1
|
Nasr SH, Dasari S, Valeri AM, Theis JD, Moyer A, Buglioni A, Stokes MB, Hasadsri L, Vrana JA, Said SM, Kudose S, Kambham N, Bissonnette ML, Bu L, Gupta R, Suvannasankha A, Martin S, Zeng X, Sothinathan R, Jadoon A, Kebede T, Manickaratnam S, Rosenstock JL, Markowitz GS, Sethi S, Leung N, McPhail ED. Clinicopathologic, Proteomic and Outcome Characteristics of Renal Apolipoprotein C-II Amyloidosis: A Case Series. Am J Kidney Dis 2024:S0272-6386(24)01054-0. [PMID: 39547356 DOI: 10.1053/j.ajkd.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/23/2024] [Accepted: 09/11/2024] [Indexed: 11/17/2024]
Abstract
RATIONALE & OBJECTIVE Amyloidosis derived from apolipoprotein C-II (AApoCII) is a recently discovered, rare form of amyloidosis. Data on clinical presentations and natural history are very limited. This study defines the clinicopathologic, proteomic, and outcome characteristics of renal AApoCII. STUDY DESIGN Case series. SETTING & PARTICIPANTS Twenty-five renal AApoCII cases were identified from the Mayo Clinic Tissue Proteomics Laboratory archives from January 2008 through January 2024. FINDINGS All patients were White, 19 were≥65 years old at diagnosis, and 18 were female. Seven had a family history of chronic kidney disease (CKD). Patients presented with proteinuria (median 3.3g/day) and reduced kidney function (n=16; median creatinine, 1.6mg/dL). No patients had clinical evidence of other organ involvement by amyloidosis or features of monogenic hypertriglyceridemia. Histologically, amyloid deposits were often weakly positive for Congo red and involved glomeruli in all cases (with a nodular pattern in 22), whereas extraglomerular involvement was less common and generally mild. Proteomic analysis revealed abundant spectra for Apo C-II and for all 3 amyloid signature proteins (apolipoprotein E, apolipoprotein A-IV, and serum amyloid P) in all cases and detected an Apo C-II variant in 14 (K19T [p.Lys41Thr] in 12 and E47V [p.Glu69Val] in 2). Among 22 patients with follow-up information available, there were 12 end-stage kidney disease (ESKD) events and 2 deaths without ESKD during an average follow-up period of 75.5±12.5 (SE) months. LIMITATIONS Retrospective design, small sample size, APOC2 gene sequencing performed in a smaller subset. CONCLUSIONS AApoCII mostly affects the kidney and manifests in the elderly with proteinuria and CKD. A minority of these patients had a family history of kidney disease. Kidney failure occurred in about half, whereas overall survival was more favorable. PLAIN-LANGUAGE SUMMARY Amyloidosis derived from apolipoprotein C-II (AApoCII) is very rare, and data on clinicopathologic and outcome characteristics are scant. This study of 25 patients with AApoCII diagnosed by mass spectrometry at the Mayo Clinic Tissue Proteomics Laboratory revealed that most patients were elderly White females who presented with proteinuria and reduced kidney function, without involvement of other organs. A family history of kidney disease was often lacking. Pathologically, most cases exhibited nodular glomerular involvement. Proteomic analysis revealed abundant protein spectra for Apo C-II and amyloid signature proteins, and identified an Apo C-II variant in over half of cases (most commonly the p.Lys41Thr variant). The cumulative incidence of kidney failure was over 50% at 5 years follow-up. Only 4 deaths occurred over an average follow-up period of 76 months.
Collapse
Affiliation(s)
- Samih H Nasr
- Department of Laboratory Medicine and Pathology, Rochester, Minnesota.
| | - Surendra Dasari
- Department of Quantitative Health Sciences, Rochester, Minnesota
| | | | - Jason D Theis
- Department of Laboratory Medicine and Pathology, Rochester, Minnesota
| | - Ann Moyer
- Department of Laboratory Medicine and Pathology, Rochester, Minnesota
| | - Alessia Buglioni
- Department of Laboratory Medicine and Pathology, Rochester, Minnesota
| | - M Barry Stokes
- Department of Pathology and Cell Biology, New York, New York
| | - Linda Hasadsri
- Department of Laboratory Medicine and Pathology, Rochester, Minnesota
| | - Julie A Vrana
- Department of Laboratory Medicine and Pathology, Rochester, Minnesota
| | - Samar M Said
- Mayo Clinic, Rochester, and Department of Pathology, Olmsted County Medical Center, Rochester, Minnesota
| | - Satoru Kudose
- Department of Pathology and Cell Biology, New York, New York
| | - Neeraja Kambham
- Department of Anatomic Pathology, Stanford University, Stanford, California
| | - Mei Lin Bissonnette
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lihong Bu
- Department of Laboratory Medicine and Pathology, Rochester, Minnesota
| | | | | | | | - Xu Zeng
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida
| | | | - Adil Jadoon
- Western Nephrology and Metabolic Bone Disease, Longmont, Colorado
| | - Tewabe Kebede
- Midwest Nephrology Consultants, Kansas City, Missouri
| | - Srimathi Manickaratnam
- Division of Nephrology, University of Connecticut Health Center, Farmington, Connecticut
| | - Jordan L Rosenstock
- Columbia University Medical Center, and Division of Nephrology, Lenox Hill Hospital, Northwell Health, New York, New York
| | | | - Sanjeev Sethi
- Department of Laboratory Medicine and Pathology, Rochester, Minnesota
| | - Nelson Leung
- Department of Internal Medicine, Rochester, Minnesota
| | - Ellen D McPhail
- Department of Laboratory Medicine and Pathology, Rochester, Minnesota.
| |
Collapse
|
2
|
Jayaraman S, Narula N, Narula J, Gursky O. Amyloid and collagen templates in aortic valve calcification. Trends Mol Med 2024; 30:1010-1019. [PMID: 38845326 PMCID: PMC11563925 DOI: 10.1016/j.molmed.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 11/16/2024]
Abstract
Calcific aortic valve disease (CAVD) is a widely prevalent heart disorder in need of pharmacological interventions. Calcified areas in aortic valves often contain amyloid fibrils that promote calcification in vitro. This opinion paper suggests that amyloid contributes to CAVD development; amyloid-assisted nucleation can accelerate hydroxyapatite deposition onto collagen matrix. Notably, acidic arrays in amyloid match calcium-calcium spacing in the amorphous hydroxyapatite precursor, while oscillating hemodynamic perturbations promote amyloid deposition in the valve. Lipoprotein(a), a genetic risk factor for CAVD, augments calcification via several mechanisms, wherein hydrolysis of oxidized phospholipids (oxPLs) by Lp(a)-associated enzymes helps generate orthophosphate, and apolipoprotein(a) blocks plasmin-induced fibril degradation. Current studies of amyloid-calcium-collagen interactions in solution and in fibrillar complexes allow deeper insight into the role of amyloid in calcification.
Collapse
Affiliation(s)
- Shobini Jayaraman
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Navneet Narula
- Department of Pathology, NYU Langone Health, New York, NY, USA
| | - Jagat Narula
- University of Texas Health Sciences Center, Houston, TX, USA
| | - Olga Gursky
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA.
| |
Collapse
|
3
|
Zuo Y, Hanly F, Li D, Chavez E, Aljuboori O, Contreras G, Herrera GA. Unveiling renal pathology's potential: exploring a rare subtype of amyloid - apolipoprotein CII amyloidosis in the youngest patient: a case report and literature review. Ultrastruct Pathol 2024; 48:297-303. [PMID: 38769836 DOI: 10.1080/01913123.2024.2353397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024]
Abstract
In this clinical case report, we present a rare subtype of amyloidosis, apolipoprotein CII (apo CII), which was diagnosed through a renal biopsy and subsequently confirmed by identifying the p.K41T mutation via germline DNA sequencing. Upon reviewing the literature, five patients exhibiting identical mutation were identified via renal biopsy, while an additional patient was diagnosed through biopsies of the fat pad and bone marrow. Notably, our patient is the youngest recorded case. We pioneered the application of immunofluorescence and immunogold electron microscopy techniques for apo CII evaluation. Our report provides a detailed description of this case, supplemented by an extensive review encompassing apo CII, documented instances of apo CII amyloidosis with renal or systemic involvement, and potential underlying mechanisms.
Collapse
Affiliation(s)
- Yiqin Zuo
- Department of Pathology & Laboratory Medicine, University of Miami Hospital, Miami, FL, USA
| | - Fiona Hanly
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Duo Li
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Efren Chavez
- Katz Division of Nephrology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Omar Aljuboori
- Department of Pathology & Laboratory Medicine, University of Miami Hospital, Miami, FL, USA
| | - Gabriel Contreras
- Katz Division of Nephrology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| | | |
Collapse
|
4
|
Ikeda M, Kondo H, Murakami T, Iwaide S, Itoh Y, Shibuya H. Identification of apolipoprotein E-derived amyloid within cholesterol granulomas of leopard geckos (Eublepharis macularius). Sci Rep 2024; 14:13746. [PMID: 38877049 PMCID: PMC11178906 DOI: 10.1038/s41598-024-64643-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024] Open
Abstract
Apolipoprotein E (ApoE) is involved in cholesterol transport among cells and also plays an important role in amyloid formation, co-depositing with amyloid fibrils in various types of amyloidosis. Although the in vivo amyloidogenicity of ApoE has not been previously demonstrated, this study provides evidence of ApoE amyloidogenicity in leopard geckos (Eublepharis macularius), belonging to the class Reptilia. Histologically, amyloid deposits were localized within cholesterol granulomas and exhibited positive Congo red staining, with yellow to green birefringence under polarized light. On mass spectrometry-based proteomic analysis, ApoE was detected as a dominant component of amyloid; of the full length of the 274 amino acid residues, peptides derived from Leu185-Arg230 were frequently detected with non-tryptic truncations. Immunohistochemistry with anti-leopard gecko ApoE antibody showed positive reactions of amyloid deposits. These results show that ApoE is an amyloid precursor protein within the cholesterol granulomas of leopard geckos. Although further investigations are needed, the C-terminal region of ApoE involved in amyloid formation is a lipid-binding region, and there should be a relationship between amyloidogenesis and the development of cholesterol granulomas in leopard geckos. This study provides novel insights into the pathogenesis of ApoE-related diseases.
Collapse
Affiliation(s)
- Mitsuhiro Ikeda
- Laboratory of Veterinary Pathology, Department of Veterinary Medicine, College of Bioresource, Nihon University, Kanagawa, Japan
| | - Hirotaka Kondo
- Laboratory of Veterinary Pathology, Department of Veterinary Medicine, College of Bioresource, Nihon University, Kanagawa, Japan.
| | - Tomoaki Murakami
- Laboratory of Veterinary Toxicology, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Susumu Iwaide
- Laboratory of Veterinary Toxicology, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Yoshiyuki Itoh
- Smart-Core-Facility Promotion Organization, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hisashi Shibuya
- Laboratory of Veterinary Pathology, Department of Veterinary Medicine, College of Bioresource, Nihon University, Kanagawa, Japan
| |
Collapse
|
5
|
Martin L, Boutwell BB, Messerlian C, Adams CD. Mendelian randomization reveals apolipoprotein B shortens healthspan and possibly increases risk for Alzheimer's disease. Commun Biol 2024; 7:230. [PMID: 38402277 PMCID: PMC10894226 DOI: 10.1038/s42003-024-05887-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/05/2024] [Indexed: 02/26/2024] Open
Abstract
Apolipoprotein B-100 (APOB) is a component of fat- and cholesterol-transporting molecules in the bloodstream. It is the main lipoprotein in low-density lipoprotein cholesterol (LDL) and has been implicated in conditions that end healthspan (the interval between birth and onset of chronic disease). However, APOB's direct relationship with healthspan remains uncertain. With Mendelian randomization, we show that higher levels of APOB and LDL shorten healthspan in humans. Multivariable Mendelian randomization of APOB and LDL on healthspan suggests that the predominant trait accounting for the relationship is APOB. In addition, we provide preliminary evidence that APOB increases risk for Alzheimer's disease, a condition that ends healthspan. If these relationships are causal, they suggest that interventions to improve healthspan in aging populations could include strategies targeting APOB. Ultimately, given that more than 44 million people currently suffer from Alzheimer's disease worldwide, such interventions are needed.
