1
|
Carter EW, Peraza OG, Wang N. The protein interactome of the citrus Huanglongbing pathogen Candidatus Liberibacter asiaticus. Nat Commun 2023; 14:7838. [PMID: 38030598 PMCID: PMC10687234 DOI: 10.1038/s41467-023-43648-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/15/2023] [Indexed: 12/01/2023] Open
Abstract
The bacterium Candidatus Liberibacter asiaticus (CLas) causes citrus Huanglongbing disease. Our understanding of the pathogenicity and biology of this microorganism remains limited because CLas has not yet been cultivated in artificial media. Its genome is relatively small and encodes approximately 1136 proteins, of which 415 have unknown functions. Here, we use a high-throughput yeast-two-hybrid (Y2H) screen to identify interactions between CLas proteins, thus providing insights into their potential functions. We identify 4245 interactions between 542 proteins, after screening 916 bait and 936 prey proteins. The false positive rate of the Y2H assay is estimated to be 2.9%. Pull-down assays for nine protein-protein interactions (PPIs) likely involved in flagellar function support the robustness of the Y2H results. The average number of PPIs per node in the CLas interactome is 15.6, which is higher than the numbers previously reported for interactomes of free-living bacteria, suggesting that CLas genome reduction has been accompanied by increased protein multi-functionality. We propose potential functions for 171 uncharacterized proteins, based on the PPI results, guilt-by-association analyses, and comparison with data from other bacterial species. We identify 40 hub-node proteins, including quinone oxidoreductase and LysR, which are known to protect other bacteria against oxidative stress and might be important for CLas survival in the phloem. We expect our PPI database to facilitate research on CLas biology and pathogenicity mechanisms.
Collapse
Affiliation(s)
- Erica W Carter
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, USA
- Department of Plant Pathology, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, USA
| | - Orlene Guerra Peraza
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, USA
| | - Nian Wang
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, USA.
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, US.
| |
Collapse
|
2
|
Zhu L, Li Y, Qiu L, Chen X, Guo B, Li H, Qi P. Screening of genes encoding proteins that interact with Nrf2: Probing a cDNA library from Mytilus coruscus using a yeast two-hybrid system. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109112. [PMID: 37751644 DOI: 10.1016/j.fsi.2023.109112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/08/2023] [Accepted: 09/22/2023] [Indexed: 09/28/2023]
Abstract
The Nuclear factor Erythroid 2-related factor 2 (Nrf2) is the most important endogenous antioxidant factor in organisms, and it has been demonstrated that it exerts extensive control over the immune response by interacting with crucial innate immunity components directly or indirectly. Although Nrf2 has been widely confirmed to be involved in stress resistance in mammals and some fish, its contribution to mollusks oxidative stress resistance has not frequently been documented. In this investigation, total RNA was taken from the digestive gland of M. coruscus, and a cDNA library was constructed and screened using the GATEWAY recombination technology. The Nrf2 cDNA sequence of M. coruscus was cloned into the pGBKT7 vector to prepare the bait plasmid. Using yeast two-hybrid system, after auxotrophic medium screening, sequencing, and bioinformatics analysis, 13 binding proteins that interacted with Nrf2 were finally identified. They were QM-like protein, 40S ribosomal protein S4 (RPS4), ribosomal protein S2 (RPS2), ribosomal protein L12 (RPL12), EF1-alpha mRNA for elongation factor 1 alpha (eEF1-alpha), ferritin, alpha-amylase, trypsin, vdg3, period clock protein, cyclophilin A isoform 1 (CYP A), serine protease CFSP2, histone variant H2A.Z (H2A.Z). For a better understanding the physiological function of Nrf2 in animals and as a potential target for future research on protein roles in Nrf2 interactions, it is crucial to clarify these protein interactions.
Collapse
Affiliation(s)
- Li Zhu
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316004, China
| | - Yaru Li
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316004, China
| | - Longmei Qiu
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316004, China
| | - Xinglu Chen
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316004, China
| | - Baoying Guo
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316004, China
| | - Hongfei Li
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316004, China; Donghai Laboratory, Zhoushan, Zhejiang, 316021, China.
| | - Pengzhi Qi
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316004, China; Donghai Laboratory, Zhoushan, Zhejiang, 316021, China.
