechanisms, reveal sex-specific changes, advance the development of biomarker panels, and aid in monitoring therapeutic efficacy, which should advance individualized medicine. Since metabolic pathways are largely conserved between species, metabolomics could improve the translation of preclinical research conducted in animal models of AD into humans. A summary of recent developments in the application of metabolomics to advance the AD field is provided below.
Collapse
Affiliation(s)
- Jordan Maximillian Wilkins
- Mitochondrial Neurobiology and Therapeutics Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Eugenia Trushina
- Mitochondrial Neurobiology and Therapeutics Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
36
|
Abstract
Senile plaques and neurofibrillary tangles are the principal histopathologic hallmarks of Alzheimer disease. The essential constituents of these lesions are structurally abnormal variants of normally generated proteins: Aβ protein in plaques and tau protein in tangles. At the molecular level, both proteins in a pathogenic state share key properties with classic prions, i.e., they consist of alternatively folded, β-sheet-rich forms of the proteins that autopropagate by the seeded corruption and self-assembly of like proteins. Other similarities with prions include the ability to manifest as polymorphic and polyfunctional strains, resistance to chemical and enzymatic destruction, and the ability to spread within the brain and from the periphery to the brain. In Alzheimer disease, current evidence indicates that the pathogenic cascade follows from the endogenous, sequential corruption of Aβ and then tau. Therapeutic options include reducing the production or multimerization of the proteins, uncoupling the Aβ-tauopathy connection, or promoting the inactivation or removal of anomalous assemblies from the brain. Although aberrant Aβ appears to be the prime mover of Alzheimer disease pathogenesis, once set in motion by Aβ, the prion-like propagation of tauopathy may proceed independently of Aβ; if so, Aβ might be solely targeted as an early preventive measure, but optimal treatment of Alzheimer disease at later stages of the cascade could require intervention in both pathways.
Collapse
Affiliation(s)
- Lary C Walker
- Department of Neurology and Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States.
| |
Collapse
|
37
|
Sarbu M, Vukelić Ž, Clemmer DE, Zamfir AD. Ion mobility mass spectrometry provides novel insights into the expression and structure of gangliosides in the normal adult human hippocampus. Analyst 2018; 143:5234-5246. [DOI: 10.1039/c8an01118d] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
General work-flow for ganglioside analysis by IM-MS.
Collapse
Affiliation(s)
- Mirela Sarbu
- National Institute for Research and Development in Electrochemistry and Condensed Matter
- Timisoara
- Romania
| | - Željka Vukelić
- Department of Chemistry and Biochemistry
- University of Zagreb Medical School
- Zagreb
- Croatia
| | | | - Alina D. Zamfir
- National Institute for Research and Development in Electrochemistry and Condensed Matter
- Timisoara
- Romania
- “Aurel Vlaicu” University of Arad
- Arad
| |
Collapse
|
38
|
Maulik M, Vergote D, Phukan G, Chung J, Thinakaran G, Kar S. The Effects of Extracellular Serum Concentration on APP Processing in Npc1-Deficient APP-Overexpressing N2a Cells. Mol Neurobiol 2017; 55:5757-5766. [DOI: 10.1007/s12035-017-0799-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 10/11/2017] [Indexed: 11/29/2022]
|
39
|
Expression and function of Abcg4 in the mouse blood-brain barrier: role in restricting the brain entry of amyloid-β peptide. Sci Rep 2017; 7:13393. [PMID: 29042617 PMCID: PMC5645361 DOI: 10.1038/s41598-017-13750-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 09/27/2017] [Indexed: 12/04/2022] Open
Abstract
ABCG4 is an ATP-binding cassette transmembrane protein which has been shown, in vitro, to participate in the cellular efflux of desmosterol and amyloid-β peptide (Aβ). ABCG4 is highly expressed in the brain, but its localization and function at the blood-brain barrier (BBB) level remain unknown. We demonstrate by qRT-PCR and confocal imaging that mouse Abcg4 is expressed in the brain capillary endothelial cells. Modelling studies of the Abcg4 dimer suggested that desmosterol showed thermodynamically favorable binding at the putative sterol-binding site, and this was greater than for cholesterol. Additionally, unbiased docking also showed Aβ binding at this site. Using a novel Abcg4-deficient mouse model, we show that Abcg4 was able to export Aβ and desmosterol at the BBB level and these processes could be inhibited by probucol and L-thyroxine. Our assay also showed that desmosterol antagonized the export of Aβ, presumably as both bind at the sterol-binding site on Abcg4. We show for the first time that Abcg4 may function in vivo to export Aβ at the BBB, in a process that can be antagonized by its putative natural ligand, desmosterol (and possibly cholesterol).
