1
|
Yamagishi Y, Kamada T, Ishii T, Matsuura H, Kikuchi N, Abe T, Suzuki M. Morphological and Chemical Diversity within Japanese Laurencia Complex (Rhodomelaceae, Ceramiales, Rhodophyta). Chem Biodivers 2024; 21:e202400833. [PMID: 38959122 DOI: 10.1002/cbdv.202400833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/26/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
Seaweeds of the red algal genus Laurencia are distributed worldwide in tropical, subtropical to temperate zones, growing in Japan from Hokkaido to Okinawa. Laurencia is highly difficult to classify morphologically because of a high degree of morphological variation within individual species. Nevertheless, Laurencia investigation is favored by organic chemists as it produces uniquely structured compounds. Halogenated secondary metabolites are considered to be used as chemical markers for chemical systematics (chemotaxonomy) of this troublesome genus. As a "weedy seaweed", Laurencia is not effectively utilized, yet it produces a variety of metabolites and thus, holds good potential for containing compounds with specific activity, especially in aspects of secondary metabolites. In this review, we reported significant morphological features to distinguish species in this genus, and the morphological features, habitat, distribution, and chemical composition that help discriminate Japanese Laurencia species.
Collapse
Affiliation(s)
- Yukimasa Yamagishi
- Department of Marine Bio-Science, Faculty of Life Science and Biotechnology, Fukuyama University, 1 Gakuen-cho, Fukuyama, Hiroshima, 729-0292, Japan
| | - Takashi Kamada
- Department of Materials and Life Science, Faculty of Science and Technology, Shizuoka Institute of Science and Technology, 2200-2 Toyosawa, Fukuroi, Shizuoka, 437-8555, Japan
| | - Takahiro Ishii
- Department of Biosciences and Biotechnology, Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
| | - Hiroshi Matsuura
- Department of Materials Chemistry, Advanced Course of Applied Chemistry, National Institute of Technology, Asahikawa College, 2-2-1-6 Shunkodai, Asahikawa, Hokkaido, 071-8142, Japan
| | - Norio Kikuchi
- Coastal Branch of Natural History Museum and Institute, Chiba, 123 Yoshio, Katsuura, Chiba, 299-5242, Japan
| | - Tsuyoshi Abe
- The Hokkaido University Museum, Hokkaido University, N10 W8, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| | - Minoru Suzuki
- Coastal Branch of Natural History Museum and Institute, Chiba, 123 Yoshio, Katsuura, Chiba, 299-5242, Japan
| |
Collapse
|
2
|
Ma W, Schmidt A, Strohmann C, Loh CCJ. Stereoselective Entry into α,α'-C-Oxepane Scaffolds through a Chalcogen Bonding Catalyzed Strain-Release C-Septanosylation Strategy. Angew Chem Int Ed Engl 2024; 63:e202405706. [PMID: 38687567 DOI: 10.1002/anie.202405706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
The utility of unconventional noncovalent interactions (NCIs) such as chalcogen bonding has lately emerged as a robust platform to access synthetically difficult glycosides stereoselectively. Herein, we disclose the versatility of a phosphonochalcogenide (PCH) catalyst to facilitate access into the challenging, but biologically interesting 7-membered ring α,α'-C-disubstituted oxepane core through an α-selective strain-release C-glycosylation. Methodically, this strategy represents a switch from more common but entropically less desired macrocyclizations to a thermodynamically favored ring-expansion approach. In light of the general lack of stereoselective methods to access C-septanosides, a remarkable palette of silyl-based nucleophiles can be reliably employed in our method. This include a broad variety of useful synthons, such as easily available silyl-allyl, silyl-enol ether, silyl-ketene acetal, vinylogous silyl-ketene acetal, silyl-alkyne and silylazide reagents. Mechanistic investigations suggest that a mechanistic shift towards an intramolecular aglycone transposition involving a pentacoordinate silicon intermediate is likely responsible in steering the stereoselectivity.
Collapse
Affiliation(s)
- Wenpeng Ma
- Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 4a, 44227, Dortmund, Germany
| | - Annika Schmidt
- Fakultät für Chemie und Chemische Biologie, Anorganische Chemie, Technische Universität Dortmund, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Carsten Strohmann
- Fakultät für Chemie und Chemische Biologie, Anorganische Chemie, Technische Universität Dortmund, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Charles C J Loh
- Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 4a, 44227, Dortmund, Germany
| |
Collapse
|
3
|
Steele TS, Burkhardt I, Moore ML, de Rond T, Bone HK, Barry K, Bunting VM, Grimwood J, Handley LH, Rajasekar S, Talag J, Michael TP, Moore BS. Biosynthesis of Haloterpenoids in Red Algae via Microbial-like Type I Terpene Synthases. ACS Chem Biol 2024; 19:185-192. [PMID: 38081799 PMCID: PMC10985283 DOI: 10.1021/acschembio.3c00627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Red algae or seaweeds produce highly distinctive halogenated terpenoid compounds, including the pentabromochlorinated monoterpene halomon that was once heralded as a promising anticancer agent. The first dedicated step in the biosynthesis of these natural product molecules is expected to be catalyzed by terpene synthase (TS) enzymes. Recent work has demonstrated an emerging class of type I TSs in red algal terpene biosynthesis. However, only one such enzyme from a notoriously haloterpenoid-producing red alga (Laurencia pacifica) has been functionally characterized and the product structure is not related to halogenated terpenoids. Herein, we report 10 new type I TSs from the red algae Portieria hornemannii, Plocamium pacificum, L. pacifica, and Laurencia subopposita that produce a diversity of halogenated mono- and sesquiterpenes. We used a combination of genome sequencing, terpenoid metabolomics, in vitro biochemistry, and bioinformatics to establish red algal TSs in all four species, including those associated with the selective production of key halogenated terpene precursors myrcene, trans-β-ocimene, and germacrene D-4-ol. These results expand on a small but growing number of characterized red algal TSs and offer insight into the biosynthesis of iconic halogenated algal compounds that are not without precedence elsewhere in biology.