| |
Collapse
|
3
|
Zhou Y, Liu Y, Gupta S, Paramo MI, Hou Y, Mao C, Luo Y, Judd J, Wierbowski S, Bertolotti M, Nerkar M, Jehi L, Drayman N, Nicolaescu V, Gula H, Tay S, Randall G, Wang P, Lis JT, Feschotte C, Erzurum SC, Cheng F, Yu H. A comprehensive SARS-CoV-2-human protein-protein interactome reveals COVID-19 pathobiology and potential host therapeutic targets. Nat Biotechnol 2023; 41:128-139. [PMID: 36217030 PMCID: PMC9851973 DOI: 10.1038/s41587-022-01474-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 08/15/2022] [Indexed: 01/25/2023]
Abstract
Studying viral-host protein-protein interactions can facilitate the discovery of therapies for viral infection. We use high-throughput yeast two-hybrid experiments and mass spectrometry to generate a comprehensive SARS-CoV-2-human protein-protein interactome network consisting of 739 high-confidence binary and co-complex interactions, validating 218 known SARS-CoV-2 host factors and revealing 361 novel ones. Our results show the highest overlap of interaction partners between published datasets and of genes differentially expressed in samples from COVID-19 patients. We identify an interaction between the viral protein ORF3a and the human transcription factor ZNF579, illustrating a direct viral impact on host transcription. We perform network-based screens of >2,900 FDA-approved or investigational drugs and identify 23 with significant network proximity to SARS-CoV-2 host factors. One of these drugs, carvedilol, shows clinical benefits for COVID-19 patients in an electronic health records analysis and antiviral properties in a human lung cell line infected with SARS-CoV-2. Our study demonstrates the value of network systems biology to understand human-virus interactions and provides hits for further research on COVID-19 therapeutics.
Collapse
Affiliation(s)
- Yadi Zhou
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Yuan Liu
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
- Center for Advanced Proteomics, Cornell University, Ithaca, NY, USA
| | - Shagun Gupta
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
- Center for Advanced Proteomics, Cornell University, Ithaca, NY, USA
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Mauricio I Paramo
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
- Center for Advanced Proteomics, Cornell University, Ithaca, NY, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Yuan Hou
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Chengsheng Mao
- Division of Health and Biomedical Informatics, Department of Preventive Medicine, Northwestern University, Chicago, IL, USA
| | - Yuan Luo
- Division of Health and Biomedical Informatics, Department of Preventive Medicine, Northwestern University, Chicago, IL, USA
| | - Julius Judd
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Shayne Wierbowski
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
- Center for Advanced Proteomics, Cornell University, Ithaca, NY, USA
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Marta Bertolotti
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
- Center for Advanced Proteomics, Cornell University, Ithaca, NY, USA
| | - Mriganka Nerkar
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Lara Jehi
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Nir Drayman
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Vlad Nicolaescu
- Department of Microbiology, Ricketts Laboratory, University of Chicago, Chicago, IL, USA
| | - Haley Gula
- Department of Microbiology, Ricketts Laboratory, University of Chicago, Chicago, IL, USA
| | - Savaş Tay
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Glenn Randall
- Department of Microbiology, Ricketts Laboratory, University of Chicago, Chicago, IL, USA
| | - Peihui Wang
- Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | | | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| | - Haiyuan Yu
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA.
- Center for Advanced Proteomics, Cornell University, Ithaca, NY, USA.
- Department of Computational Biology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
4
|
Lv B, Fan L, Li S, Sun M. Screening and characterisation of proteins interacting with the mitogen-activated protein kinase Crmapk in the fungus Clonostachys chloroleuca. Sci Rep 2022; 12:9997. [PMID: 35705642 PMCID: PMC9200739 DOI: 10.1038/s41598-022-13899-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 05/30/2022] [Indexed: 11/15/2022] Open
Abstract
Clonostachys chloroleuca 67-1 (formerly C. rosea 67-1) is a promising mycoparasite with great potential for controlling various plant fungal diseases. The mitogen-activated protein kinase (MAPK)-encoding gene Crmapk is of great importance to the mycoparasitism and biocontrol activities of C. chloroleuca. To investigate the molecular mechanisms underlying the role of Crmapk in mycoparasitism, a high-quality yeast two hybrid (Y2H) library of C. chloroleuca 67-1 was constructed, and proteins interacting with Crmapk were characterised. The library contained 1.6 × 107 independent clones with a recombination rate of 96%, and most inserted fragments were > 1 kb. The pGBKT7-Crmapk bait vector with no self-activation or toxicity to yeast cells was used to screen interacting proteins from the Y2H library, resulting in 60 candidates, many linked to metabolism, cellular processes and signal transduction. Combined bioinformatics and transcriptome analyses of C. chloroleuca 67-1 and ΔCrmapk mutant mycoparasitising Sclerotinia sclerotiorum sclerotia, 41 differentially expressed genes were identified, which might be the targets of the Fus3/Kss1-MAPK pathway. The results provide a profile of potential protein interactions associated with MAPK enzymes in mycoparasites, and are of great significance for understanding the mechanisms of Crmapk regulating C. chloroleuca mycoparasitism.