Collapse
Affiliation(s)
- Leah Martin
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Brian B Boutwell
- School of Applied Sciences, University of Mississippi, University, Jackson, MS, USA
- John D. Bower School of Population Health, University of Mississippi Medical Center, Jackson, MS, USA
| | - Carmen Messerlian
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Obstetrics and Gynecology, Massachusetts General Hospital Fertility Center, Boston, MA, USA
- Department of Environmental Health, Harvard T. H. Chan School of Public Heath, Boston, MA, USA
| | - Charleen D Adams
- Department of Environmental Health, Harvard T. H. Chan School of Public Heath, Boston, MA, USA.
| |
Collapse
|
6
|
Palizzotto C, Ferri F, Callegari C, Rossi F, Manfredi M, Carcangiu L, Gerardi G, Ferro S, Cavicchioli L, Müller E, Weiss M, Vogt A, Lavatelli F, Ricagno S, Hurley K, Zini E. Renal amyloid-A amyloidosis in cats: Characterization of proteinuria and biomarker discovery, and associations with kidney histology. J Vet Intern Med 2024; 38:205-215. [PMID: 37991136 PMCID: PMC10800178 DOI: 10.1111/jvim.16920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/13/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND Amyloid A (AA) amyloidosis is a protein misfolding disease arising from serum amyloid A (SAA). Systemic AA amyloidosis recently was shown to have a high prevalence in shelter cats in Italy and was associated with azotemia and proteinuria. OBJECTIVES Investigate urine protein profiles and diagnostic biomarkers in cats with renal AA amyloidosis. ANIMALS Twenty-nine shelter cats. METHODS Case-control study. Cats with renal proteinuria that died or were euthanized between 2018 and 2021 with available necropsy kidney, liver and spleen samples, and with surplus urine collected within 30 days before death, were included. Histology was used to characterize renal damage and amyloid amount and distribution; immunohistochemistry was used to confirm AA amyloidosis. Urine protein-to-creatinine (UPC) and urine amyloid A-to-creatinine (UAAC) ratios were calculated, and sodium dodecyl sulfate-agarose gel electrophoresis (SDS-AGE) and liquid chromatography-mass spectrometry (LC-MS) of proteins were performed. RESULTS Twenty-nine cats were included. Nineteen had AA amyloidosis with renal involvement. Cats with AA amyloidosis had a higher UPC (median, 3.9; range, 0.6-12.7 vs 1.5; 0.6-3.1; P = .03) and UAAC ratios (median, 7.18 × 10-3 ; range, 23 × 10-3 -21.29 × 10-3 vs 1.26 × 10-3 ; 0.21 × 10-3 -6.33 × 10-3 ; P = .04) than unaffected cats. The SDS-AGE identified mixed-type proteinuria in 89.4% of cats with AA amyloidosis and in 55.6% without AA amyloidosis (P = .57). The LC-MS identified 63 potential biomarkers associated with AA amyloidosis (P < .05). Among these, urine apolipoprotein C-III was higher in cats with AA amyloidosis (median, 1.38 × 107 ; range, 1.85 × 105 -5.29 × 107 vs 1.76 × 106 ; 0.0 × 100 -1.38 × 107 ; P = .01). In the kidney, AA-amyloidosis was associated with glomerulosclerosis (P = .02) and interstitial fibrosis (P = .05). CONCLUSIONS AND CLINICAL IMPORTANCE Renal AA amyloidosis is associated with kidney lesions, increased proteinuria and increased urine excretion of SAA in shelter cats. Additional studies are needed to characterize the role of lipid transport proteins in the urine of affected cats.
Collapse
Affiliation(s)
- Carlo Palizzotto
- AniCura Istituto Veterinario NovaraGranozzo con MonticelloNOItaly
| | - Felippo Ferri
- AniCura Istituto Veterinario NovaraGranozzo con MonticelloNOItaly
- Department of Animal Medicine, Production and HealthUniversity of PadovaLegnaroPDItaly
- Studio Veterinario Associato Vet2Vet di Ferri e PorporatoOrbassanoTOItaly
| | | | - Francesco Rossi
- AniCura Istituto Veterinario NovaraGranozzo con MonticelloNOItaly
| | - Marcello Manfredi
- Department of Translational MedicineUniversity of Piemonte OrientaleNovaraItaly
| | - Laura Carcangiu
- Department of Translational MedicineUniversity of Piemonte OrientaleNovaraItaly
| | - Gabriele Gerardi
- Department of Animal Medicine, Production and HealthUniversity of PadovaLegnaroPDItaly
| | - Silvia Ferro
- Department of Comparative Biomedicine and Food ScienceUniversity of PadovaLegnaroPDItaly
| | - Laura Cavicchioli
- Department of Comparative Biomedicine and Food ScienceUniversity of PadovaLegnaroPDItaly
| | - Elizabeth Müller
- Laboklin, Laboratory for Clinical DiagnosticsBad KissingenGermany
| | - Marco Weiss
- Laboklin, Laboratory for Clinical DiagnosticsBad KissingenGermany
| | - Anne‐Catherine Vogt
- Department of Rheumatology and ImmunologyUniversity Hospital BernBernSwitzerland
- Department of BioMedical ResearchUniversity of BernBernSwitzerland
- Graduate School for Cellular and Biomedical Sciences (GCB)University of BernBernSwitzerland
| | | | - Stefano Ricagno
- Institute of Molecular and Translational CardiologyIRCCS Policlinico San DonatoMilanItaly
- Department of BiosciencesUniversità degli Studi di MilanoMilanItaly
| | | | - Eric Zini
- AniCura Istituto Veterinario NovaraGranozzo con MonticelloNOItaly
- Department of Animal Medicine, Production and HealthUniversity of PadovaLegnaroPDItaly
- Clinic for Small Animal Internal Medicine, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| |
Collapse
|
7
|
Louros N, Schymkowitz J, Rousseau F. Mechanisms and pathology of protein misfolding and aggregation. Nat Rev Mol Cell Biol 2023; 24:912-933. [PMID: 37684425 DOI: 10.1038/s41580-023-00647-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2023] [Indexed: 09/10/2023]
Abstract
Despite advances in machine learning-based protein structure prediction, we are still far from fully understanding how proteins fold into their native conformation. The conventional notion that polypeptides fold spontaneously to their biologically active states has gradually been replaced by our understanding that cellular protein folding often requires context-dependent guidance from molecular chaperones in order to avoid misfolding. Misfolded proteins can aggregate into larger structures, such as amyloid fibrils, which perpetuate the misfolding process, creating a self-reinforcing cascade. A surge in amyloid fibril structures has deepened our comprehension of how a single polypeptide sequence can exhibit multiple amyloid conformations, known as polymorphism. The assembly of these polymorphs is not a random process but is influenced by the specific conditions and tissues in which they originate. This observation suggests that, similar to the folding of native proteins, the kinetics of pathological amyloid assembly are modulated by interactions specific to cells and tissues. Here, we review the current understanding of how intrinsic protein conformational propensities are modulated by physiological and pathological interactions in the cell to shape protein misfolding and aggregation pathology.
Collapse
Affiliation(s)
- Nikolaos Louros
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| | - Frederic Rousseau
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| |
Collapse
|
8
|
Namba N, Ohgita T, Tamagaki-Asahina H, Nishitsuji K, Shimanouchi T, Sato T, Saito H. Amyloidogenic 60-71 deletion/ValThr insertion mutation of apolipoprotein A-I generates a new aggregation-prone segment that promotes nucleation through entropic effects. Sci Rep 2023; 13:18514. [PMID: 37898709 PMCID: PMC10613298 DOI: 10.1038/s41598-023-45803-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/24/2023] [Indexed: 10/30/2023] Open
Abstract
The N-terminal fragment of apolipoprotein A-I (apoA-I), comprising residues 1-83, contains three segments prone to aggregation: residues 14-22, 53-58, and 67-72. We previously demonstrated that residues 14-22 are critical in apoA-I fibril formation while residues 53-58 entropically drove the nucleation process. Here, we investigated the impact of amyloidogenic mutations (Δ60-71/VT, Δ70-72, and F71Y) located around residues 67-72 on fibril formation by the apoA-I 1-83 fragment. Thioflavin T fluorescence assay demonstrated that the Δ60-71/VT mutation significantly enhances both nucleation and fibril elongation rates, whereas the Δ70-72 and F71Y mutations had minimal effects. Circular dichroism measurements and microscopic observations revealed that all variant fragments formed straight fibrils, transitioning from random coils to β-sheet structures. Kinetic analysis demonstrated that primary nucleation is the dominant step in fibril formation, with fibril elongation reaching saturation at high protein concentrations. Thermodynamically, both nucleation and fibril elongation were enthalpically and entropically unfavorable in all apoA-I 1-83 variants, in which the entropic barrier of nucleation was almost eliminated for the Δ60-71/VT variant. Taken together, our results suggest the presence of new aggregation-prone segment in the Δ60-71/VT variant that promotes nucleation through entropic effects.
Collapse
Affiliation(s)
- Norihiro Namba
- Laboratory of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Takashi Ohgita
- Laboratory of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Hiroko Tamagaki-Asahina
- Division of Liberal Arts Sciences, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Kazuchika Nishitsuji
- Department of Biochemistry, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Toshinori Shimanouchi
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Takeshi Sato
- Division of Liberal Arts Sciences, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Hiroyuki Saito
- Laboratory of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan.
| |
Collapse
|
9
|
Jayaraman S, Urdaneta A, Bullitt E, Fändrich M, Gursky O. Lipid clearance and amyloid formation by serum amyloid A: exploring the links between beneficial and pathologic actions of an enigmatic protein. J Lipid Res 2023; 64:100429. [PMID: 37604227 PMCID: PMC10509712 DOI: 10.1016/j.jlr.2023.100429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/23/2023] Open
Abstract
Serum amyloid A (SAA) is named after a life-threatening disease, yet this small evolutionarily conserved protein must have played a vital role in host defense. Most circulating SAA binds plasma lipoproteins and modulates their metabolism. However, this hardly justifies the rapid and dramatic SAA upregulation in inflammation, which is concomitant with upregulation of secretory phospholipase A2 (sPLA2). We proposed that these proteins synergistically clear cell membrane debris from the sites of injury. The present study uses biochemical and biophysical approaches to further explore the beneficial function of SAA and its potential links to amyloid formation. We show that murine and human SAA1 are powerful detergents that solubilize diverse lipids, including mammalian biomembranes, converting them into lipoprotein-size nanoparticles. These nanoparticles provide ligands for cell receptors, such as scavenger receptor CD36 or heparin/heparan sulfate, act as substrates of sPLA2, and sequester toxic products of sPLA2. Together, these functions enable SAA to rapidly clear unprotected lipids. SAA can also adsorb, without remodeling, to lipoprotein-size nanoparticles such as exosomal liposomes, which are proxies for lipoproteins. SAA in complexes with zwitterionic phospholipids stabilizes α-helices, while SAA in complexes containing anionic lipids or micelle-forming sPLA2 products forms metastable β-sheet-rich species that readily aggregate to form amyloid. Consequently, the synergy between SAA and sPLA2 extends from the beneficial lipid clearance to the pathologic amyloid formation. Furthermore, we show that lipid composition alters SAA conformation and thereby can influence the metabolic fate of SAA-lipid complexes, including their proamyloidogenic and proatherogenic binding to heparan sulfate.
Collapse
Affiliation(s)
- Shobini Jayaraman
- Department of Pharmacology, Physiology & Biophysics, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, USA.
| | - Angela Urdaneta
- Department of Pharmacology, Physiology & Biophysics, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Esther Bullitt
- Department of Pharmacology, Physiology & Biophysics, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Marcus Fändrich
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| | - Olga Gursky
- Department of Pharmacology, Physiology & Biophysics, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, USA
| |
Collapse
|
10
|
Sud K, Narula N, Aikawa E, Arbustini E, Pibarot P, Merlini G, Rosenson RS, Seshan SV, Argulian E, Ahmadi A, Zhou F, Moreira AL, Côté N, Tsimikas S, Fuster V, Gandy S, Bonow RO, Gursky O, Narula J. The contribution of amyloid deposition in the aortic valve to calcification and aortic stenosis. Nat Rev Cardiol 2023; 20:418-428. [PMID: 36624274 PMCID: PMC10199673 DOI: 10.1038/s41569-022-00818-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/17/2022] [Indexed: 01/11/2023]
Abstract
Calcific aortic valve disease (CAVD) and stenosis have a complex pathogenesis, and no therapies are available that can halt or slow their progression. Several studies have shown the presence of apolipoprotein-related amyloid deposits in close proximity to calcified areas in diseased aortic valves. In this Perspective, we explore a possible relationship between amyloid deposits, calcification and the development of aortic valve stenosis. These amyloid deposits might contribute to the amplification of the inflammatory cycle in the aortic valve, including extracellular matrix remodelling and myofibroblast and osteoblast-like cell proliferation. Further investigation in this area is needed to characterize the amyloid deposits associated with CAVD, which could allow the use of antisense oligonucleotides and/or isotype gene therapies for the prevention and/or treatment of CAVD.