Collapse
Affiliation(s)
- Taylor S. Steele
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States; Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Immo Burkhardt
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Malia L. Moore
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States; The Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, United States
| | - Tristan de Rond
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States; School of Chemical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Hannah K. Bone
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Kerrie Barry
- Lawrence Berkeley National Laboratory, JGI-DOE Joint Genome Institute, Berkeley, California 94720, United States
| | - Victoria Mae Bunting
- Arizona Genomics Institute, University of Arizona, Tucson, Arizona 85721, United States
| | - Jane Grimwood
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, United States
| | - Lori H. Handley
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, United States
| | - Shanmugam Rajasekar
- Arizona Genomics Institute, University of Arizona, Tucson, Arizona 85721, United States
| | - Jayson Talag
- Arizona Genomics Institute, University of Arizona, Tucson, Arizona 85721, United States
| | - Todd P. Michael
- The Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, United States
| | - Bradley S. Moore
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
4
|
Lauritano C, Montuori E, De Falco G, Carrella S. In Silico Methodologies to Improve Antioxidants' Characterization from Marine Organisms. Antioxidants (Basel) 2023; 12:710. [PMID: 36978958 PMCID: PMC10045275 DOI: 10.3390/antiox12030710] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
Marine organisms have been reported to be valuable sources of bioactive molecules that have found applications in different industrial fields. From organism sampling to the identification and bioactivity characterization of a specific compound, different steps are necessary, which are time- and cost-consuming. Thanks to the advent of the -omic era, numerous genome, metagenome, transcriptome, metatranscriptome, proteome and microbiome data have been reported and deposited in public databases. These advancements have been fundamental for the development of in silico strategies for basic and applied research. In silico studies represent a convenient and efficient approach to the bioactivity prediction of known and newly identified marine molecules, reducing the time and costs of "wet-lab" experiments. This review focuses on in silico approaches applied to bioactive molecule discoveries from marine organisms. When available, validation studies reporting a bioactivity assay to confirm the presence of an antioxidant molecule or enzyme are reported, as well. Overall, this review suggests that in silico approaches can offer a valuable alternative to most expensive approaches and proposes them as a little explored field in which to invest.
Collapse
Affiliation(s)
- Chiara Lauritano
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Napoli, Italy
| | - Eleonora Montuori
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Napoli, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Gabriele De Falco
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Napoli, Italy
| | - Sabrina Carrella
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Napoli, Italy
| |
Collapse
|
5
|
Fakee J, Bolton JJ, Le Roes-Hill M, Durrell KA, Antunes E, Beukes DR. Antimicrobial Activity of the Secondary Metabolites Isolated from a South African Red Seaweed, Laurencia corymbosa. Molecules 2023; 28:molecules28052063. [PMID: 36903309 PMCID: PMC10003847 DOI: 10.3390/molecules28052063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023] Open
Abstract
South Africa's highly diverse marine biota includes several endemic marine red algae of the Laurencia genus. Cryptic species and morphological variability make the taxonomy of Laurencia plant challenging, and a record of the secondary metabolites isolated from South African Laurencia spp. can be used to assess their chemotaxonomic significance. In addition, the rapid development of resistance against antibiotics, coupled with the inherent ability of seaweeds to resist pathogenic infection, supported this first phycochemical investigation of Laurencia corymbosa J. Agardh. A new tricyclic keto-cuparane (7) and two new cuparanes (4, 5) were obtained alongside known acetogenins, halo-chamigranes, and additional cuparanes. These compounds were screened against Acinetobacter baumannii, Enterococcus faecalis, Escherichia coli, Staphylococcus aureus, and Candida albicans, with 4 exhibiting excellent activity against the Gram-negative A. baumanii (minimum inhibitory concentration (MIC) 1 μg/mL) strain.
Collapse
Affiliation(s)
- Jameel Fakee
- Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa
| | - John J. Bolton
- Department of Biological Sciences, University of Cape Town, Rondebosch 7701, South Africa
| | - Marilize Le Roes-Hill
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Bellville 7535, South Africa
| | - Kim A. Durrell
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Bellville 7535, South Africa
| | - Edith Antunes
- Department of Chemistry, University of the Western Cape, Bellville 7535, South Africa
| | - Denzil R. Beukes
- School of Pharmacy, University of the Western Cape, Bellville 7535, South Africa
- Correspondence: ; Tel.: +27-21-959-2352
| |
Collapse
|
6
|
Secondary Metabolites with Anti-Inflammatory Activity from Laurencia majuscula Collected in the Red Sea. Mar Drugs 2023; 21:md21020079. [PMID: 36827120 PMCID: PMC9968125 DOI: 10.3390/md21020079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
The chemical investigation of the organic extract of the red alga Laurencia majuscula collected from Hurghada reef in the Red Sea resulted in the isolation of five C15 acetogenins, including four tricyclic ones of the maneonene type (1-4) and a 5-membered one (5), 15 sesquiterpenes, including seven lauranes (6-12), one cuparane (13), one seco-laurane (14), one snyderane (15), two chamigranes (16, 17), two rearranged chamigranes (18, 19) and one aristolane (20), as well as a tricyclic diterpene (21) and a chlorinated fatty acid derivative (22). Among them, compounds 1-3, 5, 7, 8, 10, 11 and 14 are new natural products. The structures and the relative configurations of the isolated natural products have been established based on extensive analysis of their NMR and MS data, while the absolute configuration of maneonenes F (1) and G (2) was determined on the basis of single-crystal X-ray diffraction analysis. The anti-inflammatory activity of compounds 1, 2, 4-8, 10, 12-16, 18 and 20-22 was evaluated by measuring suppression of nitric oxide (NO) release in TLR4-activated RAW 264.7 macrophages in culture. All compounds, except 6, exhibited significant anti-inflammatory activity. Among them, metabolites 1, 4 and 18 did not exhibit any cytostatic activity at the tested concentrations. The most prominent anti-inflammatory activity, accompanied by absence of cytostatic activity at the same concentration, was exerted by compounds 5 and 18, with IC50 values of 3.69 μM and 3.55 μΜ, respectively.