Collapse
Affiliation(s)
- Binna Lv
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lele Fan
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shidong Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Manhong Sun
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
5
|
Zhou Y, Liu Y, Gupta S, Paramo MI, Hou Y, Mao C, Luo Y, Judd J, Wierbowski S, Bertolotti M, Nerkar M, Jehi L, Drayman N, Nicolaescu V, Gula H, Tay S, Randall G, Lis JT, Feschotte C, Erzurum SC, Cheng F, Yu H. A comprehensive SARS-CoV-2-human protein-protein interactome network identifies pathobiology and host-targeting therapies for COVID-19. RESEARCH SQUARE 2022:rs.3.rs-1354127. [PMID: 35677070 PMCID: PMC9176654 DOI: 10.21203/rs.3.rs-1354127/v2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Physical interactions between viral and host proteins are responsible for almost all aspects of the viral life cycle and the host's immune response. Studying viral-host protein-protein interactions is thus crucial for identifying strategies for treatment and prevention of viral infection. Here, we use high-throughput yeast two-hybrid and affinity purification followed by mass spectrometry to generate a comprehensive SARS-CoV-2-human protein-protein interactome network consisting of both binary and co-complex interactions. We report a total of 739 high-confidence interactions, showing the highest overlap of interaction partners among published datasets as well as the highest overlap with genes differentially expressed in samples (such as upper airway and bronchial epithelial cells) from patients with SARS-CoV-2 infection. Showcasing the utility of our network, we describe a novel interaction between the viral accessory protein ORF3a and the host zinc finger transcription factor ZNF579 to illustrate a SARS-CoV-2 factor mediating a direct impact on host transcription. Leveraging our interactome, we performed network-based drug screens for over 2,900 FDA-approved/investigational drugs and obtained a curated list of 23 drugs that had significant network proximities to SARS-CoV-2 host factors, one of which, carvedilol, showed promising antiviral properties. We performed electronic health record-based validation using two independent large-scale, longitudinal COVID-19 patient databases and found that carvedilol usage was associated with a significantly lowered probability (17%-20%, P < 0.001) of obtaining a SARS-CoV-2 positive test after adjusting various confounding factors. Carvedilol additionally showed anti-viral activity against SARS-CoV-2 in a human lung epithelial cell line [half maximal effective concentration (EC 50 ) value of 4.1 µM], suggesting a mechanism for its beneficial effect in COVID-19. Our study demonstrates the value of large-scale network systems biology approaches for extracting biological insight from complex biological processes.
Collapse
Affiliation(s)
- Yadi Zhou
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, US
| | - Yuan Liu
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, US
| | - Shagun Gupta
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, US
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, US
| | - Mauricio I. Paramo
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, US
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, US
| | - Yuan Hou
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, US
| | - Chengsheng Mao
- Division of Health and Biomedical Informatics, Department of Preventive Medicine, Northwestern University, Chicago, IL 60611, US
| | - Yuan Luo
- Division of Health and Biomedical Informatics, Department of Preventive Medicine, Northwestern University, Chicago, IL 60611, US
| | - Julius Judd
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, US
| | - Shayne Wierbowski
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, US
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, US
| | - Marta Bertolotti
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, US
| | - Mriganka Nerkar
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, US
| | - Lara Jehi
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, US
| | - Nir Drayman
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, US
| | - Vlad Nicolaescu
- Department of Microbiology, Ricketts Laboratory, University of Chicago, Chicago, IL 60637, US
| | - Haley Gula
- Department of Microbiology, Ricketts Laboratory, University of Chicago, Chicago, IL 60637, US
| | - Savaş Tay
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, US
| | - Glenn Randall
- Department of Microbiology, Ricketts Laboratory, University of Chicago, Chicago, IL 60637, US
| | - John T. Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, US
| | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, US
| | - Serpil C. Erzurum
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, US
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, US
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, US
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, US
| | - Haiyuan Yu
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, US
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, US
| |
Collapse
|
6
|
Basu S, Huynh L, Zhang S, Rabara R, Nguyen H, Velásquez Guzmán J, Hao G, Miles G, Shi Q, Stover E, Gupta G. Two Liberibacter Proteins Combine to Suppress Critical Innate Immune Defenses in Citrus. FRONTIERS IN PLANT SCIENCE 2022; 13:869178. [PMID: 35586217 PMCID: PMC9108871 DOI: 10.3389/fpls.2022.869178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/04/2022] [Indexed: 06/15/2023]
Abstract
We adopted a systems-based approach to determine the role of two Candidatus Liberibacter asiaticus (CLas) proteins, LasP 235 and Effector 3, in Huanglongbing (HLB) pathogenesis. While a published work suggests the involvement of these CLas proteins HLB pathogenesis, the exact structure-based mechanism of their action has not been elucidated. We conducted the following experiments to determine the structure-based mechanisms of action. First, we immunoprecipitated the interacting citrus protein partners of LasP 235 and Effector 3 from the healthy and CLas-infected Hamlin extracts and identified them by Liquid Chromatography with tandem mass spectrometry (LC-MS/MS). Second, we performed a split green fluorescent protein (GFP) assay in tobacco to validate that the interactions observed in vitro are also retained in planta. The notable in planta citrus targets of LasP 235 and Effector 3 include citrus innate immune proteins. Third, in vitro and in planta studies were performed to show that LasP 235 and Effector 3 interact with and inhibit the functions of multiple citrus proteins belonging to the innate immune pathways. These inhibitory interactions led to a high level of reactive oxygen species, blocking of bactericidal lipid transfer protein (LTP), and induction of premature programed cell death (PCD), all of which are beneficial to CLas lifecycle and HLB pathogenesis. Finally, we performed molecular dynamics simulations to visualize the interactions of LasP 235 and Effector 3, respectively, with LTP and Kunitz protease inhibitor. This led to the design of an LTP mimic, which sequestered and blocked LasP 235 and rescued the bactericidal activity of LTP thereby proving that LasP 235 , indeed, participates in HLB pathogenesis.