Collapse
Affiliation(s)
- Karan Sud
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Navneet Narula
- New York University Grossman School of Medicine, New York, NY, USA.
| | - Elena Aikawa
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Philippe Pibarot
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
| | | | | | | | - Edgar Argulian
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amir Ahmadi
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fang Zhou
- New York University Grossman School of Medicine, New York, NY, USA
| | - Andre L Moreira
- New York University Grossman School of Medicine, New York, NY, USA
| | - Nancy Côté
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
| | | | | | - Sam Gandy
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert O Bonow
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Olga Gursky
- Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Jagat Narula
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
11
|
A Study on Multiple Facets of Apolipoprotein A1 Milano. Appl Biochem Biotechnol 2023:10.1007/s12010-023-04330-2. [PMID: 36689166 DOI: 10.1007/s12010-023-04330-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 01/24/2023]
Abstract
For several strategies formulated to prevent atherosclerosis, Apolipoprotein A1 Milano (ApoA1M) remains a prime target. ApoA1M has been reported to have greater efficiency in reducing the incidence of coronary artery diseases. Furthermore, recombinant ApoA1M based mimetic peptide exhibits comparatively greater atheroprotective potential, offers a hope in reducing the burden of atherosclerosis in in vivo model system. The aim of this review is to emphasize on some of the observed ApoA1M structural and functional effects that are clinically and therapeutically meaningful that might converge on the basic role of ApoA1M in reducing the chances of glycation assisted ailments in diabetes. We also hypothesize that the nonenzymatic glycation prone arginine amino acid of ApoA1 gets replaced with cysteine residue and the rate of ApoA1 glycation may decrease due to change substitution of amino acid. Therefore, to circumvent the effect of ApoA1M glycation, the related mechanism should be explored at the cellular and functional levels, especially in respective experimental disease model in vivo.
Collapse
|
12
|
Chandrasekhar G, Chandra Sekar P, Srinivasan E, Amarnath A, Pengyong H, Rajasekaran R. Molecular simulation unravels the amyloidogenic misfolding of nascent ApoA1 protein, driven by deleterious point mutations occurring in between 170-178 hotspot region. J Biomol Struct Dyn 2022; 40:13278-13290. [PMID: 34613891 DOI: 10.1080/07391102.2021.1986134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Protein ApoA1 is extensively studied for its role in lipid metabolism. Its seedy dark side of amyloid formulation remains relatively understudied yet. Due to genetic mutations, the protein pathologically misshapes into its amyloid form that gets accumulated in various organs, including the heart. To contrive effective therapeutics against this debilitating congenital disorder, it is imperative to comprehend the structural ramifications induced by mutations in APoA1's dynamic conformation. Till now, several point mutations have been implicated in ApoA1's amyloidosis, although only a handful has been examined considerably. Especially, the single nucleotide polymorphisms (SNPs) that occur in-between 170-178 mutation hotspot site of APoA1 needs to be investigated, since most of them are culpable of amyloid deposition in the heart. To that effect, in the present study, we have computationally quantified and studied the ApoA1's biomolecular modifications fostered by SNPs in the 170-178 mutation hotspot. Findings from discrete molecular dynamics simulation studies indicate that the SNPs have noticeably steered the ApoA1's behaviour from its native structural dynamics. Analysis of protein's secondary structural changes exhibits a considerable change upon mutations. Further, subjecting the protein structures to simulated thermal denaturation shows increased resistance to denaturation among mutants when compared to native. Further, normal mode analysis of protein's dynamic motion also shows discrepancy in its dynamic structural change upon SNP. These structural digressions induced by SNPs can very well be the biomolecular incendiary that drives ApoA1 into its amyloidogenesis. And, understanding these structural modifications initiates a better understanding of SNP's amyloidogenic pathology on APoA1.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- G Chandrasekhar
- Bioinformatics Lab, Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology (Deemed to be University), Vellore, Tamil Nadu, India
| | - P Chandra Sekar
- Bioinformatics Lab, Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology (Deemed to be University), Vellore, Tamil Nadu, India
| | - E Srinivasan
- Bioinformatics Lab, Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology (Deemed to be University), Vellore, Tamil Nadu, India
| | - A Amarnath
- Bioinformatics Lab, Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology (Deemed to be University), Vellore, Tamil Nadu, India
| | - H Pengyong
- Central Lab, Changzhi Medical College, Changzhi, China
| | - R Rajasekaran
- Bioinformatics Lab, Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology (Deemed to be University), Vellore, Tamil Nadu, India
| |
Collapse
|
13
|
Shintani-Domoto Y, Sugiura Y, Ogawa M, Sugiyama E, Abe H, Sakatani T, Ohashi R, Ushiku T, Fukayama M. N-terminal peptide fragment constitutes core of amyloid deposition of serum amyloid A: An imaging mass spectrometry study. PLoS One 2022; 17:e0275993. [PMID: 36240260 PMCID: PMC9565386 DOI: 10.1371/journal.pone.0275993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
Serum amyloid A (SAA) is an acute phase protein, which undergoes structural changes and deposits in the extracellular matrix, causing organ damage. Systemic AA amyloidosis is a relatively common amyloid subtype among the more than 30 amyloid subtypes, but the mechanism of amyloid fibril formation remains unclear. In this study, we investigated the tissue distribution of SAA derived peptides in formalin-fixed paraffin embedded (FFPE) specimens of human myocardium with amyloidosis using matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS). In the whole SAA protein, four trypsin-digested peptides in the range of SAA2-67 were visualized and the N-terminal peptide; SAA2-15, was selectively localized in the Congo red-positive region. The C-terminal peptides; SAA47-62, SAA48-62, and SAA63-67 were detected not only in the Congo red-positive region but also in the surrounding negative region. Our results demonstrate that the N-terminal SAA2-15 plays a critical role in the formation of AA amyloid fibril, as previously reported. Roles of the C-terminal peptides require further investigation.
Collapse
Affiliation(s)
- Yukako Shintani-Domoto
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Diagnostic Pathology, Nippon Medical School Hospital, Tokyo, Japan
- * E-mail:
| | - Yuki Sugiura
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Makiko Ogawa
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Eiji Sugiyama
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
- Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Hiroyuki Abe
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takashi Sakatani
- Department of Diagnostic Pathology, Nippon Medical School Hospital, Tokyo, Japan
| | - Ryuji Ohashi
- Department of Diagnostic Pathology, Nippon Medical School Hospital, Tokyo, Japan
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masashi Fukayama
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Asahi Tele Pathology Center, Asahi General Hospital, Asahi-City, Chiba, Japan
| |
Collapse
|
14
|
Kim Y, Kim J, Son M, Lee J, Yeo I, Choi KY, Kim H, Kim BC, Lee KH, Kim Y. Plasma protein biomarker model for screening Alzheimer disease using multiple reaction monitoring-mass spectrometry. Sci Rep 2022; 12:1282. [PMID: 35075217 PMCID: PMC8786819 DOI: 10.1038/s41598-022-05384-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 01/11/2022] [Indexed: 12/01/2022] Open
Abstract
Alzheimer disease (AD) is a leading cause of dementia that has gained prominence in our aging society. Yet, the complexity of diagnosing AD and measuring its invasiveness poses an obstacle. To this end, blood-based biomarkers could mitigate the inconveniences that impede an accurate diagnosis. We developed models to diagnose AD and measure the severity of neurocognitive impairment using blood protein biomarkers. Multiple reaction monitoring-mass spectrometry, a highly selective and sensitive approach for quantifying targeted proteins in samples, was used to analyze blood samples from 4 AD groups: cognitive normal control, asymptomatic AD, prodromal AD), and AD dementia. Multimarker models were developed using 10 protein biomarkers and apolipoprotein E genotypes for amyloid beta and 10 biomarkers with Korean Mini-Mental Status Examination (K-MMSE) score for predicting Alzheimer disease progression. The accuracies for the AD classification model and AD progression monitoring model were 84.9% (95% CI 82.8 to 87.0) and 79.1% (95% CI 77.8 to 80.5), respectively. The models were more accurate in diagnosing AD, compared with single APOE genotypes and the K-MMSE score. Our study demonstrates the possibility of predicting AD with high accuracy by blood biomarker analysis as an alternative method of screening for AD.
Collapse
Affiliation(s)
- Yeongshin Kim
- Interdisciplinary Program of Bioengineering, Seoul National University College of Engineering, Seoul, Republic of Korea
| | - Jaenyeon Kim
- Interdisciplinary Program of Bioengineering, Seoul National University College of Engineering, Seoul, Republic of Korea
| | - Minsoo Son
- Interdisciplinary Program of Bioengineering, Seoul National University College of Engineering, Seoul, Republic of Korea
| | - Jihyeon Lee
- Department of Biomedical Engineering, Seoul National University College of Medicine, 28 Yongon-Dong, Chongno-Ku, Seoul, 110-799, Republic of Korea
| | - Injoon Yeo
- Department of Biomedical Engineering, Seoul National University College of Medicine, 28 Yongon-Dong, Chongno-Ku, Seoul, 110-799, Republic of Korea
| | - Kyu Yeong Choi
- Gwangju Alzheimer's Disease and Related Dementia Cohort Research Center and Department of Biomedical Science, Chosun University, Gwangju, 61452, Republic of Korea
| | - Hoowon Kim
- Gwangju Alzheimer's Disease and Related Dementia Cohort Research Center and Department of Biomedical Science, Chosun University, Gwangju, 61452, Republic of Korea
- Department of Neurology, Chosun University Hospital, Gwangju, 61452, Republic of Korea
| | - Byeong C Kim
- Department of Neurology, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Kun Ho Lee
- Gwangju Alzheimer's Disease and Related Dementia Cohort Research Center and Department of Biomedical Science, Chosun University, Gwangju, 61452, Republic of Korea.
- Department of Biomedical Science, Chosun University, Gwangju, 61452, Republic of Korea.
- Aging Neuroscience Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea.
| | - Youngsoo Kim
- Interdisciplinary Program of Bioengineering, Seoul National University College of Engineering, Seoul, Republic of Korea.
- Department of Biomedical Engineering, Seoul National University College of Medicine, 28 Yongon-Dong, Chongno-Ku, Seoul, 110-799, Republic of Korea.
| |
Collapse
|
15
|
Ishimitsu A, Tojo A, Hirao J, Yokoyama S, Ohira T, Murayama Y, Ishimitsu T, Kang D, Honda K, Ehara T, Ishida K, Ueda Y. AL-Kappa Primary Amyloidosis with Apolipoprotein A-IV Deposition. Intern Med 2022; 61:871-876. [PMID: 35296622 PMCID: PMC8987257 DOI: 10.2169/internalmedicine.7955-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A 70-year-old woman with complaints of edema, general malaise, and hypotension was diagnosed with renal amyloidosis, and laser microdissection mass spectrometry revealed her amyloidosis to predominantly comprise the apolipoprotein A-IV type. The M-protein turned from negative to positive during the course, and a bone marrow biopsy showed smoldering myeloma. Treatment with bortezomib and dexamethasone failed to save her from heart failure six months after the onset. Western blotting of urine samples at the time of the renal biopsy showed that amyloid light-chain κ amyloidosis had been present since the onset. Unlike the myeloma, Congo red staining was positive in the plasma cells of the bone marrow.
Collapse
Affiliation(s)
- Akira Ishimitsu
- Department of Nephrology & Hypertension, Dokkyo Medical University, Japan
| | - Akihiro Tojo
- Department of Nephrology & Hypertension, Dokkyo Medical University, Japan
| | - Jun Hirao
- Department of Nephrology & Hypertension, Dokkyo Medical University, Japan
| | - Shohei Yokoyama
- Department of Nephrology & Hypertension, Dokkyo Medical University, Japan
| | - Takehiro Ohira
- Department of Nephrology & Hypertension, Dokkyo Medical University, Japan
| | - Yoshiki Murayama
- Department of Nephrology & Hypertension, Dokkyo Medical University, Japan
| | | | - Dedong Kang
- Department of Anatomy, Showa University School of Medicine, Japan
| | - Kazuho Honda
- Department of Anatomy, Showa University School of Medicine, Japan
| | - Takashi Ehara
- Department of Pathology, Shinshu University School of Medicine, Japan
| | - Kazuyuki Ishida
- Department of Diagnostic Pathology, Dokkyo Medical University, Japan
| | - Yoshihiko Ueda
- Department of Pathology, Dokkyo Medical University Saitama Medical Center, Japan
| |
Collapse
|
16
|
Lewkowicz E, Gursky O. Dynamic protein structures in normal function and pathologic misfolding in systemic amyloidosis. Biophys Chem 2022; 280:106699. [PMID: 34773861 PMCID: PMC9416430 DOI: 10.1016/j.bpc.2021.106699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 02/08/2023]
Abstract
Dynamic and disordered regions in native proteins are often critical for their function, particularly in ligand binding and signaling. In certain proteins, however, such regions can contribute to misfolding and pathologic deposition as amyloid fibrils in vivo. For example, dynamic and disordered regions can promote amyloid formation by destabilizing the native structure, by directly triggering the aggregation, by promoting protein condensation, or by acting as sites of early proteolytic cleavage that favor a release of aggregation-prone fragments or facilitate fibril maturation. At the same time, enhanced dynamics in the native protein state accelerates proteolytic degradation that counteracts amyloid accumulation in vivo. Therefore, the functional need for dynamic protein regions must be balanced against their inherently labile nature. How exactly this balance is achieved and how is it shifted upon amyloidogenic mutations or post-translational modifications? To illustrate possible scenarios, here we review the beneficial and pathologic roles of dynamic and disordered regions in the native states of three families of human plasma proteins that form amyloid precursors in systemic amyloidoses: immunoglobulin light chain, apolipoproteins, and serum amyloid A. Analysis of structure, stability and local dynamics of these diverse proteins and their amyloidogenic variants exemplifies how disordered/dynamic regions can provide a functional advantage as well as an Achilles heel in pathologic amyloid formation.