Collapse
|
7
|
Gribble GW. Naturally Occurring Organohalogen Compounds-A Comprehensive Review. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 121:1-546. [PMID: 37488466 DOI: 10.1007/978-3-031-26629-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The present volume is the third in a trilogy that documents naturally occurring organohalogen compounds, bringing the total number-from fewer than 25 in 1968-to approximately 8000 compounds to date. Nearly all of these natural products contain chlorine or bromine, with a few containing iodine and, fewer still, fluorine. Produced by ubiquitous marine (algae, sponges, corals, bryozoa, nudibranchs, fungi, bacteria) and terrestrial organisms (plants, fungi, bacteria, insects, higher animals) and universal abiotic processes (volcanos, forest fires, geothermal events), organohalogens pervade the global ecosystem. Newly identified extraterrestrial sources are also documented. In addition to chemical structures, biological activity, biohalogenation, biodegradation, natural function, and future outlook are presented.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
8
|
Harizani M, Diakaki DI, Perdikaris S, Roussis V, Ioannou E. New C15 Acetogenins from Two Species of Laurencia from the Aegean Sea. Molecules 2022; 27:molecules27061866. [PMID: 35335229 PMCID: PMC8953645 DOI: 10.3390/molecules27061866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/06/2022] [Accepted: 03/10/2022] [Indexed: 11/17/2022] Open
Abstract
The chemical diversity of the approximately 1,200 natural products isolated from red algae of the genus Laurencia, in combination with the wide range of their biological activities, have placed species of Laurencia in the spotlight of marine chemists’ attention for over 60 years. The chemical investigation of the organic (CH2Cl2/MeOH) extracts of Laurencia microcladia and Laurencia obtusa, both collected off the coasts of Tinos island in the Aegean Sea, resulted in the isolation of 32 secondary metabolites, including 23 C15 acetogenins (1–23), 7 sesquiterpenes (24–30) and 2 diterpenes (31 and 32). Among them, six new C15 acetogenins, namely 10-acetyl-sagonenyne (2), cis-sagonenyne (3), trans-thuwalenyne C (4), tinosallene A (11), tinosallene B (12) and obtusallene XI (17), were identified and their structures were elucidated by extensive analysis of their spectroscopic data. Compounds 1–3, 5–11, 13 and 15–32 were evaluated for their antibacterial activity against Staphylococcus aureus and Escherichia coli.
Collapse
Affiliation(s)
- Maria Harizani
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Dafni-Ioanna Diakaki
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Stamatios Perdikaris
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Vassilios Roussis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Efstathia Ioannou
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| |
Collapse
|
9
|
Minamida Y, Matsuura H, Ishii T, Miyagi M, Shinjo Y, Sato K, Kamada T, Mihara Y, Togashi I, Sugimoto K, Abe T, Kikuchi N, Suzuki M. New acetogenin katsuurallene from Laurencia saitoi collected from Katsuura, Japan. NATURAL PRODUCTS AND BIOPROSPECTING 2022; 12:10. [PMID: 35266062 PMCID: PMC8907347 DOI: 10.1007/s13659-022-00328-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/12/2021] [Indexed: 06/14/2023]
Abstract
We examined the chemical constitution of the red alga Laurencia saitoi Perestenko, collected from Katsuura, Boso Peninsula, Chiba Prefecture, Japan. This specimen produced a new polyhalogenated acetogenin, named katsuurallene (1), which structure was determined by the spectral methods, along with known diterpene, deoxyparguerol (2) and triterpene, thyrsiferol (3). In this paper we describe the structural elucidation of katsuurallene together with some biological activities.
Collapse
Affiliation(s)
- Yu Minamida
- Advanced Course of Applied Chemistry, National Institute of Technology, Asahikawa College, Shunkodai 2-2-1-6, Asahikawa, Hokkaido, 071-8142, Japan
- Department of Life Science, Graduate School of Engineering Science, Akita University, 1-1 Tegatagakuen-machi, Akita, 010-8502, Japan
| | - Hiroshi Matsuura
- Department of Materials Chemistry, National Institute of Technology, Asahikawa Collage, Shunkodai 2-2-1-6, Asahikawa, Hokkaido, 071-8142, Japan.
| | - Takahiro Ishii
- Department of Biosciences and Biotechnology, Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
| | - Miyu Miyagi
- Department of Biosciences and Biotechnology, Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
| | - Yuto Shinjo
- Department of Biosciences and Biotechnology, Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
| | - Kosuke Sato
- Department of Materials and Life Science, Faculty of Science and Technology, Shizuoka Institute of Science and Technology, 2200-2 Toyosawa, Fukuroi, Shizuoka, 437-8555, Japan
| | - Takashi Kamada
- Department of Materials and Life Science, Faculty of Science and Technology, Shizuoka Institute of Science and Technology, 2200-2 Toyosawa, Fukuroi, Shizuoka, 437-8555, Japan
| | - Yoshihiro Mihara
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Maeda 7, 15-4-1, Teine-ku, Sapporo, Hokkaido, 006-8590, Japan
| | - Iwao Togashi
- Department of Materials Chemistry, National Institute of Technology, Asahikawa Collage, Shunkodai 2-2-1-6, Asahikawa, Hokkaido, 071-8142, Japan
| | - Keisuke Sugimoto
- Department of Materials Chemistry, National Institute of Technology, Asahikawa Collage, Shunkodai 2-2-1-6, Asahikawa, Hokkaido, 071-8142, Japan
| | - Tsuyoshi Abe
- The Hokkaido University Museum, Hokkaido University, N10 W8, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| | - Norio Kikuchi
- Coastal Branch of Natural History Museum and Institute, Chiba,, 123 Yoshio, Katsuura, Chiba, 299-5242, Japan
| | - Minoru Suzuki
- Coastal Branch of Natural History Museum and Institute, Chiba,, 123 Yoshio, Katsuura, Chiba, 299-5242, Japan
| |
Collapse
|
10
|
Januário AP, Félix R, Félix C, Reboleira J, Valentão P, Lemos MFL. Red Seaweed-Derived Compounds as a Potential New Approach for Acne Vulgaris Care. Pharmaceutics 2021; 13:pharmaceutics13111930. [PMID: 34834345 PMCID: PMC8623078 DOI: 10.3390/pharmaceutics13111930] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Acne vulgaris (AV) is a chronic skin disease of the pilosebaceous unit affecting both adolescents and adults. Its pathophysiology includes processes of inflammation, increased keratinization, sebum production, hormonal dysregulation, and bacterial Cutibacterium acnes proliferation. Common AV has been treated with antibiotics since the 1960s, but strain resistance has emerged and is of paramount concern. Macroalgae are known producers of substances with bioactive properties, including anti-viral, antibacterial, antioxidant, and anti-inflammatory properties, among several others. In particular, red algae are rich in bioactive compounds such as polysaccharides, phenolic compounds, lipids, sterols, alkaloids, and terpenoids, conferring them antioxidant, antimicrobial, and anti-inflammatory activities, among others. Thus, the exploration of compounds from marine resources can be an appealing approach to discover new treatment options against AV. The aim of this work is to provide an overview of the current knowledge of the potentialities of red macroalgae in the treatment of AV by reviewing the main therapeutic targets of this disease, and then the existence of compounds or extracts with bioactive properties against them.