Collapse
Affiliation(s)
- Supratim Basu
- Biolab, New Mexico Consortium, Los Alamos, NM, United States
| | - Loan Huynh
- Biolab, New Mexico Consortium, Los Alamos, NM, United States
| | - Shujian Zhang
- Biolab, New Mexico Consortium, Los Alamos, NM, United States
| | - Roel Rabara
- Biolab, New Mexico Consortium, Los Alamos, NM, United States
| | - Hau Nguyen
- Biolab, New Mexico Consortium, Los Alamos, NM, United States
| | | | - Guixia Hao
- Horticulture and Breeding, U. S. Horticultural Research Laboratory, Fort Pierce, FL, United States
| | - Godfrey Miles
- Horticulture and Breeding, U. S. Horticultural Research Laboratory, Fort Pierce, FL, United States
| | - Qingchun Shi
- Horticulture and Breeding, U. S. Horticultural Research Laboratory, Fort Pierce, FL, United States
| | - Ed Stover
- Horticulture and Breeding, U. S. Horticultural Research Laboratory, Fort Pierce, FL, United States
| | - Goutam Gupta
- Biolab, New Mexico Consortium, Los Alamos, NM, United States
| |
Collapse
|
7
|
Su Q, Zhang F, Xiao Y, Zhang P, Xing H, Chen F. An efficient screening system to identify protein-protein or protein-DNA interaction partners of rice transcription factors. J Genet Genomics 2022; 49:979-981. [PMID: 35218975 DOI: 10.1016/j.jgg.2022.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/18/2022] [Accepted: 02/06/2022] [Indexed: 10/19/2022]
Affiliation(s)
- Qingmei Su
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; OE biotech Co., Ltd. Shanghai, China
| | | | | | | | - Fan Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
8
|
Mahajan S, Sharma GK, Bora K, Pattnaik B. Identification of novel interactions between host and non-structural protein 2C of foot-and-mouth disease virus. J Gen Virol 2021; 102. [PMID: 33729124 DOI: 10.1099/jgv.0.001577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The 2C protein of foot-and-mouth disease virus (FMDV) is reported to play a critical role in the virus replication complex and modulating the host's immune response. However, the underlying molecular intricacies of subversion of cellular machinery remains poorly understood, thus emphasizing the need to study 2C-host interactions. In this study, we identified the host proteins interacting with the 2C using yeast-two hybrid (Y2H) approach, which is one of the most recognized, high-throughput tools to study protein-protein interactions. The FMDV-2C bait was characterized for auto-activation, toxicity, and expression and was found to be suitable for mating with cDNA library. On preliminary screening a total of 32 interacting host proteins were identified which were reduced to 22 on subsequent confirmation with alternative yeast based assays. Amongst these, NMI/2C interaction has been reported earlier by Wang et al. (2012) and remaining 21 are novel interactions. The Reactome analysis has revealed the role of the identified host proteins in cellular pathways exploited by 2C during FMDV replication. We also confirmed interaction of MARCH7, an E3 ubiquitin ligase with 2C using mammalian two-hybrid system and co-immunoprecipitation. This study leads to the identification of novel 2C interacting host proteins which enhance our understanding of 2C-host interface and may provide checkpoints for development of potential therapeutics against FMDV.