Collapse
|
17
|
Smirnova TA, Viskin A, Hoskova M, Habartova L, Setnicka V, Cejnar P, Kuckova S. Comparison of proteomic approaches used for the detection of potential biomarkers of Alzheimer's disease in blood plasma. J Sep Sci 2021; 44:4132-4140. [PMID: 34545700 DOI: 10.1002/jssc.202100468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/03/2021] [Accepted: 09/12/2021] [Indexed: 11/10/2022]
Abstract
At present, Alzheimer's disease is detected mainly using psychological tests, which can only confirm the disease in its more advanced phases. Therefore, bioanalytical possibilities for detecting this disease earlier are being investigated. To date, the results of analyses, which focus mainly on the study of lipids and proteins either in cerebrospinal fluid or much less often in blood plasma, do not provide satisfactory results. In addition, cerebrospinal fluid sampling is uncomfortable for the patients and involves many health risks. In this work, we deal with proteomic analysis using Matrix-Assisted Laser Desorption/Ionisation-Time of Flight and Liquid Chromatography coupled to tandem Mass Spectrometry of blood plasma with a focus on various ways of preanalytical sample treatments. This should lead to results improvement and facilitate the subsequent evaluation using principal component analysis and partial least squares discriminant analysis. The obtained results indicate the direction of further research, namely the study of interactions between proteins and lipids contained in blood plasma. These substances may be regarded as potential biomarkers allowing for the diagnosis of Alzheimer´s disease even in its early stages.
Collapse
Affiliation(s)
- Tatiana Anatolievna Smirnova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Anton Viskin
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Martina Hoskova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Lucie Habartova
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Vladimir Setnicka
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Pavel Cejnar
- Department of Computing and Control Engineering, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Stepanka Kuckova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czech Republic
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Amyloidosis is caused by the deposition of misfolded aggregated proteins called amyloid fibrils that in turn cause organ damage and dysfunction. In this review, we aim to summarize the genetic, clinical, and histological findings in apolipoprotein-associated hereditary amyloidosis and the growing list of mutations and apolipoproteins associated with this disorder. We also endeavor to summarize the features of apolipoproteins that have led them to be overrepresented among amyloidogenic proteins. Additionally, we aim to distinguish mutations leading to amyloidosis from those that lead to inherited dyslipidemias. RECENT FINDINGS Apolipoproteins are becoming increasingly recognized in hereditary forms of amyloidosis. Although mutations in APOA1 and APOA2 have been well established in hereditary amyloidosis, new mutations are still being detected, providing further insight into the pathogenesis of apolipoprotein-related amyloidosis. Furthermore, amyloidogenic mutations in APOC2 and APOC3 have more recently been described. Although no hereditary mutations in APOE or APOA4 have been described to date, both protein products are amyloidogenic and frequently found within amyloid deposits. SUMMARY Understanding the underlying apolipoprotein mutations that contribute to hereditary amyloidosis may help improve understanding of this rare but serious disorder and could open the door for targeted therapies and the potential development of new treatment options.
Collapse
Affiliation(s)
- Natasha Jeraj
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Robert A Hegele
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Amanda J Berberich
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
19
|
Ohgita T, Furutani Y, Nakano M, Hattori M, Suzuki A, Nakagawa M, Naniwa S, Morita I, Oyama H, Nishitsuji K, Kobayashi N, Saito H. Novel conformation‐selective monoclonal antibodies against apoA‐I amyloid fibrils. FEBS J 2021. [DOI: 10.1111/febs.15487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Takashi Ohgita
- Department of Biophysical Chemistry Kyoto Pharmaceutical University Japan
| | - Yuki Furutani
- Department of Biophysical Chemistry Kyoto Pharmaceutical University Japan
| | - Miyu Nakano
- Department of Biophysical Chemistry Kyoto Pharmaceutical University Japan
| | - Megumi Hattori
- Department of Biophysical Chemistry Kyoto Pharmaceutical University Japan
| | - Ayane Suzuki
- Department of Biophysical Chemistry Kyoto Pharmaceutical University Japan
| | - Miho Nakagawa
- Department of Biophysical Chemistry Kyoto Pharmaceutical University Japan
| | - Sera Naniwa
- Department of Bioanalytical Chemistry Kobe Pharmaceutical University Japan
| | - Izumi Morita
- Department of Bioanalytical Chemistry Kobe Pharmaceutical University Japan
| | - Hiroyuki Oyama
- Department of Bioanalytical Chemistry Kobe Pharmaceutical University Japan
| | | | - Norihiro Kobayashi
- Department of Bioanalytical Chemistry Kobe Pharmaceutical University Japan
| | - Hiroyuki Saito
- Department of Biophysical Chemistry Kyoto Pharmaceutical University Japan
| |
Collapse
|
20
|
Perampalam P, Hassan HM, Lilly GE, Passos DT, Torchia J, Kiser PK, Bozovic A, Kulasingam V, Dick FA. Disrupting the DREAM transcriptional repressor complex induces apolipoprotein overexpression and systemic amyloidosis in mice. J Clin Invest 2021; 131:140903. [PMID: 33444292 DOI: 10.1172/jci140903] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 12/29/2020] [Indexed: 12/20/2022] Open
Abstract
DREAM (Dp, Rb-like, E2F, and MuvB) is a transcriptional repressor complex that regulates cell proliferation, and its loss causes neonatal lethality in mice. To investigate DREAM function in adult mice, we used an assembly-defective p107 protein and conditional deletion of its redundant family member p130. In the absence of DREAM assembly, mice displayed shortened survival characterized by systemic amyloidosis but no evidence of excessive cellular proliferation. Amyloid deposits were found in the heart, liver, spleen, and kidneys but not the brain or bone marrow. Using laser-capture microdissection followed by mass spectrometry, we identified apolipoproteins as the most abundant components of amyloids. Intriguingly, apoA-IV was the most detected amyloidogenic protein in amyloid deposits, suggesting apoA-IV amyloidosis (AApoAIV). AApoAIV is a recently described form, whereby WT apoA-IV has been shown to predominate in amyloid plaques. We determined by ChIP that DREAM directly regulated Apoa4 and that the histone variant H2AZ was reduced from the Apoa4 gene body in DREAM's absence, leading to overexpression. Collectively, we describe a mechanism by which epigenetic misregulation causes apolipoprotein overexpression and amyloidosis, potentially explaining the origins of nongenetic amyloid subtypes.
Collapse
Affiliation(s)
- Pirunthan Perampalam
- London Regional Cancer Program, London Health Sciences Centre, London, Ontario, Canada.,Department of Biochemistry, Western University, London, Ontario, Canada
| | - Haider M Hassan
- London Regional Cancer Program, London Health Sciences Centre, London, Ontario, Canada.,Department of Oncology, Western University, London, Ontario, Canada
| | - Grace E Lilly
- London Regional Cancer Program, London Health Sciences Centre, London, Ontario, Canada.,Department of Biochemistry, Western University, London, Ontario, Canada
| | - Daniel T Passos
- London Regional Cancer Program, London Health Sciences Centre, London, Ontario, Canada.,Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Joseph Torchia
- London Regional Cancer Program, London Health Sciences Centre, London, Ontario, Canada.,Department of Biochemistry, Western University, London, Ontario, Canada.,Department of Oncology, Western University, London, Ontario, Canada
| | - Patti K Kiser
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Andrea Bozovic
- Department of Clinical Biochemistry, University Health Network, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Vathany Kulasingam
- Department of Clinical Biochemistry, University Health Network, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Frederick A Dick
- London Regional Cancer Program, London Health Sciences Centre, London, Ontario, Canada.,Department of Oncology, Western University, London, Ontario, Canada.,Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada.,Children's Health Research Institute, London, Ontario, Canada
| |
Collapse
|
21
|
Sagawa T, Kogiso T, Ito T, Yasuda H, Katoh N, Yoshinaga T, Yazaki M, Kato T, Omori A, Kotera Y, Egawa H, Yamamoto M, Tokushige K. Hereditary Apolipoprotein A-1 Amyloidosis With Glu34Lys Mutation Treated by Liver Transplantation: A Case Report. Transplant Proc 2021; 53:1327-1332. [PMID: 33573822 DOI: 10.1016/j.transproceed.2020.11.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/16/2020] [Indexed: 12/20/2022]
Abstract
Hereditary apolipoprotein A-1 (ApoA-1) amyloidosis is a rare disease characterized by progressive deposition of amyloid fibrils in the kidney, heart, and liver. We observed a 45-year-old male patient with liver failure. Liver dysfunction was detected at 30 years of age during an annual health check-up. At 35 years of age, renal dysfunction was also found. At 40 years of age, the pathologic findings of the liver revealed amyloid deposition. A testis biopsy specimen taken at 42 years of age to identify the cause of male infertility showed amyloid accumulation. At 43 years of age, the amyloid results and genetic profile led to a definitive diagnosis of hereditary ApoA-1 amyloidosis caused by Glu34Lys mutation. A family history was absent. Liver failure showed Budd-Chiari-like formation, including enlargement of the caudate lobe and liver congestion. Although the patient showed end-stage liver cirrhosis and renal failure, only liver transplant was performed considering the burden for a living donor. The enlarged liver (4.9 kg) showed amyloid deposition in parenchyma and the space of Disse. Amyloid also accumulated in the giant spleen. The APOA1 mutation Glu34Lys is extremely rare, and in this case hepatic failure was successfully treated by liver transplant to both replace organ function and reduce production of the amyloidogenic ApoA-1-variant protein. Careful observation for reaccumulation of amyloidosis in the organ is required.
Collapse
Affiliation(s)
- Takaomi Sagawa
- Department of Internal Medicine, Institute of Gastroenterology, Tokyo Women's Medical University, Tokyo, Japan
| | - Tomomi Kogiso
- Department of Internal Medicine, Institute of Gastroenterology, Tokyo Women's Medical University, Tokyo, Japan.
| | - Taito Ito
- Department of Internal Medicine, Institute of Gastroenterology, Tokyo Women's Medical University, Tokyo, Japan
| | - Hideo Yasuda
- Hamamatsu University School of Medicine, Internal Medicine, Hamamatsu, Shizuoka, Japan
| | - Nagaaki Katoh
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Tsuneaki Yoshinaga
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Masahide Yazaki
- Department of Biomedical Laboratory Sciences, Shinshu University School of Health Sciences, Matsumoto, Nagano, Japan; Institute for Biomedical Sciences, Shinshu University, Matsumoto, Nagano, Japan
| | - Takaaki Kato
- Department of Surgery, Institute of Gastroenterology, Tokyo Women's Medical University, Tokyo, Japan
| | - Akiko Omori
- Department of Surgery, Institute of Gastroenterology, Tokyo Women's Medical University, Tokyo, Japan
| | - Yoshihito Kotera
- Department of Surgery, Institute of Gastroenterology, Tokyo Women's Medical University, Tokyo, Japan
| | - Hiroto Egawa
- Department of Surgery, Institute of Gastroenterology, Tokyo Women's Medical University, Tokyo, Japan
| | - Masakazu Yamamoto
- Department of Surgery, Institute of Gastroenterology, Tokyo Women's Medical University, Tokyo, Japan
| | - Katsutoshi Tokushige
- Department of Internal Medicine, Institute of Gastroenterology, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
22
|
Zhang T, Han X, Zhang X, Chen Z, Mi Y, Gou X. Dietary Fatty Acid Factors in Alzheimer's Disease: A Review. J Alzheimers Dis 2020; 78:887-904. [PMID: 33074226 DOI: 10.3233/jad-200558] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is an irreversible neurodegenerative disease characterized by brain function disorder and chronic cognitive function impairment. The onset of AD is complex and is mostly attributed to interactions between genetic factors and environmental factors. Lifestyle, dietary habits, and food consumption are likely to play indispensable functions in aged-related neurodegenerative diseases in elderly people. An increasing number of epidemiological studies have linked dietary fatty acid factors to AD, raising the point of view that fatty acid metabolism plays an important role in AD initiation and progression as well as in other central nervous system disorders. In this paper, we review the effects of the consumption of various dietary fatty acids on AD onset and progression and discuss the detrimental and beneficial effects of some typical fatty acids derived from dietary patterns on the pathology of AD. We outline these recent advances, and we recommend that healthy dietary lifestyles may contribute to preventing the occurrence and decreasing the pathology of AD.