Collapse
Affiliation(s)
- Adriana P. Januário
- MARE—Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal; (R.F.); (C.F.); (J.R.)
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal;
- Correspondence: (A.P.J.); (M.F.L.L.)
| | - Rafael Félix
- MARE—Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal; (R.F.); (C.F.); (J.R.)
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal;
| | - Carina Félix
- MARE—Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal; (R.F.); (C.F.); (J.R.)
| | - João Reboleira
- MARE—Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal; (R.F.); (C.F.); (J.R.)
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal;
| | - Marco F. L. Lemos
- MARE—Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal; (R.F.); (C.F.); (J.R.)
- Correspondence: (A.P.J.); (M.F.L.L.)
| |
Collapse
|
11
|
Renn D, Shepard L, Vancea A, Karan R, Arold ST, Rueping M. Novel Enzymes From the Red Sea Brine Pools: Current State and Potential. Front Microbiol 2021; 12:732856. [PMID: 34777282 PMCID: PMC8578733 DOI: 10.3389/fmicb.2021.732856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/05/2021] [Indexed: 11/23/2022] Open
Abstract
The Red Sea is a marine environment with unique chemical characteristics and physical topographies. Among the various habitats offered by the Red Sea, the deep-sea brine pools are the most extreme in terms of salinity, temperature and metal contents. Nonetheless, the brine pools host rich polyextremophilic bacterial and archaeal communities. These microbial communities are promising sources for various classes of enzymes adapted to harsh environments - extremozymes. Extremozymes are emerging as novel biocatalysts for biotechnological applications due to their ability to perform catalytic reactions under harsh biophysical conditions, such as those used in many industrial processes. In this review, we provide an overview of the extremozymes from different Red Sea brine pools and discuss the overall biotechnological potential of the Red Sea proteome.
Collapse
Affiliation(s)
- Dominik Renn
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Institute of Organic Chemistry, RWTH Aachen, Aachen, Germany
| | - Lera Shepard
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Alexandra Vancea
- Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Ram Karan
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Stefan T. Arold
- Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Centre de Biologie Structurale, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Institute for Experimental Molecular Imaging (ExMI), University Clinic, RWTH Aachen, Aachen, Germany
| |
Collapse
|
12
|
The Use of Microalgae and Cyanobacteria in the Improvement of Agricultural Practices: A Review on Their Biofertilising, Biostimulating and Biopesticide Roles. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11020871] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The increase in worldwide population observed in the last decades has contributed to an increased demand for food supplies, which can only be attained through an improvement in agricultural productivities. Moreover, agricultural practices should become more sustainable, as the use of chemically-based fertilisers, pesticides and growth stimulants can pose serious environmental problems and lead to the scarcity of finite resources, such as phosphorus and potassium, thus increasing the fertilisers’ costs. One possible alternative for the development of a more sustainable and highly effective agriculture is the use of biologically-based compounds with known activity in crops’ nutrition, protection and growth stimulation. Among these products, microalgal and cyanobacterial biomass (or their extracts) are gaining particular attention, due to their undeniable potential as a source of essential nutrients and metabolites with different bioactivities, which can significantly improve crops’ yields. This manuscript highlights the potential of microalgae and cyanobacteria in the improvement of agricultural practices, presenting: (i) how these photosynthetic microorganisms interact with higher plants; (ii) the main bioactive compounds that can be isolated from microalgae and cyanobacteria; and (iii) how microalgae and cyanobacteria can influence plants’ growth at different levels (nutrition, protection and growth stimulation).
Collapse
|
13
|
Natural Compounds as Guides for the Discovery of Drugs Targeting G-Protein-Coupled Receptors. Molecules 2020; 25:molecules25215060. [PMID: 33143389 PMCID: PMC7663367 DOI: 10.3390/molecules25215060] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/20/2020] [Accepted: 10/27/2020] [Indexed: 01/12/2023] Open
Abstract
G protein-coupled receptors (GPCRs), which constitute the most populous family of the human proteome, are the target of 35–45% of approved therapeutic drugs. This review focuses on natural products (excluding peptides) that target GPCRs. Natural compounds identified so far as agonists, antagonists or allosteric modulators of GPCRs have been found in all groups of existing living beings according to Whittaker’s Five Kingdom Classification, i.e., bacteria (monera), fungi, protoctists, plants and animals. Terpenoids, alkaloids and flavonoids are the most common chemical structures that target GPCRs whose endogenous ligands range from lipids to epinephrine, from molecules that activate taste receptors to molecules that activate smell receptors. Virtually all of the compounds whose formula is displayed in this review are pharmacophores with potential for drug discovery; furthermore, they are expected to help expand the number of GPCRs that can be considered as therapeutic targets.
Collapse
|
14
|
Elia J, Petit K, Huvelin JM, Tannoury M, Diab-Assaf M, Carbonnelle D, Nazih H. Acetone Fraction of the Red Marine Alga Laurencia papillosa Reduces the Expression of Bcl-2 Anti-apoptotic Marker and Flotillin-2 Lipid Raft Marker in MCF-7 Breast Cancer Cells. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 19:321-330. [PMID: 32922490 PMCID: PMC7462504 DOI: 10.22037/ijpr.2020.1100933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Marine macroalgae have attracted much attention in recent years as a valuable source of bioactive metabolites. The cytotoxic potential of the Laurencia papillosa red alga collected from the Lebanese coast has been investigated on human breast cancer cells MCF-7. The crude extract of Laurencia papillosa (L. papillosa) was fractionated by column chromatography using a series of increasingly polar solvents (methylene chloride, acetone and methanol). Cytotoxicity of the crude extract and fractions was determined by MTT assay in MCF-7 cells. Apoptosis was detected by annexin V/propidium iodide assay and by measurement of Bcl-2 expression. Flotillin-2 expression was examined using RT-qPCR and Western blot. The crude extract, and the fractions of CH2Cl2 and acetone exhibited a dose-dependent cytotoxic effect on MCF-7 cells. Apoptosis was specifically induced by one of the acetone fractions having the highest cytotoxicity. It has been demonstrated by an increase in late phase apoptotic cell populations, and a decrease in Bcl-2 anti-apoptotic marker expression on mRNA and protein levels in a dose- and time- dependent manner. Furthermore, this active fraction decreased Flotillin-2 expression associated with cancer progression. Our data suggest that L. papillosa is an important source of cytotoxic metabolites. Further studies are needed for the chemical characterization of the metabolite associated with observed biological activities.