Collapse
Affiliation(s)
- Sonalika Mahajan
- Present address: Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 243122, India.,ICAR-Project Directorate on Foot and Mouth Disease, Mukteswar, Uttarakhand, 263138, India
| | - Gaurav Kumar Sharma
- Present address: Centre for Animal Disease Research and Diagnosis, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 243122, India.,ICAR-Project Directorate on Foot and Mouth Disease, Mukteswar, Uttarakhand, 263138, India
| | - Kavita Bora
- ICAR-Project Directorate on Foot and Mouth Disease, Mukteswar, Uttarakhand, 263138, India
| | - Bramhadev Pattnaik
- ICAR-Project Directorate on Foot and Mouth Disease, Mukteswar, Uttarakhand, 263138, India
| |
Collapse
|
9
|
Roohvand F, Ehsani P, Abdollahpour-Alitappeh M, Shokri M, Kossari N. Biomedical applications of yeasts - a patent view, part two: era of humanized yeasts and expanded applications. Expert Opin Ther Pat 2020; 30:609-631. [PMID: 32529867 DOI: 10.1080/13543776.2020.1781816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Yeast humanization, ranging from a simple point mutation to substitution of yeast gene(s) or even a complete pathway by human counterparts has enormously expanded yeast biomedical applications. AREAS COVERED General and patent-oriented insights into the application of native and humanized yeasts for production of human glycoproteins (gps) and antibodies (Abs), toxicity/mutagenicity assays, treatments of gastrointestinal (GI) disorders and potential drug delivery as a probiotic (with emphasis on Saccharomyces bulardii) and studies on human diseases/cancers and screening effective drugs. EXPERT OPINION Humanized yeasts cover the classical advantageous features of a 'microbial eukaryote' together with advanced human cellular processes. These unique characteristics would permit their use in the production of functional and stable therapeutic gps and Abs in lower prices compared to mammalian (CHO) production-based systems. Availability of yeasts humanized for cytochrome P450 s will expand their application in metabolism-related chemical toxicity assays. Engineered S. bulardii for expression of human proteins might expand its application by synergistically combining the probiotic activity with the treatment of metabolic diseases such as phenylketonuria via GI-delivery. Yeast models of human diseases will facilitate rapid functional/phenotypic characterization of the disease-producing mutant genes and screening of the therapeutic compounds using yeast-based high-throughput research techniques (Yeast one/two hybrid systems) and viability assays.
Collapse
Affiliation(s)
- Farzin Roohvand
- Department of Virology, Pasteur Institute of Iran , Tehran, Iran
| | - Parastoo Ehsani
- Department of Molecular Biology, Pasteur Institute of Iran , Tehran, Iran
| | | | - Mehdi Shokri
- ; Department of Dental Biomaterials, School of Dentistry, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Niloufar Kossari
- ; Universite de Versailles, Service de ne 'phrologie-transplantation re'nale, Hopital Foch, 40 rue Worth, Suresnes , Paris, France
| |
Collapse
|
10
|
Peng X, Emiliani F, Smallwood PM, Rattner A, Lei H, Sabbagh MF, Nathans J. Affinity capture of polyribosomes followed by RNAseq (ACAPseq), a discovery platform for protein-protein interactions. eLife 2018; 7:40982. [PMID: 30345971 PMCID: PMC6197854 DOI: 10.7554/elife.40982] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/02/2018] [Indexed: 02/05/2023] Open
Abstract
Defining protein-protein interactions (PPIs) is central to the biological sciences. Here, we present a novel platform - Affinity Capture of Polyribosomes followed by RNA sequencing (ACAPseq) - for identifying PPIs. ACAPseq harnesses the power of massively parallel RNA sequencing (RNAseq) to quantify the enrichment of polyribosomes based on the affinity of their associated nascent polypeptides for an immobilized protein 'bait'. This method was developed and tested using neonatal mouse brain polyribosomes and a variety of extracellular domains as baits. Of 92 baits tested, 25 identified one or more binding partners that appear to be biologically relevant; additional candidate partners remain to be validated. ACAPseq can detect binding to targets that are present at less than 1 part in 100,000 in the starting polyribosome preparation. One of the observed PPIs was analyzed in detail, revealing the mode of homophilic binding for Protocadherin-9 (PCDH9), a non-clustered Protocadherin family member.
Collapse
Affiliation(s)
- Xi Peng
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Francesco Emiliani
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Philip M Smallwood
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.,Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Amir Rattner
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Hong Lei
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Mark F Sabbagh
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Jeremy Nathans
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.,Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.,Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
11
|
Padkina MV, Sambuk EV. Prospects for the Application of Yeast Display in Biotechnology and Cell Biology (Review). APPL BIOCHEM MICRO+ 2018. [DOI: 10.1134/s0003683818040105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
12
|
Krishnamani V, Peterson TA, Piper RC, Stamnes MA. Informatic Analysis of Sequence Data from Batch Yeast 2-Hybrid Screens. J Vis Exp 2018. [PMID: 30010636 DOI: 10.3791/57802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
We have adapted the yeast 2-hybrid assay to simultaneously uncover dozens of transient and static protein interactions within a single screen utilizing high-throughput short-read DNA sequencing. The resulting sequence datasets can not only track what genes in a population that are enriched during selection for positive yeast 2-hybrid interactions, but also give detailed information about the relevant subdomains of proteins sufficient for interaction. Here, we describe a full suite of stand-alone software programs that allow non-experts to perform all the bioinformatics and statistical steps to process and analyze DNA sequence fastq files from a batch yeast 2-hybrid assay. The processing steps covered by these software include: 1) mapping and counting sequence reads corresponding to each candidate protein encoded within a yeast 2-hybrid prey library; 2) a statistical analysis program that evaluates the enrichment profiles; and 3) tools to examine the translational frame and position within the coding region of each enriched plasmid that encodes the interacting proteins of interest.