Collapse
Affiliation(s)
- Tianying Zhang
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, PR China
| | - Xiaojuan Han
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, PR China
| | - Xiaohua Zhang
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, PR China
| | - Zhi Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, PR China
| | - Yajing Mi
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, PR China
| | - Xingchun Gou
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, PR China
| |
Collapse
|
23
|
Structural Basis for Vital Function and Malfunction of Serum Amyloid A: an Acute-Phase Protein that Wears Hydrophobicity on Its Sleeve. Curr Atheroscler Rep 2020; 22:69. [PMID: 32968930 PMCID: PMC7511256 DOI: 10.1007/s11883-020-00888-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW This review addresses normal and pathologic functions of serum amyloid A (SAA), an enigmatic biomarker of inflammation and protein precursor of AA amyloidosis, a life-threatening complication of chronic inflammation. SAA is a small, highly evolutionarily conserved acute-phase protein whose plasma levels increase up to one thousand-fold in inflammation, infection, or after trauma. The advantage of this dramatic but transient increase is unclear, and the complex role of SAA in immune response is intensely investigated. This review summarizes recent advances in our understanding of the structure-function relationship of this intrinsically disordered protein, outlines its newly emerging beneficial roles in lipid transport and inflammation control, and discusses factors that critically influence its misfolding in AA amyloidosis. RECENT FINDINGS High-resolution structures of lipid-free SAA in crystals and fibrils have been determined by x-ray crystallography and electron cryo-microscopy. Low-resolution structural studies of SAA-lipid complexes, together with biochemical, cell-based, animal model, genetic, and clinical studies, have provided surprising new insights into a wide range of SAA functions. An emerging vital role of SAA is lipid encapsulation to remove cell membrane debris from sites of injury. The structural basis for this role has been proposed. The lysosomal origin of AA amyloidosis has solidified, and its molecular and cellular mechanisms have emerged. Recent studies have revealed molecular underpinnings for understanding complex functions of this Cambrian protein in lipid transport, immune response, and amyloid formation. These findings help guide the search for much-needed targeted therapies to block the protein deposition in AA amyloidosis.
Collapse
|
24
|
Novel clinical manifestations and treatment of hereditary apoA-I amyloidosis: when a good protein turns bad. Kidney Int 2020; 98:62-64. [PMID: 32571494 DOI: 10.1016/j.kint.2020.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 11/22/2022]
Abstract
Amyloidoses are life-threatening diseases caused by the deposition of various proteins including apolipoprotein A-I, the major protein of plasma high-density lipoprotein. Timely diagnostics of amyloidoses are crucial for their treatment. Colombat et al. reported novel aspects of the hereditary apolipoprotein A-I amyloidosis, including its unexpected clinical presentation and genetic origins, as well as life- and vision-saving hepatorenal transplantation. This study improves the diagnostics of apolipoprotein A-I amyloidosis, optimizes its treatment, and expands our understanding of the molecular basis of this multipronged disease.
Collapse
|
25
|
Zhang X. Higher Plasma APOC-III Was Associated with a Slower Reduction of β-Amyloid Levels in Cerebrospinal Fluid Among Older Individuals Without Dementia. Neuropsychiatr Dis Treat 2020; 16:1139-1144. [PMID: 32440128 PMCID: PMC7213010 DOI: 10.2147/ndt.s238985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 03/01/2020] [Indexed: 11/28/2022] Open
Abstract
PURPOSE Although emerging evidence has suggested that apolipoprotein C-III (APOC-III) is involved in the pathogenesis of Alzheimer's disease (AD), the association of APOC-III with longitudinal changes in cerebrospinal fluid (CSF) AD pathologies (β-amyloid (Aβ42) and tau proteins) is not clear. In the present study, we aimed to examine whether plasma APOC-III levels are associated with longitudinal changes in CSF Aβ42, total-tau (t-tau), and phosphorylated-tau (p-tau) levels among older individuals without dementia. PATIENTS AND METHODS Linear mixed models were fitted with plasma APOC-III used as a predictor for longitudinal changes in CSF AD biomarkers over a 7-year period. Data were obtained from the Alzheimer's Disease Neuroimaging Initiative database, and 195 older individuals without dementia (47 subjects with normal cognition (NC) and 148 subjects with mild cognitive impairment (MCI)) with baseline plasma APOC-III measurements were included. RESULTS Among older individuals without dementia, we found that the tertiles of plasma APOC-III were associated with changes in CSF Aβ42, but not t-tau or p-tau. Specifically, the CSF Aβ42 reduction for individuals in the highest plasma APOC-III tertile was significantly slower compared with those in the middle tertile, whereas no other pairwise difference was found to be statistically significant. CONCLUSION Among older individuals without dementia, higher plasma APOC-III levels were associated with slower declines in CSF Aβ42.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Department of Child Healthcare, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | | |
Collapse
|
26
|
Gaddi GM, Gisonno RA, Rosú SA, Curto LM, Prieto ED, Schinella GR, Finarelli GS, Cortez MF, Bauzá L, Elías EE, Ramella NA, Tricerri MA. Structural analysis of a natural apolipoprotein A-I variant (L60R) associated with amyloidosis. Arch Biochem Biophys 2020; 685:108347. [DOI: 10.1016/j.abb.2020.108347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 01/11/2023]
|
27
|
Zanoni P, von Eckardstein A. Inborn errors of apolipoprotein A-I metabolism: implications for disease, research and development. Curr Opin Lipidol 2020; 31:62-70. [PMID: 32022753 DOI: 10.1097/mol.0000000000000667] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW We review current knowledge regarding naturally occurring mutations in the human apolipoprotein A-I (APOA1) gene with a focus on their clinical complications as well as their exploitation for the elucidation of structure-function-(disease) relationships and therapy. RECENT FINDINGS Bi-allelic loss-of-function mutations in APOA1 cause HDL deficiency and, in the majority of patients, premature atherosclerotic cardiovascular disease (ASCVD) and corneal opacities. Heterozygous HDL-cholesterol decreasing mutations in APOA1 were associated with increased risk of ASCVD in several but not all studies. Some missense mutations in APOA1 cause familial amyloidosis. Structure-function-reationships underlying the formation of amyloid as well as the manifestion of amyloidosis in specific tissues are better understood. Lessons may also be learnt from the progress in the treatment of amyloidoses induced by transthyretin variants. Infusion of reconstituted HDL (rHDL) containing apoA-I (Milano) did not cause regression of atherosclerosis in coronary arteries of patients with acute coronary syndrome. However, animal experiments indicate that rHDL with apoA-I (Milano) or apoA-I mimetic peptides may be useful for the treatment of heart failure of inflammatory bowel disease. SUMMARY Specific mutations in APOA1 are the cause of premature ASCVD or familial amyloidosis. Synthetic mimetics of apoA-I (mutants) may be useful for the treatment of several diseases beyond ASCVD.
Collapse
Affiliation(s)
- Paolo Zanoni
- Institute of Medical Genetics, University of Zurich
| | | |
Collapse
|
28
|
Frame NM, Kumanan M, Wales TE, Bandara A, Fändrich M, Straub JE, Engen JR, Gursky O. Structural Basis for Lipid Binding and Function by an Evolutionarily Conserved Protein, Serum Amyloid A. J Mol Biol 2020; 432:1978-1995. [PMID: 32035904 PMCID: PMC7225066 DOI: 10.1016/j.jmb.2020.01.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 01/28/2023]
Abstract
Serum amyloid A (SAA) is a plasma protein that transports lipids during inflammation. To explore SAA solution conformations and lipid-binding mechanism, we used hydrogen-deuterium exchange mass spectrometry, lipoprotein reconstitution, amino acid sequence analysis, and molecular dynamics simulations. Solution conformations of lipid-bound and lipid-free mSAA1 at pH~7.4 agreed in details with the crystal structures but also showed important differences. The results revealed that amphipathic α-helices h1 and h3 comprise a lipid-binding site that is partially pre-formed in solution, is stabilized upon binding lipids, and shows lipid-induced folding of h3. This site sequesters apolar ligands via a concave hydrophobic surface in SAA oligomers. The largely disordered/dynamic C-terminal region is conjectured to mediate the promiscuous binding of other ligands. The h1-h2 linker region is predicted to form an unexpected β-hairpin that may represent an early amyloidogenic intermediate. The results help establish structural underpinnings for understanding SAA interactions with its key functional ligands, its evolutional conservation, and its transition to amyloid.
Collapse
Affiliation(s)
- Nicholas M Frame
- Department of Physiology & Biophysics, Boston University School of Medicine, 700 Albany Street, Boston, MA, 02118, United States
| | - Meera Kumanan
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA, 02215, United States
| | - Thomas E Wales
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, United States
| | - Asanga Bandara
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA, 02215, United States
| | - Marcus Fändrich
- Institute of Protein Biochemistry, Ulm University, Ulm, 89081, Germany
| | - John E Straub
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA, 02215, United States.
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, United States.
| | - Olga Gursky
- Department of Physiology & Biophysics, Boston University School of Medicine, 700 Albany Street, Boston, MA, 02118, United States; Amyloidosis Treatment and Research Center, Boston University School of Medicine, Boston, MA, 02118, United States.
| |
Collapse
|
29
|
Tsiolaki PL, Katsafana AD, Baltoumas FA, Louros NN, Iconomidou VA. Hidden Aggregation Hot-Spots on Human Apolipoprotein E: A Structural Study. Int J Mol Sci 2019; 20:ijms20092274. [PMID: 31071995 PMCID: PMC6539603 DOI: 10.3390/ijms20092274] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 01/13/2023] Open
Abstract
Human apolipoprotein E (apoE) is a major component of lipoprotein particles, and under physiological conditions, is involved in plasma cholesterol transport. Human apolipoprotein E found in three isoforms (E2; E3; E4) is a member of a family of apolipoproteins that under pathological conditions are detected in extracellular amyloid depositions in several amyloidoses. Interestingly, the lipid-free apoE form has been shown to be co-localized with the amyloidogenic Aβ peptide in amyloid plaques in Alzheimer’s disease, whereas in particular, the apoE4 isoform is a crucial risk factor for late-onset Alzheimer’s disease. Evidence at the experimental level proves that apoE self-assembles into amyloid fibrilsin vitro, although the misfolding mechanism has not been clarified yet. Here, we explored the mechanistic insights of apoE misfolding by testing short apoE stretches predicted as amyloidogenic determinants by AMYLPRED, and we computationally investigated the dynamics of apoE and an apoE–Αβ complex. Our in vitro biophysical results prove that apoE peptide–analogues may act as the driving force needed to trigger apoE aggregation and are supported by the computational apoE outcome. Additional computational work concerning the apoE–Αβ complex also designates apoE amyloidogenic regions as important binding sites for oligomeric Αβ; taking an important step forward in the field of Alzheimer’s anti-aggregation drug development.
Collapse
Affiliation(s)
- Paraskevi L Tsiolaki
- Section of Cell Biology and Biophysics, Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15701, Greece.
| | - Aikaterini D Katsafana
- Section of Cell Biology and Biophysics, Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15701, Greece.
| | - Fotis A Baltoumas
- Section of Cell Biology and Biophysics, Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15701, Greece.
| | - Nikolaos N Louros
- Section of Cell Biology and Biophysics, Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15701, Greece.
| | - Vassiliki A Iconomidou
- Section of Cell Biology and Biophysics, Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15701, Greece.
| |
Collapse
|
30
|
Vahdat Shariat Panahi A, Hultman P, Öllinger K, Westermark GT, Lundmark K. Lipid membranes accelerate amyloid formation in the mouse model of AA amyloidosis. Amyloid 2019; 26:34-44. [PMID: 30929476 DOI: 10.1080/13506129.2019.1576606] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION AA amyloidosis develops as a result of prolonged inflammation and is characterized by deposits of N-terminal proteolytic fragments of the acute phase reactant serum amyloid A (SAA). Macrophages are usually found adjacent to amyloid, suggesting their involvement in the formation and/or degradation of the amyloid fibrils. Furthermore, accumulating evidence suggests that lipid membranes accelerate the fibrillation of different amyloid proteins. METHODS Using an experimental mouse model of AA amyloidosis, we compared the amyloidogenic effect of liposomes and/or amyloid-enhancing factor (AEF). Inflammation was induced by subcutaneous injection of silver nitrate followed by intravenous injection of liposomes and/or AEF to accelerate amyloid formation. RESULTS We showed that liposomes accelerate amyloid formation in inflamed mice, but the amyloidogenic effect of liposomes was weaker compared with AEF. Regardless of the induction method, amyloid deposits were mainly found in the marginal zones of the spleen and coincided with the depletion of marginal zone macrophages, while red pulp macrophages and metallophilic marginal zone macrophages proved insensitive to amyloid deposition. CONCLUSIONS We conclude that increased intracellular lipid content facilitates AA amyloid fibril formation and show that the mouse model of AA amyloidosis is a suitable system for further mechanistic studies.