Collapse
Affiliation(s)
- Josiane Elia
- MMS-EA 2160, Department of Biochemistry and Pharmacognosy, Faculty of Pharmacy, University of Nantes, Nantes, France
| | - Karina Petit
- MMS-EA 2160, Department of Biochemistry and Pharmacognosy, Faculty of Pharmacy, University of Nantes, Nantes, France
| | - Jean-Michel Huvelin
- MMS-EA 2160, Department of Biochemistry and Pharmacognosy, Faculty of Pharmacy, University of Nantes, Nantes, France
| | - Mona Tannoury
- Department of Biology, Faculty of Sciences II, Lebanese University, Fanar, Lebanon
| | - Mona Diab-Assaf
- Department of Biochemistry and Chemistry, Faculty of Sciences II, Lebanese University, Fanar, Lebanon
| | - Delphine Carbonnelle
- MMS-EA 2160, Department of Biochemistry and Pharmacognosy, Faculty of Pharmacy, University of Nantes, Nantes, France
| | - Hassan Nazih
- MMS-EA 2160, Department of Biochemistry and Pharmacognosy, Faculty of Pharmacy, University of Nantes, Nantes, France
| |
Collapse
|
15
|
Antimycobacterial Activity of Laurinterol and Aplysin from Laurencia johnstonii. Mar Drugs 2020; 18:md18060287. [PMID: 32486286 PMCID: PMC7345040 DOI: 10.3390/md18060287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/20/2020] [Accepted: 05/29/2020] [Indexed: 01/22/2023] Open
Abstract
Marine environments represent a great opportunity for the discovery of compounds with a wide spectrum of bioactive properties. Due to their large variety and functions derived from natural selection, marine natural products may allow the identification of novel drugs based not only on newly discovered bioactive metabolites but also on already known compounds not yet thoroughly investigated. Since drug resistance has caused an increase in infections by Mycobacterium tuberculosis and nontuberculous mycobacteria, the re-evaluation of known bioactive metabolites has been suggested as a good approach to addressing this problem. In this sense, this study presents an evaluation of the in vitro effect of laurinterol and aplysin, two brominated sesquiterpenes isolated from Laurencia johnstonii, against nine M. tuberculosis strains and six nontuberculous mycobacteria (NTM). Laurinterol exhibited good antimycobacterial activity, especially against nontuberculous mycobacteria, being remarkable its effect against Mycobacterium abscessus, with minimum inhibitory concentration (MIC) values lower than those of the reference drug imipenem. This study provides further evidence for the antimycobacterial activity of some sesquiterpenes from L. johnstonii, which can be considered interesting lead compounds for the discovery of novel molecules to treat NTM infections.
Collapse
|
16
|
Sudatti DB, Duarte HM, Soares AR, Salgado LT, Pereira RC. New Ecological Role of Seaweed Secondary Metabolites as Autotoxic and Allelopathic. FRONTIERS IN PLANT SCIENCE 2020; 11:347. [PMID: 32523586 PMCID: PMC7261924 DOI: 10.3389/fpls.2020.00347] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/09/2020] [Indexed: 06/11/2023]
Abstract
Allelopathy and autotoxicity are well-known biological processes in angiosperms but are very little explored or even unknown in seaweeds. In this study, extract and major pure compounds from two distinct populations of the red seaweed Laurencia dendroidea were investigated to evaluate the effect of autotoxicity through auto- and crossed experiments under laboratory conditions, using chlorophyll fluorescence imaging to measure inhibition of photosynthesis (ΦPSII) as a variable response. Individuals of L. dendroidea from Azeda beach were inhibited by their own extract (IC50 = 219 μg/ml) and the major compound elatol (IC50 = 87 μg/ml); both chemicals also inhibited this seaweed species from Forno beach (IC50 = 194 μg/ml for the extract and IC50 = 277 μg/ml for elatol). By contrast, the extract of L. dendroidea from Forno and its major compound obtusol showed no inhibitory effect in individuals of both populations; but obtusol was insoluble to be tested at higher concentrations, which could be active as observed for elatol. The Azeda population displayed higher susceptibility to the Azeda extract and to elatol, manifested on the first day, unlike Forno individuals, in which the effect was only detected on the second day; and inhibition of ΦPSII was more pronounced at apical than basal portions of the thalli of L. dendroidea. This first finding of seaweed autotoxicity and allelopathic effects revealed the potential of the chemistry of secondary metabolites for intra- and inter-populational interactions, and for structuring seaweed populations.
Collapse
Affiliation(s)
- Daniela Bueno Sudatti
- Departamento de Biologia Marinha, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Heitor Monteiro Duarte
- Grupo de Produtos Naturais de Organismos Aquáticos (GPNOA), Núcleo de Estudos em Ecologia e Desenvolvimento Sócio-ambiental de Macaé, Universidade Federal do Rio de Janeiro, Macaé, Brazil
| | - Angélica Ribeiro Soares
- Grupo de Produtos Naturais de Organismos Aquáticos (GPNOA), Núcleo de Estudos em Ecologia e Desenvolvimento Sócio-ambiental de Macaé, Universidade Federal do Rio de Janeiro, Macaé, Brazil
| | | | - Renato Crespo Pereira
- Departamento de Biologia Marinha, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
17
|
An enumeration of natural products from microbial, marine and terrestrial sources. PHYSICAL SCIENCES REVIEWS 2020. [DOI: 10.1515/psr-2018-0121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Abstract
The discovery of a new drug is a multidisciplinary and very costly task. One of the major steps is the identification of a lead compound, i.e. a compound with a certain degree of potency and that can be chemically modified to improve its activity, metabolic properties, and pharmacokinetics profiles. Terrestrial sources (plants and fungi), microbes and marine organisms are abundant resources for the discovery of new structurally diverse and biologically active compounds. In this chapter, an attempt has been made to quantify the numbers of known published chemical structures (available in chemical databases) from natural sources. Emphasis has been laid on the number of unique compounds, the most abundant compound classes and the distribution of compounds in terrestrial and marine habitats. It was observed, from the recent investigations, that ~500,000 known natural products (NPs) exist in the literature. About 70 % of all NPs come from plants, terpenoids being the most represented compound class (except in bacteria, where amino acids, peptides, and polyketides are the most abundant compound classes). About 2,000 NPs have been co-crystallized in PDB structures.