Collapse
|
40
|
Multifunctional liposomes interact with Abeta in human biological fluids: Therapeutic implications for Alzheimer's disease. Neurochem Int 2017; 108:60-65. [DOI: 10.1016/j.neuint.2017.02.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 02/17/2017] [Accepted: 02/21/2017] [Indexed: 12/16/2022]
|
41
|
Serum amyloid A forms stable oligomers that disrupt vesicles at lysosomal pH and contribute to the pathogenesis of reactive amyloidosis. Proc Natl Acad Sci U S A 2017; 114:E6507-E6515. [PMID: 28743750 DOI: 10.1073/pnas.1707120114] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Serum amyloid A (SAA) is an acute-phase plasma protein that functions in innate immunity and lipid homeostasis. SAA is a protein precursor of reactive AA amyloidosis, the major complication of chronic inflammation and one of the most common human systemic amyloid diseases worldwide. Most circulating SAA is protected from proteolysis and misfolding by binding to plasma high-density lipoproteins. However, unbound soluble SAA is intrinsically disordered and is either rapidly degraded or forms amyloid in a lysosome-initiated process. Although acidic pH promotes amyloid fibril formation by this and many other proteins, the molecular underpinnings are unclear. We used an array of spectroscopic, biochemical, and structural methods to uncover that at pH 3.5-4.5, murine SAA1 forms stable soluble oligomers that are maximally folded at pH 4.3 with ∼35% α-helix and are unusually resistant to proteolysis. In solution, these oligomers neither readily convert into mature fibrils nor bind lipid surfaces via their amphipathic α-helices in a manner typical of apolipoproteins. Rather, these oligomers undergo an α-helix to β-sheet conversion catalyzed by lipid vesicles and disrupt these vesicles, suggesting a membranolytic potential. Our results provide an explanation for the lysosomal origin of AA amyloidosis. They suggest that high structural stability and resistance to proteolysis of SAA oligomers at pH 3.5-4.5 help them escape lysosomal degradation, promote SAA accumulation in lysosomes, and ultimately damage cellular membranes and liberate intracellular amyloid. We posit that these soluble prefibrillar oligomers provide a missing link in our understanding of the development of AA amyloidosis.
Collapse
|
42
|
On the possible structural role of single chain sphingolipids Sphingosine and Sphingosine 1-phosphate in the amyloid-β peptide interactions with membranes. Consequences for Alzheimer’s disease development. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.04.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Ami D, Lavatelli F, Rognoni P, Palladini G, Raimondi S, Giorgetti S, Monti L, Doglia SM, Natalello A, Merlini G. In situ characterization of protein aggregates in human tissues affected by light chain amyloidosis: a FTIR microspectroscopy study. Sci Rep 2016; 6:29096. [PMID: 27373200 PMCID: PMC4931462 DOI: 10.1038/srep29096] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/15/2016] [Indexed: 11/09/2022] Open
Abstract
Light chain (AL) amyloidosis, caused by deposition of amyloidogenic immunoglobulin light chains (LCs), is the most common systemic form in industrialized countries. Still open questions, and premises for developing targeted therapies, concern the mechanisms of amyloid formation in vivo and the bases of organ targeting and dysfunction. Investigating amyloid material in its natural environment is crucial to obtain new insights on the molecular features of fibrillar deposits at individual level. To this aim, we used Fourier transform infrared (FTIR) microspectroscopy for studying in situ unfixed tissues (heart and subcutaneous abdominal fat) from patients affected by AL amyloidosis. We compared the infrared response of affected tissues with that of ex vivo and in vitro fibrils obtained from the pathogenic LC derived from one patient, as well as with that of non amyloid-affected tissues. We demonstrated that the IR marker band of intermolecular β-sheets, typical of protein aggregates, can be detected in situ in LC amyloid-affected tissues, and that FTIR microspectroscopy allows exploring the inter- and intra-sample heterogeneity. We extended the infrared analysis to the characterization of other biomolecules embedded within the amyloid deposits, finding an IR pattern that discloses a possible role of lipids, collagen and glycosaminoglycans in amyloid deposition in vivo.
