1
|
Magrou L, Joyce MKP, Froudist-Walsh S, Datta D, Wang XJ, Martinez-Trujillo J, Arnsten AFT. The meso-connectomes of mouse, marmoset, and macaque: network organization and the emergence of higher cognition. Cereb Cortex 2024; 34:bhae174. [PMID: 38771244 PMCID: PMC11107384 DOI: 10.1093/cercor/bhae174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/29/2024] [Accepted: 04/08/2024] [Indexed: 05/22/2024] Open
Abstract
The recent publications of the inter-areal connectomes for mouse, marmoset, and macaque cortex have allowed deeper comparisons across rodent vs. primate cortical organization. In general, these show that the mouse has very widespread, "all-to-all" inter-areal connectivity (i.e. a "highly dense" connectome in a graph theoretical framework), while primates have a more modular organization. In this review, we highlight the relevance of these differences to function, including the example of primary visual cortex (V1) which, in the mouse, is interconnected with all other areas, therefore including other primary sensory and frontal areas. We argue that this dense inter-areal connectivity benefits multimodal associations, at the cost of reduced functional segregation. Conversely, primates have expanded cortices with a modular connectivity structure, where V1 is almost exclusively interconnected with other visual cortices, themselves organized in relatively segregated streams, and hierarchically higher cortical areas such as prefrontal cortex provide top-down regulation for specifying precise information for working memory storage and manipulation. Increased complexity in cytoarchitecture, connectivity, dendritic spine density, and receptor expression additionally reveal a sharper hierarchical organization in primate cortex. Together, we argue that these primate specializations permit separable deconstruction and selective reconstruction of representations, which is essential to higher cognition.
Collapse
Affiliation(s)
- Loïc Magrou
- Department of Neural Science, New York University, New York, NY 10003, United States
| | - Mary Kate P Joyce
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, United States
| | - Sean Froudist-Walsh
- School of Engineering Mathematics and Technology, University of Bristol, Bristol, BS8 1QU, United Kingdom
| | - Dibyadeep Datta
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, United States
| | - Xiao-Jing Wang
- Department of Neural Science, New York University, New York, NY 10003, United States
| | - Julio Martinez-Trujillo
- Departments of Physiology and Pharmacology, and Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 3K7, Canada
| | - Amy F T Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, United States
| |
Collapse
|
2
|
Molnár F, Horvát S, Ribeiro Gomes AR, Martinez Armas J, Molnár B, Ercsey-Ravasz M, Knoblauch K, Kennedy H, Toroczkai Z. Predictability of cortico-cortical connections in the mammalian brain. Netw Neurosci 2024; 8:138-157. [PMID: 38562298 PMCID: PMC10861169 DOI: 10.1162/netn_a_00345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/23/2023] [Indexed: 04/04/2024] Open
Abstract
Despite a five order of magnitude range in size, the brains of mammals share many anatomical and functional characteristics that translate into cortical network commonalities. Here we develop a machine learning framework to quantify the degree of predictability of the weighted interareal cortical matrix. Partial network connectivity data were obtained with retrograde tract-tracing experiments generated with a consistent methodology, supplemented by projection length measurements in a nonhuman primate (macaque) and a rodent (mouse). We show that there is a significant level of predictability embedded in the interareal cortical networks of both species. At the binary level, links are predictable with an area under the ROC curve of at least 0.8 for the macaque. Weighted medium and strong links are predictable with an 85%-90% accuracy (mouse) and 70%-80% (macaque), whereas weak links are not predictable in either species. These observations reinforce earlier observations that the formation and evolution of the cortical network at the mesoscale is, to a large extent, rule based. Using the methodology presented here, we performed imputations on all area pairs, generating samples for the complete interareal network in both species. These are necessary for comparative studies of the connectome with minimal bias, both within and across species.
Collapse
Affiliation(s)
- Ferenc Molnár
- Department of Physics, University of Notre Dame, Notre Dame, IN, USA
| | - Szabolcs Horvát
- Center for Systems Biology Dresden, Dresden, Germany
- Max Planck Institute for Cell Biology and Genetics, Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
- Department of Computer Science, Reykjavik University, Reykjavík, Iceland
| | - Ana R. Ribeiro Gomes
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM, Stem Cell and Brain Research Institute, Bron, France
| | | | - Botond Molnár
- Faculty of Mathematics and Computer Science, Babeş-Bolyai University, Cluj-Napoca, Romania
- Faculty of Physics, Babeş-Bolyai University, Cluj-Napoca, Romania
- Transylvanian Institute of Neuroscience, Cluj-Napoca, Romania
| | - Mária Ercsey-Ravasz
- Faculty of Physics, Babeş-Bolyai University, Cluj-Napoca, Romania
- Transylvanian Institute of Neuroscience, Cluj-Napoca, Romania
| | - Kenneth Knoblauch
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Henry Kennedy
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Zoltan Toroczkai
- Department of Physics, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
3
|
Graham DJ. Nine insights from internet engineering that help us understand brain network communication. FRONTIERS IN COMPUTER SCIENCE 2023. [DOI: 10.3389/fcomp.2022.976801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Philosophers have long recognized the value of metaphor as a tool that opens new avenues of investigation. By seeing brains as having the goal of representation, the computer metaphor in its various guises has helped systems neuroscience approach a wide array of neuronal behaviors at small and large scales. Here I advocate a complementary metaphor, the internet. Adopting this metaphor shifts our focus from computing to communication, and from seeing neuronal signals as localized representational elements to seeing neuronal signals as traveling messages. In doing so, we can take advantage of a comparison with the internet's robust and efficient routing strategies to understand how the brain might meet the challenges of network communication. I lay out nine engineering strategies that help the internet solve routing challenges similar to those faced by brain networks. The internet metaphor helps us by reframing neuronal activity across the brain as, in part, a manifestation of routing, which may, in different parts of the system, resemble the internet more, less, or not at all. I describe suggestive evidence consistent with the brain's use of internet-like routing strategies and conclude that, even if empirical data do not directly implicate internet-like routing, the metaphor is valuable as a reference point for those investigating the difficult problem of network communication in the brain and in particular the problem of routing.