Collapse
|
18
|
Evaluation of Antifouling Potential and Ecotoxicity of Secondary Metabolites Derived from Red Algae of the Genus Laurencia. Mar Drugs 2019; 17:md17110646. [PMID: 31744063 PMCID: PMC6891695 DOI: 10.3390/md17110646] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 02/07/2023] Open
Abstract
Red algae of the genus Laurencia are known to biosynthesize and secrete an immense variety of secondary metabolites possessing a spectrum of biological activities against bacteria, invertebrates and mammalian cell lines. Following a rigorous cross-species screening process, herein we report the antifouling potential of 25 secondary metabolites derived from species of the genus Laurencia, as well as the thorough evaluation of the ecotoxicity of selected metabolites against non-target marine arthropods and vertebrate cell lines. A number of these secondary metabolites exhibited potent antifouling activity and performed well in all screening tests. Our results show that perforenol (9) possesses similar antifouling activity with that already described for bromosphaerol, which is used herein as a benchmark.
Collapse
|
19
|
Thuwalallenes A-E and Thuwalenynes A-C: New C 15 Acetogenins with Anti-Inflammatory Activity from a Saudi Arabian Red Sea Laurencia sp. Mar Drugs 2019; 17:md17110644. [PMID: 31731724 PMCID: PMC6891555 DOI: 10.3390/md17110644] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/04/2019] [Accepted: 11/13/2019] [Indexed: 01/07/2023] Open
Abstract
Thuwalallenes A-E (1-3, 5 and 8) and thuwalenynes A-C (4, 6, 7), new C15 acetogenins featuring uncommon ring systems, along with cis-maneonene D (9), thyrsiferol (10) and 23-acetyl-thyrsiferol (11) were isolated from the organic extract of a population of the red alga Laurencia sp., collected at Rose Reef off the village of Thuwal in the Red Sea waters of the Kingdom of Saudi Arabia. The structure elucidation of the isolated natural products was based on extensive analysis of their spectroscopic data. Compounds 1-6, 8, 10 and 11 were evaluated for their anti-inflammatory activity by quantifying nitric oxide (NO) release in response to TLR4 stimulation in macrophages. Besides compound 4 that did not exhibit any activity, all other tested metabolites inhibited NO production from activated macrophages. Among them, thyrsiferol (10) and 23-acetylthyrsiferol (11) displayed activity with IC50 values in the low nM scale without cytotoxicity.
Collapse
|
20
|
Evaluation of Oxasqualenoids from the Red Alga Laurencia viridis against Acanthamoeba. Mar Drugs 2019; 17:md17070420. [PMID: 31331002 PMCID: PMC6669608 DOI: 10.3390/md17070420] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 01/05/2023] Open
Abstract
Acanthamoeba genus is a widely distributed and opportunistic parasite with increasing importance worldwide as an emerging pathogen in the past decades. This protozoan has an active trophozoite stage, a cyst stage, and is dormant and very resistant. It can cause Acanthamoeba keratitis, an ocular sight-threatening disease, and granulomatous amoebic encephalitis, a chronic, very fatal brain pathology. In this study, the amoebicidal activity of sixteen Laurencia oxasqualenoid metabolites and semisynthetic derivatives were tested against Acanthamoeba castellanii Neff. The results obtained point out that iubol (3) and dehydrothyrsiferol (1) possess potent activities, with IC50 values of 5.30 and 12.83 µM, respectively. The hydroxylated congeners thyrsiferol (2) and 22-hydroxydehydrothyrsiferol (4), active in the same value range at IC50 13.97 and 17.00 µM, are not toxic against murine macrophages; thus, they are solid candidates for the development of new amoebicidal therapies.
Collapse
|
21
|
Antitumoral Effect of Laurinterol on 3D Culture of Breast Cancer Explants. Mar Drugs 2019; 17:md17040201. [PMID: 30934912 PMCID: PMC6520734 DOI: 10.3390/md17040201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/18/2019] [Accepted: 03/25/2019] [Indexed: 12/16/2022] Open
Abstract
Macroalgae represent an important source of bioactive compounds with a wide range of biotechnological applications. Overall, the discovery of effective cytotoxic compounds with pharmaceutical potential is a significant challenge, mostly because they are scarce in nature or their total synthesis is not efficient, while the bioprospecting models currently used do not predict clinical responses. Given this context, we used three-dimensional (3D) cultures of human breast cancer explants to evaluate the antitumoral effect of laurinterol, the major compound of an ethanolic extract of Laurencia johnstonii. To this end, we evaluated the metabolic and histopathological effects of the crude extract of L. johnstonii and laurinterol on Vero and MCF-7 cells, in addition to breast cancer explants. We observed a dose-dependent inhibition of the metabolic activity, as well as morphologic and nuclear changes characteristic of apoptosis. On the other hand, a reduced metabolic viability and marked necrosis areas were observed in breast cancer explants incubated with the crude extract, while explants treated with laurinterol exhibited a heterogeneous response which was associated with the individual response of each human tumor sample. This study supports the cytotoxic and antitumoral effects of laurinterol in in vitro cell cultures and in ex vivo organotypic cultures of human breast cancer explants.
Collapse
|
22
|
García-Davis S, Sifaoui I, Reyes-Batlle M, Viveros-Valdez E, Piñero JE, Lorenzo-Morales J, Fernández JJ, Díaz-Marrero AR. Anti- Acanthamoeba Activity of Brominated Sesquiterpenes from Laurencia johnstonii. Mar Drugs 2018; 16:md16110443. [PMID: 30423882 PMCID: PMC6266398 DOI: 10.3390/md16110443] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 11/16/2022] Open
Abstract
Focused on our interest to develop novel antiparasistic agents, the present study was aimed to evaluate the biological activity of an extract of Laurencia johnstonii collected in Baja California Sur, Mexico, against an Acantamoeba castellanii Neff strain. Bioassay-guided fractionation allowed us to identify the amoebicidal diastereoisomers α-bromocuparane (4) and α-isobromocuparane (5). Furthermore, bromination of the inactive laurinterol (1) and isolaurinterol (2) yielded four halogenated derivatives, (6)⁻(9), which improved the activity of the natural sesquiterpenes. Among them, the most active compound was 3α-bromojohnstane (7), a sesquiterpene derivative which possesses a novel carbon skeleton johnstane.