Collapse
Affiliation(s)
| | | | - Robert C Piper
- Molecular Physiology and Biophysics, University of Iowa;
| | - Mark A Stamnes
- Molecular Physiology and Biophysics, University of Iowa;
| |
Collapse
|
13
|
Peterson TA, Stamnes MA, Piper RC. A Yeast 2-Hybrid Screen in Batch to Compare Protein Interactions. J Vis Exp 2018. [PMID: 29939176 DOI: 10.3791/57801] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Screening for protein-protein interactions using the yeast 2-hybrid assay has long been an effective tool, but its use has largely been limited to the discovery of high-affinity interactors that are highly enriched in the library of interacting candidates. In a traditional format, the yeast 2-hybrid assay can yield too many colonies to analyze when conducted at low stringency where low affinity interactors might be found. Moreover, without a comprehensive and complete interrogation of the same library against different bait plasmids, a comparative analysis cannot be achieved. Although some of these problems can be addressed using arrayed prey libraries, the cost and infrastructure required to operate such screens can be prohibitive. As an alternative, we have adapted the yeast 2-hybrid assay to simultaneously uncover dozens of transient and static protein interactions within a single screen utilizing a strategy termed DEEPN (Dynamic Enrichment for Evaluation of Protein Networks), which incorporates high-throughput DNA sequencing and computation to follow the evolution of a population of plasmids that encode interacting partners. Here, we describe customized reagents and protocols that allow a DEEPN screen to be executed easily and cost-effectively.
Collapse
Affiliation(s)
| | | | - Robert C Piper
- Molecular Physiology and Biophysics, University of Iowa;
| |
Collapse
|
14
|
Lv L, Huang B, Zhao Q, Zhao Z, Dong H, Zhu S, Chen T, Yan M, Han H. Identification of an interaction between calcium-dependent protein kinase 4 (EtCDPK4) and serine protease inhibitor (EtSerpin) in Eimeria tenella. Parasit Vectors 2018; 11:259. [PMID: 29688868 PMCID: PMC5913893 DOI: 10.1186/s13071-018-2848-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 04/13/2018] [Indexed: 11/10/2022] Open
Abstract
Background Eimeria tenella is an obligate intracellular apicomplexan protozoan parasite that has a complex life-cycle. Calcium ions, through various calcium-dependent protein kinases (CDPKs), regulate key events in parasite growth and development, including protein secretion, movement, differentiation, and invasion of and escape from host cells. In this study, we identified proteins that interact with EtCDPK4 to lay a foundation for clarifying the role of CDPKs in calcium channels. Methods Eimeria tenella merozoites were collected to construct a yeast two-hybrid (Y2H) cDNA library. The Y2H system was used to identify proteins that interact with EtCDPK4. One of interacting proteins was confirmed using bimolecular fluorescence complementation and co-immunoprecipitation in vivo. Co-localization of proteins was performed using immunofluorescence assays. Results Eight proteins that interact with EtCDPK4 were identified using the Y2H system. One of the proteins, E. tenella serine protease inhibitor 1 (EtSerpin), was further confirmed. Conclusion In this study, we screened for proteins that interact with EtCDPK4. An interaction between EtSerpin and EtCDPK4 was identified that may contribute to the invasion and development of E. tenella in host cells.
Collapse
Affiliation(s)
- Ling Lv
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, China.,Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, 200241, People's Republic of China
| | - Bing Huang
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, China.,Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, 200241, People's Republic of China
| | - Qiping Zhao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, 200241, People's Republic of China
| | - Zongping Zhao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, 200241, People's Republic of China
| | - Hui Dong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, 200241, People's Republic of China
| | - Shunhai Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, 200241, People's Republic of China
| | - Ting Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, 200241, People's Republic of China
| | - Ming Yan
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, China.,Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, 200241, People's Republic of China
| | - Hongyu Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, 200241, People's Republic of China.
| |
Collapse
|
15
|
Zhang Q, Hu S, Wang K, Cui M, Li X, Wang M, Hu X. Engineering a yeast double-molecule carrier for drug screening. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:386-396. [PMID: 29611428 DOI: 10.1080/21691401.2018.1457539] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
With the advantages of unicellular eukaryotic structure and easy manipulation, yeast becomes a popular tool for biochemical, genetic and medicinal studies. In order to construct an efficient anti-inflammatory drug screening platform, we engineered yeast as a double-molecule carrier, of which an inserted domain (I domain) of lymphocyte function-associated antigen 1 was displayed on yeast surface and a green fluorescent protein (GFP) was expressed inside cytosol. The I domain specifically targeted a surface marker of mammalian cells, intercellular adhesion molecule 1, whose number is correlated with the level of cellular inflammation. Examination of GFP intensity enables swift quantification of the yeast-mammalian cell binding and thus it reflects inflammatory potency, herein the inflammatory index, of a chemical imposed to cells. The inflammatory potency of a total of 1340 chemicals was indexed. Among them, 1 inflammation-inducing and 1 inflammation-reducing compounds were verified both in vitro and in vivo. Our method demonstrated a swift, facile and high-throughput screening platform at the protein level for inflammation and related diseases drug discovery without using sophisticated instruments.