Collapse
Affiliation(s)
- Diletta Ami
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
- Department of Physics, University of Milano-Bicocca, Piazza della Scienza 3, 20126 Milano, Italy
| | - Francesca Lavatelli
- Amyloidosis Research and Treatment Center, Foundation IRCCS Policlinico San Matteo, and Department of Molecular Medicine, University of Pavia, Viale Golgi 19, 27100 Pavia, Italy
| | - Paola Rognoni
- Amyloidosis Research and Treatment Center, Foundation IRCCS Policlinico San Matteo, and Department of Molecular Medicine, University of Pavia, Viale Golgi 19, 27100 Pavia, Italy
| | - Giovanni Palladini
- Amyloidosis Research and Treatment Center, Foundation IRCCS Policlinico San Matteo, and Department of Molecular Medicine, University of Pavia, Viale Golgi 19, 27100 Pavia, Italy
| | - Sara Raimondi
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, via Taramelli 3b, 27100 Pavia, Italy
| | - Sofia Giorgetti
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, via Taramelli 3b, 27100 Pavia, Italy
| | - Luca Monti
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, via Taramelli 3b, 27100 Pavia, Italy
| | - Silvia Maria Doglia
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
- Department of Physics, University of Milano-Bicocca, Piazza della Scienza 3, 20126 Milano, Italy
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Giampaolo Merlini
- Amyloidosis Research and Treatment Center, Foundation IRCCS Policlinico San Matteo, and Department of Molecular Medicine, University of Pavia, Viale Golgi 19, 27100 Pavia, Italy
| |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW This article evaluates recent experimental and human evidence regarding the involvement of lipids, lipoproteins, and apolipoproteins in neurodegenerative diseases, and reviews the current literature of the effects of cholesterol-lowering treatment on cognition. RECENT FINDINGS Plasma levels of traditional lipids and lipoproteins are not consistently associated with risk of dementia even though low plasma levels of apolipoprotein E, through unknown mechanisms, robustly predict future dementia. Experimental evidence suggests neuroprotective roles of several brain and cerebrospinal fluid apolipoproteins. Whether plasma levels of apolipoprotein E, or any other apolipoprotein with possible central nervous system and/or blood-brain barrier functions (apolipoproteins J, A-I, A-II, A-IV, D, C-I, and C-III) may become accessible biomarker components that improve risk prediction for dementia together with genetic risk variants and cardiovascular risk factors remains to be determined. SUMMARY Apolipoproteins with well established functions in peripheral lipid metabolism may play important roles for brain vascular health and Alzheimer's disease pathophysiology. Experimental work on lipids, lipoproteins, and apolipoproteins in the central nervous system together with robust prospective human studies will help to substantiate the drug target potential of these lipid components.
Collapse
Affiliation(s)
- Cheryl L Wellington
- aDepartment of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada bDepartment of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospitals cFaculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
45
|
Rezaei-Ghaleh N, Kumar S, Walter J, Zweckstetter M. Phosphorylation Interferes with Maturation of Amyloid-β Fibrillar Structure in the N Terminus. J Biol Chem 2016; 291:16059-67. [PMID: 27252381 DOI: 10.1074/jbc.m116.728956] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Indexed: 11/06/2022] Open
Abstract
Neurodegeneration is characterized by the ubiquitous presence of modifications in protein deposits. Despite their potential significance in the initiation and progression of neurodegenerative diseases, the effects of posttranslational modifications on the molecular properties of protein aggregates are largely unknown. Here, we study the Alzheimer disease-related amyloid-β (Aβ) peptide and investigate how phosphorylation at serine 8 affects the structure of Aβ aggregates. Serine 8 is shown to be located in a region of high conformational flexibility in monomeric Aβ, which upon phosphorylation undergoes changes in local conformational dynamics. Using hydrogen-deuterium exchange NMR and fluorescence quenching techniques, we demonstrate that Aβ phosphorylation at serine 8 causes structural changes in the N-terminal region of Aβ aggregates in favor of less compact conformations. Structural changes induced by serine 8 phosphorylation can provide a mechanistic link between phosphorylation and other biological events that involve the N-terminal region of Aβ aggregates. Our data therefore support an important role of posttranslational modifications in the structural polymorphism of amyloid aggregates and their modulatory effect on neurodegeneration.