Collapse
Affiliation(s)
- Sara García-Davis
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna (ULL), Avda. Astrofísico F. Sánchez, 2, 38206 La Laguna, Tenerife, Spain.
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León (UANL), Av. Pedro de Alba s/n, 66450 San Nicolás de los Garza, Nuevo León, Mexico.
| | - Ines Sifaoui
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Islas Canarias, Universidad de La Laguna, Av. Astrofísico Francisco Sánchez s/n, 38206 La Laguna, Tenerife, Spain.
| | - María Reyes-Batlle
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Islas Canarias, Universidad de La Laguna, Av. Astrofísico Francisco Sánchez s/n, 38206 La Laguna, Tenerife, Spain.
| | - Ezequiel Viveros-Valdez
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León (UANL), Av. Pedro de Alba s/n, 66450 San Nicolás de los Garza, Nuevo León, Mexico.
| | - José E Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Islas Canarias, Universidad de La Laguna, Av. Astrofísico Francisco Sánchez s/n, 38206 La Laguna, Tenerife, Spain.
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Islas Canarias, Universidad de La Laguna, Av. Astrofísico Francisco Sánchez s/n, 38206 La Laguna, Tenerife, Spain.
| | - José J Fernández
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna (ULL), Avda. Astrofísico F. Sánchez, 2, 38206 La Laguna, Tenerife, Spain.
- Departamento de Química Orgánica, Universidad de La Laguna (ULL), Avda. Astrofísico F. Sánchez, 2, 38206 La Laguna, Tenerife, Spain.
| | - Ana R Díaz-Marrero
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna (ULL), Avda. Astrofísico F. Sánchez, 2, 38206 La Laguna, Tenerife, Spain.
| |
Collapse
|
23
|
New Metabolites Isolated from a Laurencia obtusa Population Collected in Corsica. Molecules 2018; 23:molecules23040720. [PMID: 29561818 PMCID: PMC6017553 DOI: 10.3390/molecules23040720] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/12/2018] [Accepted: 03/16/2018] [Indexed: 11/29/2022] Open
Abstract
The chemical investigation of an ethyl acetate extract (EtOAc) obtained from Laurencia obtusa, collected in Corsica, allowed for the identification of three new compounds (1, 2, and 4) and six known compounds. Compounds 1 to 4 were isolated and fully characterized by a detailed spectroscopic analysis. Compounds 1 and 2 are two C15-acetogenins sharing the same ring system: a tetrahydropyran linked by a methylene to a tetrahydrofuran ring. Compound 1 exhibits a bromoallene unit whereas compound 2 possesses an uncommon α-bromo-α,β-unsaturated aldehyde terminal unit. Compound 4 is the first diterpene exhibiting a 19(4→3)abeo-labdane skeleton isolated from a Laurencia species. Isolation of concinndiol (compound 3) together with compound 4 suggests a common biosynthetic origin. Additionally, five known compounds, namely sagonenyne, laurene, α-bromocuparene, microcladallene A, and β-snyderol were identified in chromatographic fractions by NMR analysis using a computerized method that was developed in our laboratory.
Collapse
|
24
|
Philippus AC, Zatelli GA, Wanke T, Gabriela de A. Barros M, Kami SA, Lhullier C, Armstrong L, Sandjo LP, Falkenberg M. Molecular networking prospection and characterization of terpenoids and C15-acetogenins in Brazilian seaweed extracts. RSC Adv 2018; 8:29654-29661. [PMID: 35547298 PMCID: PMC9085288 DOI: 10.1039/c8ra02802h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 08/13/2018] [Indexed: 01/14/2023] Open
Abstract
Molecular networking (MN) can efficiently dereplicate extracts and pure compounds. Red algae of the genus Laurencia are rich in halogenated secondary metabolites, mainly sesquiterpenes and C15-acetogenins. Brown algae of the genus Dictyopteris produce mainly C11-hydrocarbons, sesquiterpenes and sulfur-containing compounds, while Dictyota and Canistrocarpus are reported to contain mainly diterpenes. This study performs an exploratory MN analysis of 14 extracts from algae collected in Brazil (including the oceanic islands) and characterizes the secondary metabolites from the analyzed species. The extracts and some isolated metabolites were analyzed by LC-MS using the FastDDA algorithm, and the MS/MS spectra were submitted to GNPS and displayed in Cytoscape 3.5.1. The GNPS platform generated 68 individual nodes and nine family networks. The MN exploratory analysis indicated chemical differences among species, and also in sampling sites for the same species. For some extracts, it was possible to identify mass values that could correspond to terpenoids and C15-acetogenins that have already been isolated from those or related species. An interesting chemodiversity was highlighted between Laurencia catarinensis from two nearby islands, and this was revealed and was also suggested by the family networks. Many nodes in the MN could not be characterized, and these metabolites can be used as targets for isolation in future works. Molecular networking of Brazilian marine algae.![]()
Collapse
Affiliation(s)
- Ana Cláudia Philippus
- Federal University of Santa Catarina (UFSC)
- Postgraduate Program in Pharmacy
- Health Sciences Center
- Florianópolis
- Brazil
| | - Gabriele A. Zatelli
- Federal University of Santa Catarina (UFSC)
- Postgraduate Program in Pharmacy
- Health Sciences Center
- Florianópolis
- Brazil
| | - Tauana Wanke
- Federal University of Santa Catarina (UFSC)
- Postgraduate Program in Pharmacy
- Health Sciences Center
- Florianópolis
- Brazil
| | - Maria Gabriela de A. Barros
- Federal University of Santa Catarina (UFSC)
- Postgraduate Program in Pharmacy
- Health Sciences Center
- Florianópolis
- Brazil
| | - Satomy A. Kami
- Federal University of Santa Catarina (UFSC)
- Postgraduate Program in Pharmacy
- Health Sciences Center
- Florianópolis
- Brazil
| | - Cintia Lhullier
- Federal University of Santa Catarina (UFSC)
- Postgraduate Program in Pharmacy
- Health Sciences Center
- Florianópolis
- Brazil
| | - Lorene Armstrong
- Federal University of Santa Catarina (UFSC)
- Postgraduate Program in Pharmacy
- Health Sciences Center
- Florianópolis
- Brazil
| | - Louis P. Sandjo
- Federal University of Santa Catarina (UFSC)
- Postgraduate Program in Pharmacy
- Health Sciences Center
- Florianópolis
- Brazil
| | - Miriam Falkenberg
- Federal University of Santa Catarina (UFSC)
- Postgraduate Program in Pharmacy
- Health Sciences Center
- Florianópolis
- Brazil
| |
Collapse
|
25
|
Pinnatifidenyne-Derived Ethynyl Oxirane Acetogenins from Laurencia viridis. Mar Drugs 2017; 16:md16010005. [PMID: 29286293 PMCID: PMC5793053 DOI: 10.3390/md16010005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/05/2017] [Accepted: 12/13/2017] [Indexed: 01/03/2023] Open
Abstract
Red algae of Laurencia continue to provide wide structural diversity and complexity of halogenated C15 acetogenin medium-ring ethers. Here, we described the isolation of three new C15 acetogenins (3–5), and one truncated derivative (6) from Laurencia viridis collected on the Canary Islands. These compounds are interesting variations on the pinnatifidenyne structure that included the first examples of ethynyl oxirane derivatives (3–4). The structures were elucidated by extensive study of NMR (Nuclear Magnetic Resonance) data, J-based configuration analysis and DFT (Density Functional Theory) calculations. Their antiproliferative activity against six human solid tumor cell lines was evaluated.