Collapse
Affiliation(s)
- Qiyun Zhang
- a Laboratory of Drug Discovery and Molecular Engineering, Department of Medicinal Plants, College of Plant Science and Technology , Huazhong Agricultural University (HZAU) , Wuhan , China.,b National & Local Joint Engineering Research Center (Hubei) for Medicinal Plant Breeding and Cultivation , Wuhan , China.,c Hubei Provincial Engineering Research Center for Medicinal Plants , Wuhan , China
| | - Sheng Hu
- d Hubei Cancer Hospital , Wuhan , China
| | - Ke Wang
- e State Key Laboratory of Agricultural Microbiology , HZAU , Wuhan , China.,f College of Veterinary Medicine , HZAU , Wuhan , China
| | - Min Cui
- e State Key Laboratory of Agricultural Microbiology , HZAU , Wuhan , China.,f College of Veterinary Medicine , HZAU , Wuhan , China
| | - Xiaohua Li
- a Laboratory of Drug Discovery and Molecular Engineering, Department of Medicinal Plants, College of Plant Science and Technology , Huazhong Agricultural University (HZAU) , Wuhan , China.,b National & Local Joint Engineering Research Center (Hubei) for Medicinal Plant Breeding and Cultivation , Wuhan , China.,c Hubei Provincial Engineering Research Center for Medicinal Plants , Wuhan , China
| | - Mo Wang
- a Laboratory of Drug Discovery and Molecular Engineering, Department of Medicinal Plants, College of Plant Science and Technology , Huazhong Agricultural University (HZAU) , Wuhan , China.,b National & Local Joint Engineering Research Center (Hubei) for Medicinal Plant Breeding and Cultivation , Wuhan , China.,c Hubei Provincial Engineering Research Center for Medicinal Plants , Wuhan , China
| | - Xuebo Hu
- a Laboratory of Drug Discovery and Molecular Engineering, Department of Medicinal Plants, College of Plant Science and Technology , Huazhong Agricultural University (HZAU) , Wuhan , China.,b National & Local Joint Engineering Research Center (Hubei) for Medicinal Plant Breeding and Cultivation , Wuhan , China.,c Hubei Provincial Engineering Research Center for Medicinal Plants , Wuhan , China
| |
Collapse
|
16
|
Wallqvist A, Wang H, Zavaljevski N, Memišević V, Kwon K, Pieper R, Rajagopala SV, Reifman J. Mechanisms of action of Coxiella burnetii effectors inferred from host-pathogen protein interactions. PLoS One 2017; 12:e0188071. [PMID: 29176882 PMCID: PMC5703456 DOI: 10.1371/journal.pone.0188071] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/31/2017] [Indexed: 02/06/2023] Open
Abstract
Coxiella burnetii is an obligate Gram-negative intracellular pathogen and the etiological agent of Q fever. Successful infection requires a functional Type IV secretion system, which translocates more than 100 effector proteins into the host cytosol to establish the infection, restructure the intracellular host environment, and create a parasitophorous vacuole where the replicating bacteria reside. We used yeast two-hybrid (Y2H) screening of 33 selected C. burnetii effectors against whole genome human and murine proteome libraries to generate a map of potential host-pathogen protein-protein interactions (PPIs). We detected 273 unique interactions between 20 pathogen and 247 human proteins, and 157 between 17 pathogen and 137 murine proteins. We used orthology to combine the data and create a single host-pathogen interaction network containing 415 unique interactions between 25 C. burnetii and 363 human proteins. We further performed complementary pairwise Y2H testing of 43 out of 91 C. burnetii-human interactions involving five pathogen proteins. We used the combined data to 1) perform enrichment analyses of target host cellular processes and pathways, 2) examine effectors with known infection phenotypes, and 3) infer potential mechanisms of action for four effectors with uncharacterized functions. The host-pathogen interaction profiles supported known Coxiella phenotypes, such as adapting cell morphology through cytoskeletal re-arrangements, protein processing and trafficking, organelle generation, cholesterol processing, innate immune modulation, and interactions with the ubiquitin and proteasome pathways. The generated dataset of PPIs-the largest collection of unbiased Coxiella host-pathogen interactions to date-represents a rich source of information with respect to secreted pathogen effector proteins and their interactions with human host proteins.