Collapse
Affiliation(s)
- Nasrollah Rezaei-Ghaleh
- From the German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Strasse 3a, 37075 Göttingen, Germany, Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany,
| | - Sathish Kumar
- Department of Neurology, University of Bonn, 53127 Bonn, Germany, and
| | - Jochen Walter
- Department of Neurology, University of Bonn, 53127 Bonn, Germany, and
| | - Markus Zweckstetter
- From the German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Strasse 3a, 37075 Göttingen, Germany, Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany, Department of Neurology, University Medical Center, University of Göttingen, Göttingen, Waldweg 33, 37073 Göttingen, Germany
| |
Collapse
|
46
|
Zhdanov VP. Mathematical aspects of the kinetics of formation and degradation of linear peptide or protein aggregates. Math Biosci 2016; 278:5-10. [PMID: 27132946 DOI: 10.1016/j.mbs.2016.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/19/2016] [Accepted: 04/24/2016] [Indexed: 10/21/2022]
Abstract
In cells, peptides and proteins are sometimes prone to aggregation. In neurons, for example, amyloid β peptides form plaques related to Alzheimer's disease (AD). The corresponding kinetic models either ignore or do not pay attention to degradation of these species. Here, the author proposes a generic kinetic model describing formation and degradation of linear aggregates. The process is assumed to occur via reversible association of monomers and attachment of monomers to or detachment from terminal parts of aggregates. Degradation of monomers is described as a first-order process. Degradation of aggregates is considered to occur at their terminal and internal parts with different rates and these steps are described by first-order equations as well. Irrespective of the choice of the values of the rate constants, the model predicts that eventually the system reaches a stable steady state with the aggregate populations rapidly decreasing with increasing size at large sizes. The corresponding steady-state size distributions of aggregates are illustrated in detail. The transient kinetics are also shown. The observation of AD appears, however, to indicate that the peptide production becomes eventually unstable, i.e., the growth of the peptide population is not properly limited. This is expected to be related to the specifics of the genetic networks controlling the peptide production. Following this line, two likely general networks with, respectively, global negative and positive feedbacks in the peptide production are briefly discussed.
Collapse
Affiliation(s)
- Vladimir P Zhdanov
- Section of Biological Physics, Department of Physics, Chalmers University of Technology, S-41296 Göteborg, Sweden; Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk 630090, Russia.
| |
Collapse
|
47
|
Glucocerebrosidase Deficiency in Drosophila Results in α-Synuclein-Independent Protein Aggregation and Neurodegeneration. PLoS Genet 2016; 12:e1005944. [PMID: 27019408 PMCID: PMC4809718 DOI: 10.1371/journal.pgen.1005944] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 02/25/2016] [Indexed: 02/07/2023] Open
Abstract
Mutations in the glucosidase, beta, acid (GBA1) gene cause Gaucher’s disease, and are the most common genetic risk factor for Parkinson’s disease (PD) and dementia with Lewy bodies (DLB) excluding variants of low penetrance. Because α-synuclein-containing neuronal aggregates are a defining feature of PD and DLB, it is widely believed that mutations in GBA1 act by enhancing α-synuclein toxicity. To explore this hypothesis, we deleted the Drosophila GBA1 homolog, dGBA1b, and compared the phenotypes of dGBA1b mutants in the presence and absence of α-synuclein expression. Homozygous dGBA1b mutants exhibit shortened lifespan, locomotor and memory deficits, neurodegeneration, and dramatically increased accumulation of ubiquitinated protein aggregates that are normally degraded through an autophagic mechanism. Ectopic expression of human α-synuclein in dGBA1b mutants resulted in a mild enhancement of dopaminergic neuron loss and increased α-synuclein aggregation relative to controls. However, α-synuclein expression did not substantially enhance other dGBA1b mutant phenotypes. Our findings indicate that dGBA1b plays an important role in the metabolism of protein aggregates, but that the deleterious consequences of mutations in dGBA1b are largely independent of α-synuclein. Future work with dGBA1b mutants should reveal the mechanism by which mutations in dGBA1b lead to accumulation of protein aggregates, and the potential influence of this protein aggregation on neuronal integrity. Mutations in the glucosidase, beta, acid (GBA1) gene cause Gaucher’s disease (GD), a lysosomal storage disease that includes neurodegenerative phenotypes. Recently, mutations in GBA1 were identified as the strongest genetic risk factor for Parkinson’s disease (PD) and dementia with Lewy bodies (DLB), which are neurodegenerative conditions characterized by intraneuronal protein aggregates containing α-synuclein. To explore how GBA1 mutations lead to neurodegeneration in GD, PD and DLB, we developed a novel invertebrate model of GBA1 insufficiency by deleting the Drosophila GBA1 homolog, dGBA1b. We found that dGBA1b mutants have multiple phenotypes consistent with neuronal dysfunction as seen in PD, DLB and GD, and dramatically increased protein aggregation that is normally cleared through an autophagic mechanism. dGBA1b mutants expressing human α-synuclein in dopaminergic neurons led to dopaminergic neuron loss and α-synuclein aggregation. However, α-synuclein expression had minimal effect on dGBA1b mutant phenotypes, suggesting that the deleterious consequences of glucocerebrosidase deficiency are independent of α-synuclein. These findings significantly contribute to our understanding of the role of GBA1 mutations in the pathogenesis of PD, DLB, and GD, and further studies using this model should elucidate mechanisms underlying these diseases.
Collapse
|