Collapse
Affiliation(s)
- Aida Vahdat Shariat Panahi
- a Experimental Pathology, Department of Clinical and Experimental Medicine , Linköping University , Linköping , Sweden.,b Departments of Clinical Pathology and Clinical and Experimental Medicine , Linköping University , Linköping , Sweden
| | - Per Hultman
- c Molecular and Immunological Pathology, Department of Clinical and Experimental Medicine , Linköping University , Linköping , Sweden
| | - Karin Öllinger
- a Experimental Pathology, Department of Clinical and Experimental Medicine , Linköping University , Linköping , Sweden
| | | | - Katarzyna Lundmark
- a Experimental Pathology, Department of Clinical and Experimental Medicine , Linköping University , Linköping , Sweden.,b Departments of Clinical Pathology and Clinical and Experimental Medicine , Linköping University , Linköping , Sweden
| |
Collapse
|
31
|
Ramella NA, Andújar I, Ríos JL, Rosú SA, Tricerri MA, Schinella GR. Human apolipoprotein A-I Gly26Arg stimulation of inflammatory responses via NF-kB activation: Potential roles in amyloidosis? PATHOPHYSIOLOGY 2018; 25:397-404. [DOI: 10.1016/j.pathophys.2018.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/16/2018] [Accepted: 08/07/2018] [Indexed: 01/29/2023] Open
|
32
|
Morgado I, Panahi A, Burwash AG, Das M, Straub JE, Gursky O. Molecular Insights into Human Hereditary Apolipoprotein A-I Amyloidosis Caused by the Glu34Lys Mutation. Biochemistry 2018; 57:5738-5747. [PMID: 30184436 PMCID: PMC11259198 DOI: 10.1021/acs.biochem.8b00817] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hereditary apolipoprotein A-I (apoA-I) amyloidosis is a life-threatening incurable genetic disorder whose molecular underpinnings are unclear. In this disease, variant apoA-I, the major structural and functional protein of high-density lipoprotein, is released in a free form, undergoes an α-helix to intermolecular cross-β-sheet conversion along with a proteolytic cleavage, and is deposited as amyloid fibrils in various organs, which can cause organ damage and death. Glu34Lys is the only known charge inversion mutation in apoA-I that causes human amyloidosis. To elucidate the structural underpinnings of the amyloidogenic behavior of Glu34Lys apoA-I, we generated its recombinant globular N-terminal domain (residues 1-184) and compared the conformation and dynamics of its lipid-free form with those of two other naturally occurring apoA-I variants, Phe71Tyr (amyloidogenic) and Leu159Arg (non-amyloidogenic). All variants showed reduced structural stability and altered aromatic residue packing. The greatest decrease in stability was observed in the non-amyloidogenic variant, suggesting that amyloid formation is driven by local structural perturbations at sensitive sites. Molecular dynamics simulations revealed local helical unfolding and suggested that transient opening of the Trp72 side chain induced mutation-dependent structural perturbations in a sensitive region, including the major amyloid hot spot residues Leu14-Leu22. We posit that a shift from the "closed" to the "open" orientation of the Trp72 side chain modulates structural protection of amyloid hot spots, suggesting a previously unknown early step in the protein misfolding pathway.
Collapse
Affiliation(s)
- Isabel Morgado
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118-2526, United States
| | - Afra Panahi
- Department of Chemistry, Boston University, Boston, Massachusetts 02215-2521, United States
| | - Andrew G. Burwash
- Department of Chemistry, Boston University, Boston, Massachusetts 02215-2521, United States
| | - Madhurima Das
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118-2526, United States
| | - John E. Straub
- Department of Chemistry, Boston University, Boston, Massachusetts 02215-2521, United States
| | - Olga Gursky
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118-2526, United States
- Amyloidosis Treatment and Research Center, Boston University School of Medicine, Boston, Massachusetts 02118, United States
| |
Collapse
|
33
|
Gorbenko GP, Trusova V, Mizuguchi C, Saito H. Lipid Bilayer Interactions of Amyloidogenic N-Terminal Fragment of Apolipoprotein A-I Probed by Förster Resonance Energy Transfer and Molecular Dynamics Simulations. J Fluoresc 2018; 28:1037-1047. [DOI: 10.1007/s10895-018-2267-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 07/10/2018] [Indexed: 11/25/2022]
|
34
|
Wilson CJ, Das M, Jayaraman S, Gursky O, Engen JR. Effects of Disease-Causing Mutations on the Conformation of Human Apolipoprotein A-I in Model Lipoproteins. Biochemistry 2018; 57:4583-4596. [PMID: 30004693 DOI: 10.1021/acs.biochem.8b00538] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Plasma high-density lipoproteins (HDLs) are protein-lipid nanoparticles that transport lipids and protect against atherosclerosis. Human apolipoprotein A-I (apoA-I) is the principal HDL protein whose mutations can cause either aberrant lipid metabolism or amyloid disease. Hydrogen-deuterium exchange (HDX) mass spectrometry (MS) was used to study the apoA-I conformation in model discoidal lipoproteins similar in size to large plasma HDL. We examined how point mutations associated with hereditary amyloidosis (F71Y and L170P) or atherosclerosis (L159R) influence the local apoA-I conformation in model lipoproteins. Unlike other apoA-I forms, the large particles showed minimal conformational heterogeneity, suggesting a fully extended protein conformation. Mutation-induced structural perturbations in lipid-bound protein were attenuated compared to the free protein and indicated close coupling between the two belt-forming apoA-I molecules. These perturbations propagated to distant lipoprotein sites, either increasing or decreasing their protection. This HDX MS study of large model HDL, compared with previous studies of smaller particles, ascertained that apoA-I's central region helps accommodate the protein conformation to lipoproteins of various sizes. This study also reveals that the effects of mutations on lipoprotein conformational dynamics are much weaker than those in a lipid-free protein. Interestingly, the mutation-induced perturbations propagate to distant sites nearly 10 nm away and alter their protection in ways that cannot be predicted from the lipoprotein structure and stability. We propose that long-range mutational effects are mediated by both protein and lipid and can influence lipoprotein functionality.
Collapse
Affiliation(s)
- Christopher J Wilson
- Department of Chemistry and Chemical Biology , Northeastern University , 360 Huntington Avenue , Boston , Massachusetts 02115 , United States
| | - Madhurima Das
- Department of Physiology & Biophysics , Boston University School of Medicine , 700 Albany Street , Boston , Massachusetts 02118 , United States
| | - Shobini Jayaraman
- Department of Physiology & Biophysics , Boston University School of Medicine , 700 Albany Street , Boston , Massachusetts 02118 , United States
| | - Olga Gursky
- Department of Physiology & Biophysics , Boston University School of Medicine , 700 Albany Street , Boston , Massachusetts 02118 , United States.,Amyloidosis Research Center , Boston University School of Medicine , Boston , Massachusetts 02118 , United States
| | - John R Engen
- Department of Chemistry and Chemical Biology , Northeastern University , 360 Huntington Avenue , Boston , Massachusetts 02115 , United States
| |
Collapse
|
35
|
Jayaraman S, Gantz DL, Haupt C, Fändrich M, Gursky O. Serum amyloid A sequesters diverse phospholipids and their hydrolytic products, hampering fibril formation and proteolysis in a lipid-dependent manner. Chem Commun (Camb) 2018; 54:3532-3535. [PMID: 29565436 DOI: 10.1039/c8cc01424h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Serum amyloid A action in immune response and deposition in inflammation-linked amyloidosis involve SAA-lipid interactions. We show that SAA sequesters neutral and anionic phospholipids and their hydrolytic products to form nanoparticles, suggesting a synergy with phospholipase A2. The lipid charge and shape affect SAA protection from proteolysis, aggregation and fibrillogenesis.
Collapse
Affiliation(s)
- Shobini Jayaraman
- Department of Physiology & Biophysics, Boston University School of Medicine, 700 Albany St., W302, Boston, MA 02118, USA.
| | - Donald L Gantz
- Department of Physiology & Biophysics, Boston University School of Medicine, 700 Albany St., W302, Boston, MA 02118, USA.
| | - Christian Haupt
- Institute of Protein Biochemistry, Ulm University, Helmholtzstraße 8/1, 89081, Ulm, Germany
| | - Marcus Fändrich
- Institute of Protein Biochemistry, Ulm University, Helmholtzstraße 8/1, 89081, Ulm, Germany
| | - Olga Gursky
- Department of Physiology & Biophysics, Boston University School of Medicine, 700 Albany St., W302, Boston, MA 02118, USA.
| |
Collapse
|
36
|
Smith A, Galli M, Piga I, Denti V, Stella M, Chinello C, Fusco N, Leni D, Manzoni M, Roversi G, Garancini M, Pincelli AI, Cimino V, Capitoli G, Magni F, Pagni F. Molecular signatures of medullary thyroid carcinoma by matrix-assisted laser desorption/ionisation mass spectrometry imaging. J Proteomics 2018; 191:114-123. [PMID: 29581064 DOI: 10.1016/j.jprot.2018.03.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 03/06/2018] [Accepted: 03/19/2018] [Indexed: 12/17/2022]
Abstract
The main aim of the study was to assess the feasibility of matrix-assisted laser desorption/ionisation mass spectrometry imaging (MALDI-MSI) in the pathological investigation of Medullary Thyroid Carcinoma (MTC). Formalin-fixed paraffin-embedded (FFPE) samples from seven MTC patients were analysed by MALDI-MSI in order to detect proteomic alterations within tumour lesions and to define the molecular profiles of specific findings, such as amyloid deposition and C cell hyperplasia (CCH). nLC-ESI MS/MS was employed for the identification of amyloid components and to select alternative proteomic markers of MTC pathogenesis. Results highlighted the potential of MALDI-MSI to confirm the classic immunohistochemical methods employed for the diagnosis of MTC, with good sensitivity and specificity. Intratumoural amyloid components were also detected and identified, and were characterised by calcitonin, apolipoprotein E, apolipoprotein IV, and vitronectin. The tryptic peptide profiles representative of MTC and CCH were distinctly different, with four alternative markers for MTC being detected; K1C18, and three histones (H2A, H3C, and H4). Finally, a further 115 proteins were identified through the nLC-ESI-MS/MS analysis alone, with moesin, veriscan, and lumican being selected due to their potential involvement in MTC pathogenesis. This approach represents a complimentary strategy that could be employed to detect new proteomic markers of MTC. STATEMENT OF SIGNIFICANCE: Medullary thyroid carcinoma (MTC) is a rare endocrine malignancy that originates from the parafollicular C-cells of the thyroid. The diagnosis is typically established using a combination of fine-needle aspiration biopsy (FNAB) of a suspicious nodule along with the demonstrable elevation of serum biomarkers, such as calcitonin and carcinoembryonic antigen (CEA). Unfortunately, this combination is often associated with a high degree of false-positive results and this can lead to misdiagnosis and avoidable total thyroidectomy. The current study presents the potential role of MALDI-MSI in the search for new proteomic markers of MTC with diagnostic and prognostic significance. MALDI-MSI was capable of detecting the classic immunohistochemical markers employed for the diagnosis of MTC, with good sensitivity and specificity. Furthermore, the complementary combination of MALDI-MSI and nLC-ESI-MS/MS analysis, using a single tissue section, enabled further potential markers to be identified and their spatial localisation visualised within tumoural regions. Such findings could be a valuable starting point for further studies focused on confirming the data presented here using thyroid FNABs, with the final objective being to provide complimentary assistance for the detection of MTC during the pre-operative phase.