Collapse
|
4
|
Abstract
Communication models describe the flow of signals among nodes of a network. In neural systems, communication models are increasingly applied to investigate network dynamics across the whole brain, with the ultimate aim to understand how signal flow gives rise to brain function. Communication models range from diffusion-like processes to those related to infectious disease transmission and those inspired by engineered communication systems like the internet. This Focus Feature brings together novel investigations of a diverse range of mechanisms and strategies that could shape communication in mammal whole-brain networks.
Collapse
Affiliation(s)
- Daniel Graham
- Department of Psychology, Hobart and William Smith Colleges, Geneva, NY, USA
| | | | - Bratislav Mišić
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
5
|
Hao Y, Graham D. Creative destruction: Sparse activity emerges on the mammal connectome under a simulated communication strategy with collisions and redundancy. Netw Neurosci 2020; 4:1055-1071. [PMID: 33195948 PMCID: PMC7655042 DOI: 10.1162/netn_a_00165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 08/14/2020] [Indexed: 01/22/2023] Open
Abstract
Signal interactions in brain network communication have been little studied. We describe how nonlinear collision rules on simulated mammal brain networks can result in sparse activity dynamics characteristic of mammalian neural systems. We tested the effects of collisions in "information spreading" (IS) routing models and in standard random walk (RW) routing models. Simulations employed synchronous agents on tracer-based mesoscale mammal connectomes at a range of signal loads. We find that RW models have high average activity that increases with load. Activity in RW models is also densely distributed over nodes: a substantial fraction is highly active in a given time window, and this fraction increases with load. Surprisingly, while IS models make many more attempts to pass signals, they show lower net activity due to collisions compared to RW, and activity in IS increases little as function of load. Activity in IS also shows greater sparseness than RW, and sparseness decreases slowly with load. Results hold on two networks of the monkey cortex and one of the mouse whole-brain. We also find evidence that activity is lower and more sparse for empirical networks compared to degree-matched randomized networks under IS, suggesting that brain network topology supports IS-like routing strategies.
Collapse
Affiliation(s)
- Yan Hao
- Department of Mathematics and Computer Science, Hobart & William Smith Colleges Geneva, NY, USA
| | - Daniel Graham
- Department of Psychology, Hobart & William Smith Colleges Geneva, NY, USA
| |
Collapse
|
6
|
The brain’s default network: updated anatomy, physiology and evolving insights. Nat Rev Neurosci 2019; 20:593-608. [DOI: 10.1038/s41583-019-0212-7] [Citation(s) in RCA: 421] [Impact Index Per Article: 70.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2019] [Indexed: 12/15/2022]
|
7
|
Abstract
It is nearly 20 years since the concept of a small-world network was first quantitatively defined, by a combination of high clustering and short path length; and about 10 years since this metric of complex network topology began to be widely applied to analysis of neuroimaging and other neuroscience data as part of the rapid growth of the new field of connectomics. Here, we review briefly the foundational concepts of graph theoretical estimation and generation of small-world networks. We take stock of some of the key developments in the field in the past decade and we consider in some detail the implications of recent studies using high-resolution tract-tracing methods to map the anatomical networks of the macaque and the mouse. In doing so, we draw attention to the important methodological distinction between topological analysis of binary or unweighted graphs, which have provided a popular but simple approach to brain network analysis in the past, and the topology of weighted graphs, which retain more biologically relevant information and are more appropriate to the increasingly sophisticated data on brain connectivity emerging from contemporary tract-tracing and other imaging studies. We conclude by highlighting some possible future trends in the further development of weighted small-worldness as part of a deeper and broader understanding of the topology and the functional value of the strong and weak links between areas of mammalian cortex.
Collapse
Affiliation(s)
- Danielle S. Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA
- Danielle S. Bassett, Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, 240 Skirkanich Hall, Philadelphia, PA, 19104, USA.
| | - Edward T. Bullmore
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- ImmunoPsychiatry, Immuno-Inflammation Therapeutic Area Unit, GlaxoSmithKline R&D, Stevenage, UK
| |
Collapse
|