Collapse
Affiliation(s)
- Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland, United States of America
| | - Hao Wang
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland, United States of America
| | - Nela Zavaljevski
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland, United States of America
| | - Vesna Memišević
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland, United States of America
| | - Keehwan Kwon
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Rembert Pieper
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | | | - Jaques Reifman
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland, United States of America
- * E-mail:
| |
Collapse
|
17
|
DEEPN as an Approach for Batch Processing of Yeast 2-Hybrid Interactions. Cell Rep 2017; 17:303-315. [PMID: 27681439 DOI: 10.1016/j.celrep.2016.08.095] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/06/2016] [Accepted: 08/29/2016] [Indexed: 01/06/2023] Open
Abstract
We adapted the yeast 2-hybrid assay to simultaneously uncover multiple transient protein interactions within a single screen by using a strategy termed DEEPN (dynamic enrichment for evaluation of protein networks). This approach incorporates high-throughput DNA sequencing and computation to follow competition among a plasmid population encoding interacting partners. To demonstrate the capacity of DEEPN, we identify a wide range of ubiquitin-binding proteins, including interactors that we verify biochemically. To demonstrate the specificity of DEEPN, we show that DEEPN allows simultaneous comparison of candidate interactors across multiple bait proteins, allowing differential interactions to be identified. This feature was used to identify interactors that distinguish between GTP- and GDP-bound conformations of Rab5.
Collapse
|
18
|
Liu X, Huang S, Liu C, Liu X, Shen Y, Cui Z. PPP1CC is associated with astrocyte and microglia proliferation after traumatic spinal cord injury in rats. Pathol Res Pract 2017; 213:1355-1364. [DOI: 10.1016/j.prp.2017.09.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 09/15/2017] [Accepted: 09/16/2017] [Indexed: 10/18/2022]
|
19
|
Abstract
Evolutionarily conserved and pleiotropic, the translationally controlled tumor protein (TCTP) is a housekeeping protein present in eukaryotic organisms. It plays an important role in regulating many fundamental processes, such as cell proliferation, cell death, immune responses, and apoptosis. As a result of the pioneer work by Adam Telerman and Robert Amson, the critical role of TCTP in tumor reversion was revealed. Moreover, TCTP has emerged as a regulator of cell fate determination and a promising therapeutic target for cancers. The multifaceted action of TCTP depends on its ability to interact with different proteins. Through this interaction network, TCTP regulates diverse physiological and pathological processes in a context-dependent manner. Complete mapping of the entire sets of TCTP protein interactions (interactome) is essential to understand its various cellular functions and to lay the foundation for the rational design of TCTP-based therapeutic approaches. So far, the global profiling of the interacting partners of TCTP has rarely been performed, but many interactions have been identified in small-scale studies in a specific biological system. This chapter, based on information from protein interaction databases and the literature, illustrates current knowledge of the TCTP interactome.
Collapse
Affiliation(s)
- Siting Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng Ge
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
20
|
Han H, Xue P, Dong H, Zhu S, Zhao Q, Huang B. Screening and characterization of apical membrane antigen 1 interacting proteins in Eimeria tenella. Exp Parasitol 2016; 170:116-124. [PMID: 27693220 DOI: 10.1016/j.exppara.2016.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/15/2016] [Accepted: 09/27/2016] [Indexed: 10/20/2022]
Abstract
Avian coccidiosis is a widespread and economically significant disease of poultry. It is an enteric disease caused by several protozoan Eimeria species. Eimeria belongs to the phylum Apicomplexa, which exhibits an unusual mechanism of host cell invasion. During invasion of host cells, the protein apical membrane antigen 1 (AMA1) is essential for invasion of Toxoplasma gondii and Plasmodium. Contrary to the roles of AMA1 during host cell invasion in T. gondii and Plasmodium, the precise functions of Eimeria AMA1 (EtAMA1) are unclear. In order to study the functions of EtAMA1, a yeast two-hybrid cDNA library was constructed from E. tenella sporozoites. The EtAMA1 ectodomain was cloned into the pGBKT7 vector to construct the bait plasmid pGBKT7- EtAMA1. Autoactivation and toxicity of the bait protein in yeast cells were tested by comparison with the pGBKT7 empty vector. Expression of the bait protein was detected by western blots. The bait plasmid pGBKT7-EtAMA1 was used to screen yeast two-hybrid cDNA library from E. tenella sporozoites. After multiple screenings with high-screening-rate medium and exclusion of false-positive plasmids, positive preys were sequenced and analyzed using BLAST. We obtained 14 putative EtAMA1-interacting proteins including E. tenella acidic microneme protein2 (EtMIC2), E. tenella putative cystathionine beta-synthase, E. tenella Eimeria-specific protein, four E. tenella conserved hypothetical proteins (one in the serine/threonine protein kinase family) and seven unknown proteins. Gene Ontology analysis indicated that two known proteins were associated with metabolic process, pyridoxal phosphate binding and protein phosphorylation. Functional analysis indicated EtMIC2 was implicated in parasite motility, migration, recognition and invasion of host cells. The data suggested that EtAMA1 may be important during host cell invasion, but also involved in other biological processes.
Collapse
Affiliation(s)
- Hongyu Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, 200241, PR China
| | - Pu Xue
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, 200241, PR China
| | - Hui Dong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, 200241, PR China
| | - Shunhai Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, 200241, PR China
| | - Qiping Zhao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, 200241, PR China
| | - Bing Huang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, 200241, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China.
| |
Collapse
|