Collapse
Affiliation(s)
- Andrew Smith
- Department of Medicine and Surgery, University of Milano-Bicocca, Clinical Proteomics and Metabolomics Unit, Vedano al Lambro, Italy.
| | - Manuel Galli
- Department of Medicine and Surgery, University of Milano-Bicocca, Clinical Proteomics and Metabolomics Unit, Vedano al Lambro, Italy.
| | - Isabella Piga
- Department of Medicine and Surgery, University of Milano-Bicocca, Clinical Proteomics and Metabolomics Unit, Vedano al Lambro, Italy; Department of Medicine and Surgery, University of Milano-Bicocca, Section of Pathology, Monza, Italy.
| | - Vanna Denti
- Department of Medicine and Surgery, University of Milano-Bicocca, Clinical Proteomics and Metabolomics Unit, Vedano al Lambro, Italy.
| | - Martina Stella
- Department of Medicine and Surgery, University of Milano-Bicocca, Clinical Proteomics and Metabolomics Unit, Vedano al Lambro, Italy.
| | - Clizia Chinello
- Department of Medicine and Surgery, University of Milano-Bicocca, Clinical Proteomics and Metabolomics Unit, Vedano al Lambro, Italy.
| | - Nicola Fusco
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Davide Leni
- Department of Radiology, San Gerardo Hospital, Monza, Italy
| | - Marco Manzoni
- Department of Medicine and Surgery, University of Milano-Bicocca, Section of Pathology, Monza, Italy
| | - Gaia Roversi
- Department of Medicine and Surgery, University of Milano-Bicocca, Section of Genomics, Monza, Italy.
| | | | | | - Vincenzo Cimino
- Department of Endocrinology, San Gerardo Hospital, Monza, Italy
| | - Giulia Capitoli
- Department of Medicine and Surgery, University of Milano-Bicocca, Section of Biostatistics, Monza, Italy.
| | - Fulvio Magni
- Department of Medicine and Surgery, University of Milano-Bicocca, Clinical Proteomics and Metabolomics Unit, Vedano al Lambro, Italy.
| | - Fabio Pagni
- Department of Medicine and Surgery, University of Milano-Bicocca, Section of Pathology, Monza, Italy.
| |
Collapse
|
37
|
Nanotherapy for Alzheimer's disease and vascular dementia: Targeting senile endothelium. Adv Colloid Interface Sci 2018; 251:44-54. [PMID: 29274774 DOI: 10.1016/j.cis.2017.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 12/01/2017] [Accepted: 12/02/2017] [Indexed: 12/12/2022]
Abstract
Due to the complexity of Alzheimer's disease, multiple cellular types need to be targeted simultaneously in order for a given therapy to demonstrate any major effectiveness. Ultrasound-sensitive coated microbubbles (in a targeted lipid nanoemulsion) are available. Versatile small molecule drug(s) targeting multiple pathways of Alzheimer's disease pathogenesis are known. By incorporating such drug(s) into the targeted "lipid-coated microbubble" [LCM]/"nanoparticle-derived" [ND] (or LCM/ND) nanoemulsion type, one obtains a multitasking combination therapeutic for translational medicine. This multitasking therapeutic targets cell-surface scavenger receptors (mainly class B type I), or SR-BI, making possible for various Alzheimer's-related cell types to be simultaneously searched out for localized drug treatment in vivo. Besides targeting cell-surface SR-BI, the proposed LCM/ND-nanoemulsion combination therapeutic(s) include a characteristic lipid-coated microbubble [LCM] subpopulation (i.e., a stable LCM suspension); such film-stabilized microbubbles are well known to substantially reduce the acoustic power levels needed for accomplishing temporary noninvasive (transcranial) ultrasound treatment, or sonoporation, if additionally desired for the Alzheimer's patient.
Collapse
|
38
|
Alzheimer’s Disease, Brain Injury, and C.N.S. Nanotherapy in Humans: Sonoporation Augmenting Drug Targeting. Med Sci (Basel) 2017. [PMCID: PMC5753658 DOI: 10.3390/medsci5040029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Owing to the complexity of neurodegenerative diseases, multiple cellular types need to be targeted simultaneously in order for a given therapy to demonstrate any major effectiveness. Ultrasound-sensitive coated microbubbles (in a targeted nanoemulsion) are available. Versatile small-molecule drug(s) targeting multiple pathways of Alzheimer’s disease pathogenesis are known. By incorporating such drug(s) into the targeted lipid-coated microbubble/nanoparticle-derived (LCM/ND) lipid nanoemulsion type, one obtains a multitasking combination therapeutic for translational medicine. This multitasking therapeutic targets cell-surface scavenger receptors (mainly scavenger receptor class B type I (SR-BI)), making it possible for various Alzheimer’s-related cell types to be simultaneously sought for localized drug treatment in vivo. Besides targeting cell-surface SR-BI, the proposed LCM/ND-nanoemulsion combination therapeutic(s) include a characteristic lipid-coated microbubble (LCM) subpopulation (i.e., a stable LCM suspension); such LCM substantially reduce the acoustic power levels needed for accomplishing temporary noninvasive (transcranial) ultrasound treatment, or sonoporation, if additionally desired for the Alzheimer’s patient.
Collapse
|
39
|
Gaglione R, Smaldone G, Di Girolamo R, Piccoli R, Pedone E, Arciello A. Cell milieu significantly affects the fate of AApoAI amyloidogenic variants: predestination or serendipity? Biochim Biophys Acta Gen Subj 2017; 1862:377-384. [PMID: 29174954 DOI: 10.1016/j.bbagen.2017.11.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 11/17/2017] [Accepted: 11/21/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Specific apolipoprotein A-I variants are associated to severe hereditary amyloidoses. The organ distribution of AApoAI amyloidosis seems to depend on the position of the mutation, since mutations in residues from 1 to 75 are mainly associated to hepatic and renal amyloidosis, while mutations in residues from 173 to 178 are mostly responsible for cardiac, laryngeal, and cutaneous amyloidosis. Molecular bases of this tissue specificity are still poorly understood, but it is increasingly emerging that protein destabilization induced by amyloidogenic mutations is neither necessary nor sufficient for amyloidosis development. METHODS By using a multidisciplinary approach, including circular dichroism, dynamic light scattering, spectrofluorometric and atomic force microscopy analyses, the effect of target cells on the conformation and fibrillogenic pathway of the two AApoAI amyloidogenic variants AApoAIL75P and AApoAIL174S has been monitored. RESULTS Our data show that specific cell milieus selectively affect conformation, aggregation propensity and fibrillogenesis of the two AApoAI amyloidogenic variants. CONCLUSIONS An intriguing picture emerged indicating that defined cell contexts selectively induce fibrillogenesis of specific AApoAI variants. GENERAL SIGNIFICANCE An innovative methodological approach, based on the use of whole intact cells to monitor the effects of cell context on AApoAI variants fibrillogenic pathway, has been set up.
Collapse
Affiliation(s)
- Rosa Gaglione
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | | | - Rocco Di Girolamo
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Renata Piccoli
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; Istituto Nazionale di Biostrutture e Biosistemi (INBB), Italy
| | - Emilia Pedone
- Istituto di Biostrutture e Bioimmagini, CNR, Naples, Italy; Research Centre on Bioactive Peptides (CIRPeB), University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy.
| | - Angela Arciello
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; Istituto Nazionale di Biostrutture e Biosistemi (INBB), Italy.
| |
Collapse
|
40
|
Obici L, Nuvolone M, Merlini G. Expanding the spectrum of systemic amyloid diseases: a new hint from the kidney. Kidney Int 2017; 90:479-81. [PMID: 27521110 DOI: 10.1016/j.kint.2016.05.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 05/04/2016] [Indexed: 11/19/2022]
Abstract
Proteomics-based assays have substantially improved diagnostic accuracy in systemic amyloidosis and have led to the discovery of novel amyloidogenic proteins. The observation that human apolipoproteins are increasingly represented is intriguing and highlights the complex, and partially known, mutual effects of the misfolded proteins and lipids. Dasari et al. report on the first series of patients affected by the recently described apolipoprotein A-IV amyloidosis, detailing its peculiar clinical and pathologic findings and diagnostic pitfalls.
Collapse
Affiliation(s)
- Laura Obici
- Amyloidosis Research and Treatment Center, Foundation IRCCS Policlinico San Matteo, Pavia, Italy
| | - Mario Nuvolone
- Amyloidosis Research and Treatment Center, Foundation IRCCS Policlinico San Matteo, Pavia, Italy; Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Giampaolo Merlini
- Amyloidosis Research and Treatment Center, Foundation IRCCS Policlinico San Matteo, Pavia, Italy; Department of Molecular Medicine, University of Pavia, Pavia, Italy.
| |
Collapse
|
41
|
Miyahara H, Sawashita J, Ishikawa E, Yang M, Ding X, Liu Y, Hachiya N, Kametani F, Yazaki M, Mori M, Higuchi K. Comprehensive proteomic profiles of mouse AApoAII amyloid fibrils provide insights into the involvement of lipoproteins in the pathology of amyloidosis. J Proteomics 2017; 172:111-121. [PMID: 28988881 DOI: 10.1016/j.jprot.2017.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/17/2017] [Accepted: 10/05/2017] [Indexed: 02/06/2023]
Abstract
Amyloidosis is a disorder characterized by extracellular fibrillar deposits of misfolded proteins. The amyloid deposits commonly contain several non-fibrillar proteins as amyloid-associated proteins, but their roles in amyloidosis pathology are still unknown. In mouse senile amyloidosis, apolipoprotein A-II (ApoA-II) forms extracellular amyloid fibril (AApoAII) deposits with other proteins (AApoAII-associated proteins) in many organs. We previously reported that R1.P1-Apoa2c mice provide a reproducible model of AApoAII amyloidosis. In order to investigate the sequential alterations of AApoAII-associated protein, we performed a proteomic analysis of amyloid fibrils extracted from mouse liver tissues that contained different levels of AApoAII deposition. We identified 6 AApoAII-associated proteins that constituted 20 of the top-ranked proteins in mice with severe AApoAII deposition. Although the amount of AApoAII-associated proteins increased with the progression of amyloidosis, the relative abundance of AApoAII-associated proteins changed little throughout the progression of amyloidosis. On the other hand, plasma levels of these proteins showed dramatic changes during the progression of amyloidosis. In addition, we confirmed that AApoAII-associated proteins were significantly associated with lipid metabolism based on functional enrichment analysis, and lipids were co-deposited with AApoAII fibrils from early stages of development of amyloidosis. Thus, these results demonstrate that lipoproteins are involved in AApoAII amyloidosis pathology. SIGNIFICANCE This study presented proteomic profiles of AApoAII amyloidosis during disease progression and it revealed co-deposition of lipids with AApoAII deposits based on functional analyses. The relative abundance of AApoAII-associated proteins in the amyloid fibril fractions did not change over the course of development of AApoAII amyloidosis pathology. However, their concentrations in plasma changed dramatically with progression of the disease. Interestingly, several AApoAII-associated proteins have been found as constituents of lipid-rich lesions of other degenerative diseases, such as atherosclerosis and age-related macular degeneration. The common protein components among these diseases with lipid-rich deposits could be accounted for by a lipoprotein retention model.
Collapse
Affiliation(s)
- Hiroki Miyahara
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, 390-8621 Matsumoto, Japan
| | - Jinko Sawashita
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, 390-8621 Matsumoto, Japan; Department of Biological Sciences for Intractable Neurological Diseases, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 390-8621 Matsumoto, Japan
| | - Eri Ishikawa
- Division of Instrumental Research, Research Center for Supports to Advanced Science, Shinshu University, 390-8621 Matsumoto, Japan
| | - Mu Yang
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, 390-8621 Matsumoto, Japan
| | - Xin Ding
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, 390-8621 Matsumoto, Japan
| | - Yingye Liu
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, 390-8621 Matsumoto, Japan
| | - Naomi Hachiya
- Tokyo Metropolitan Industrial Technology Research Institute, Aomi, Koto-ku, 135-0064 Tokyo, Japan
| | - Fuyuki Kametani
- Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, 156-8506 Tokyo, Japan
| | - Masahide Yazaki
- Department of Biological Sciences for Intractable Neurological Diseases, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 390-8621 Matsumoto, Japan
| | - Masayuki Mori
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, 390-8621 Matsumoto, Japan; Department of Advanced Medicine for Health Promotion, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 390-8621 Matsumoto, Japan
| | - Keiichi Higuchi
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, 390-8621 Matsumoto, Japan; Department of Biological Sciences for Intractable Neurological Diseases, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 390-8621 Matsumoto, Japan.
| |
Collapse
|
42
|
Prokaeva T, Akar H, Spencer B, Havasi A, Cui H, O'Hara CJ, Gursky O, Leszyk J, Steffen M, Browning S, Rosenberg A, Connors LH. Hereditary Renal Amyloidosis Associated With a Novel Apolipoprotein A-II Variant. Kidney Int Rep 2017; 2:1223-1232. [PMID: 29270531 PMCID: PMC5733886 DOI: 10.1016/j.ekir.2017.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/18/2017] [Accepted: 07/24/2017] [Indexed: 10/25/2022] Open
Affiliation(s)
- Tatiana Prokaeva
- Amyloidosis Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Harun Akar
- Tepecik Education and Research Hospital, Internal Medicine Clinic, Izmir, Turkey
| | - Brian Spencer
- Amyloidosis Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Andrea Havasi
- Amyloidosis Center, Boston University School of Medicine, Boston, Massachusetts, USA.,Department of Nephrology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Haili Cui
- Amyloidosis Center, Boston University School of Medicine, Boston, Massachusetts, USA.,Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Carl J O'Hara
- Amyloidosis Center, Boston University School of Medicine, Boston, Massachusetts, USA.,Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Olga Gursky
- Amyloidosis Center, Boston University School of Medicine, Boston, Massachusetts, USA.,Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts, USA
| | - John Leszyk
- Proteomics and Mass Spectrometry Facility and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Martin Steffen
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Sabrina Browning
- Amyloidosis Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Allison Rosenberg
- Amyloidosis Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Lawreen H Connors
- Amyloidosis Center, Boston University School of Medicine, Boston, Massachusetts, USA.,Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
43
|
Serum amyloid A forms stable oligomers that disrupt vesicles at lysosomal pH and contribute to the pathogenesis of reactive amyloidosis. Proc Natl Acad Sci U S A 2017; 114:E6507-E6515. [PMID: 28743750 DOI: 10.1073/pnas.1707120114] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Serum amyloid A (SAA) is an acute-phase plasma protein that functions in innate immunity and lipid homeostasis. SAA is a protein precursor of reactive AA amyloidosis, the major complication of chronic inflammation and one of the most common human systemic amyloid diseases worldwide. Most circulating SAA is protected from proteolysis and misfolding by binding to plasma high-density lipoproteins. However, unbound soluble SAA is intrinsically disordered and is either rapidly degraded or forms amyloid in a lysosome-initiated process. Although acidic pH promotes amyloid fibril formation by this and many other proteins, the molecular underpinnings are unclear. We used an array of spectroscopic, biochemical, and structural methods to uncover that at pH 3.5-4.5, murine SAA1 forms stable soluble oligomers that are maximally folded at pH 4.3 with ∼35% α-helix and are unusually resistant to proteolysis. In solution, these oligomers neither readily convert into mature fibrils nor bind lipid surfaces via their amphipathic α-helices in a manner typical of apolipoproteins. Rather, these oligomers undergo an α-helix to β-sheet conversion catalyzed by lipid vesicles and disrupt these vesicles, suggesting a membranolytic potential. Our results provide an explanation for the lysosomal origin of AA amyloidosis. They suggest that high structural stability and resistance to proteolysis of SAA oligomers at pH 3.5-4.5 help them escape lysosomal degradation, promote SAA accumulation in lysosomes, and ultimately damage cellular membranes and liberate intracellular amyloid. We posit that these soluble prefibrillar oligomers provide a missing link in our understanding of the development of AA amyloidosis.
Collapse
|
44
|
Kimura H, Mikawa S, Mizuguchi C, Horie Y, Morita I, Oyama H, Ohgita T, Nishitsuji K, Takeuchi A, Lund-Katz S, Akaji K, Kobayashi N, Saito H. Immunochemical Approach for Monitoring of Structural Transition of ApoA-I upon HDL Formation Using Novel Monoclonal Antibodies. Sci Rep 2017; 7:2988. [PMID: 28592796 PMCID: PMC5462821 DOI: 10.1038/s41598-017-03208-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/24/2017] [Indexed: 11/24/2022] Open
Abstract
Apolipoprotein A-I (apoA-I) undergoes a large conformational reorganization during remodeling of high-density lipoprotein (HDL) particles. To detect structural transition of apoA-I upon HDL formation, we developed novel monoclonal antibodies (mAbs). Splenocytes from BALB/c mice immunized with a recombinant human apoA-I, with or without conjugation with keyhole limpet hemocyanin, were fused with P3/NS1/1-Ag4-1 myeloma cells. After the HAT-selection and cloning, we established nine hybridoma clones secreting anti-apoA-I mAbs in which four mAbs recognize epitopes on the N-terminal half of apoA-I while the other five mAbs recognize the central region. ELISA and bio-layer interferometry measurements demonstrated that mAbs whose epitopes are within residues 1–43 or 44–65 obviously discriminate discoidal and spherical reconstituted HDL particles despite their great reactivities to lipid-free apoA-I and plasma HDL, suggesting the possibility of these mAbs to detect structural transition of apoA-I on HDL. Importantly, a helix-disrupting mutation of W50R into residues 44–65 restored the immunoreactivity of mAbs whose epitope being within residues 44–65 against reconstituted HDL particles, indicating that these mAbs specifically recognize the epitope region in a random coil state. These results encourage us to develop mAbs targeting epitopes in the N-terminal residues of apoA-I as useful probes for monitoring formation and remodeling of HDL particles.
Collapse
Affiliation(s)
- Hitoshi Kimura
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan.,Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505, Japan
| | - Shiho Mikawa
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan.,Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505, Japan
| | - Chiharu Mizuguchi
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan.,Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505, Japan
| | - Yuki Horie
- Department of Bioanalytical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyama-Kitamachi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Izumi Morita
- Department of Bioanalytical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyama-Kitamachi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Hiroyuki Oyama
- Department of Bioanalytical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyama-Kitamachi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Takashi Ohgita
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Kazuchika Nishitsuji
- Department of Molecular Pathology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Atsuko Takeuchi
- Analytical Laboratory, Kobe Pharmaceutical University, 4-19-1 Motoyama-Kitamachi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Sissel Lund-Katz
- Lipid Research Group, Gastroenterology, Hepatology and Nutrition Division, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, 19104-4318, USA
| | - Kenichi Akaji
- Department of Medicinal Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Norihiro Kobayashi
- Department of Bioanalytical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyama-Kitamachi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Hiroyuki Saito
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan.
| |
Collapse
|
45
|
Meric G, Robinson AS, Roberts CJ. Driving Forces for Nonnative Protein Aggregation and Approaches to Predict Aggregation-Prone Regions. Annu Rev Chem Biomol Eng 2017; 8:139-159. [DOI: 10.1146/annurev-chembioeng-060816-101404] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Gulsum Meric
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716
| | - Anne S. Robinson
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118
| | - Christopher J. Roberts
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716
| |
Collapse
|
46
|
Lucato CM, Lupton CJ, Halls ML, Ellisdon AM. Amyloidogenicity at a Distance: How Distal Protein Regions Modulate Aggregation in Disease. J Mol Biol 2017; 429:1289-1304. [PMID: 28342736 DOI: 10.1016/j.jmb.2017.03.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/12/2017] [Accepted: 03/14/2017] [Indexed: 12/14/2022]
Abstract
The misfolding of proteins to form amyloid is a key pathological feature of several progressive, and currently incurable, diseases. A mechanistic understanding of the pathway from soluble, native protein to insoluble amyloid is crucial for therapeutic design, and recent efforts have helped to elucidate the key molecular events that trigger protein misfolding. Generally, either global or local structural perturbations occur early in amyloidogenesis to expose aggregation-prone regions of the protein that can then self-associate to form toxic oligomers. Surprisingly, these initiating structural changes are often caused or influenced by protein regions distal to the classically amyloidogenic sequences. Understanding the importance of these distal regions in the pathogenic process has highlighted many remaining knowledge gaps regarding the precise molecular events that occur in classic aggregation pathways. In this review, we discuss how these distal regions can influence aggregation in disease and the recent technical and conceptual advances that have allowed this insight.
Collapse
Affiliation(s)
- Christina M Lucato
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Christopher J Lupton
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Michelle L Halls
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Andrew M Ellisdon
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
47
|
Das M, Wilson CJ, Mei X, Wales T, Engen JR, Gursky O. Structural stability and local dynamics in disease-causing mutants of human apolipoprotein a-I: what makes the protein amyloidogenic? Amyloid 2017; 24:11-12. [PMID: 28042708 PMCID: PMC5557347 DOI: 10.1080/13506129.2016.1269737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Madhurima Das
- a Department of Physiology & Biophysics , Boston University School of Medicine , Boston , MA , USA and
| | | | - Xiaohu Mei
- a Department of Physiology & Biophysics , Boston University School of Medicine , Boston , MA , USA and
| | - Thomas Wales
- b Department of Chemistry , Northeastern University , Boston , MA , USA
| | - John R Engen
- b Department of Chemistry , Northeastern University , Boston , MA , USA
| | - Olga Gursky
- a Department of Physiology & Biophysics , Boston University School of Medicine , Boston , MA , USA and
| |
Collapse
|
48
|
Kane JP, Malloy MJ. Lipoproteins and amyloid vascular disease. Curr Opin Lipidol 2016; 27:640-641. [PMID: 27805977 DOI: 10.1097/mol.0000000000000364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- John P Kane
- Cardiovascular Research Institute; University of California Medical Center, San Francisco, California, USA
| | | |
Collapse
|
49
|
Jayaraman S, Sánchez-Quesada JL, Gursky O. Triglyceride increase in the core of high-density lipoproteins augments apolipoprotein dissociation from the surface: Potential implications for treatment of apolipoprotein deposition diseases. Biochim Biophys Acta Mol Basis Dis 2016; 1863:200-210. [PMID: 27768903 DOI: 10.1016/j.bbadis.2016.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/13/2016] [Accepted: 10/16/2016] [Indexed: 12/12/2022]
Abstract
Lipids in the body are transported via lipoproteins that are nanoparticles comprised of lipids and amphipathic proteins termed apolipoproteins. This family of lipid surface-binding proteins is over-represented in human amyloid diseases. In particular, all major proteins of high-density lipoproteins (HDL), including apoA-I, apoA-II and serum amyloid A, can cause systemic amyloidoses in humans upon protein mutations, post-translational modifications or overproduction. Here, we begin to explore how the HDL lipid composition influences amyloid deposition by apoA-I and related proteins. First, we summarize the evidence that, in contrast to lipoproteins that are stabilized by kinetic barriers, free apolipoproteins are labile to misfolding and proteolysis. Next, we report original biochemical and biophysical studies showing that increase in triglyceride content in the core of plasma or reconstituted HDL destabilizes the lipoprotein assembly, making it more labile to various perturbations (oxidation, thermal and chemical denaturation and enzymatic hydrolysis), and promotes apoA-I release in a lipid-poor/free aggregation-prone form. Together, the results suggest that decreasing plasma levels of triglycerides will shift the dynamic equilibrium from the lipid-poor/free (labile) to the HDL-bound (protected) apolipoprotein state, thereby decreasing the generation of the protein precursor of amyloid. This prompts us to propose that triglyceride-lowering therapies may provide a promising strategy to alleviate amyloid diseases caused by the deposition of HDL proteins.
Collapse
Affiliation(s)
- Shobini Jayaraman
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, USA
| | - Jose Luis Sánchez-Quesada
- Cardiovascular Biochemistry Group, Biomedical Research Institute IIB-Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Olga Gursky
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, USA.
| |
Collapse
|
50
|
Jayaraman S, Haupt C, Gursky O. Paradoxical effects of SAA on lipoprotein oxidation suggest a new antioxidant function for SAA. J Lipid Res 2016; 57:2138-2149. [PMID: 27744369 DOI: 10.1194/jlr.m071191] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/12/2016] [Indexed: 01/01/2023] Open
Abstract
Oxidative stress and inflammation, which involve a dramatic increase in serum amyloid A (SAA) levels, are critical in the development of atherosclerosis. Most SAA circulates on plasma HDL particles, altering their cardioprotective properties. SAA-enriched HDL has diminished anti-oxidant effects on LDL, which may contribute to atherogenesis. We determined combined effects of SAA enrichment and oxidation on biochemical changes in HDL. Normal human HDLs were incubated with SAA, oxidized by various factors (Cu2+, myeloperoxidase, H2O2, OCl-), and analyzed for lipid and protein modifications and biophysical remodeling. Three novel findings are reported: addition of SAA reduces oxidation of HDL and LDL lipids; oxidation of SAA-containing HDL in the presence of OCl- generates a covalent heterodimer of SAA and apoA-I that resists the release from HDL; and mild oxidation promotes spontaneous release of proteins (SAA and apoA-I) from SAA-enriched HDL. We show that the anti-oxidant effects of SAA extend to various oxidants and are mediated mainly by the unbound protein. We propose that free SAA sequesters lipid hydroperoxides and delays lipoprotein oxidation, though much less efficiently than other anti-oxidant proteins, such as apoA-I, that SAA displaces from HDL. These findings prompt us to reconsider the role of SAA in lipid oxidation in vivo.
Collapse
Affiliation(s)
- Shobini Jayaraman
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118
| | - Christian Haupt
- Institute of Protein Biochemistry, University of Ulm, 89081 Ulm, Germany
| | - Olga Gursky
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118
| |
Collapse
|