Collapse
|
26
|
Nocchi N, Soares AR, Souto ML, Fernández JJ, Martin MN, Pereira RC. Detection of a chemical cue from the host seaweed Laurencia dendroidea by the associated mollusc Aplysia brasiliana. PLoS One 2017; 12:e0187126. [PMID: 29095906 PMCID: PMC5667859 DOI: 10.1371/journal.pone.0187126] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/13/2017] [Indexed: 11/18/2022] Open
Abstract
Chemical cues from sessile hosts can attract mobile and associated organisms and they are also impotant to maintain associations and overall biodiversity, but the identity and molecular structures of these chemicals have been little explored in the marine environment. Secondary metabolites are recognized as possible chemical mediators in the association between species of Laurencia and Aplysia, but the identity of the compounds has not been established. Here, for the first time, we experimentally verify that the sesquiterpene (+)-elatol, a compound produced by the red seaweed Laurencia dendroidea, is a chemical cue attracting the associated sea hare Aplysia brasiliana. In addition to revealing the nature of the chemical mediation between these two species, we provide evidence of a chemical cue that allows young individuals of A. brasiliana to live in association with L. dendroidea. This study highlights the importance of chemical cues in Laurencia-Aplysia association.
Collapse
Affiliation(s)
- N. Nocchi
- Programa de Pós-graduação em Dinâmica do Oceano e da Terra, Universidade Federal Fluminense, Campus da Praia Vermelha, Niterói, Brazil
- Grupo de Produtos Narturais de Organismos Aquáticos (GPNOA), Universidade Federal do Rio de Janeiro, Núcleo em Ecologia e Desenvolvimento Sócio-Ambiental de Macaé, Macaé, Brazil
| | - A. R. Soares
- Grupo de Produtos Narturais de Organismos Aquáticos (GPNOA), Universidade Federal do Rio de Janeiro, Núcleo em Ecologia e Desenvolvimento Sócio-Ambiental de Macaé, Macaé, Brazil
- * E-mail: (ARS); (RCP)
| | - M. L. Souto
- Instituto Universitario de Bio-Orgánica “Antonio González” (IUBO), Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Departamento de Química Orgánica, Universidad de La Laguna (ULL), La Laguna, Tenerife, España
| | - J. J. Fernández
- Instituto Universitario de Bio-Orgánica “Antonio González” (IUBO), Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Departamento de Química Orgánica, Universidad de La Laguna (ULL), La Laguna, Tenerife, España
| | - M. N. Martin
- Instituto Universitario de Bio-Orgánica “Antonio González” (IUBO), Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Departamento de Química Orgánica, Universidad de La Laguna (ULL), La Laguna, Tenerife, España
| | - R. C. Pereira
- Programa de Pós-graduação em Dinâmica do Oceano e da Terra, Universidade Federal Fluminense, Campus da Praia Vermelha, Niterói, Brazil
- * E-mail: (ARS); (RCP)
| |
Collapse
|
27
|
Xu S, Wang C, Komiyama M, Tomonari Y, Negishi EI. Asymmetric Synthesis of Chiral Cyclopentanes Bearing an All-Carbon Quaternary Stereocenter by Zirconium-Catalyzed Double Carboalumination. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201706198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shiqing Xu
- Herbert C. Brown Laboratories of Chemistry; Purdue University; 560 Oval Drive West Lafayette IN 47906 USA
| | - Chuan Wang
- Herbert C. Brown Laboratories of Chemistry; Purdue University; 560 Oval Drive West Lafayette IN 47906 USA
- Department of Chemistry; University of Science and Technology of China; 96 Jinzhai Road, Heifei Anhui 230026 P.R. China
| | - Masato Komiyama
- Herbert C. Brown Laboratories of Chemistry; Purdue University; 560 Oval Drive West Lafayette IN 47906 USA
| | - Yasuhiko Tomonari
- Herbert C. Brown Laboratories of Chemistry; Purdue University; 560 Oval Drive West Lafayette IN 47906 USA
| | - Ei-ichi Negishi
- Herbert C. Brown Laboratories of Chemistry; Purdue University; 560 Oval Drive West Lafayette IN 47906 USA
| |
Collapse
|
28
|
Xu S, Wang C, Komiyama M, Tomonari Y, Negishi EI. Asymmetric Synthesis of Chiral Cyclopentanes Bearing an All-Carbon Quaternary Stereocenter by Zirconium-Catalyzed Double Carboalumination. Angew Chem Int Ed Engl 2017; 56:11502-11505. [PMID: 28726306 DOI: 10.1002/anie.201706198] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 07/12/2017] [Indexed: 11/10/2022]
Abstract
Herein, we report a zirconium-catalyzed enantio- and diastereoselective inter/intramolecular double carboalumination of unactivated 2-substituted 1,5-dienes, which provides efficient and direct access to chiral cyclopentanes through the generation of two stereocenters, including one all-carbon quaternary stereocenter, generally with excellent diastereo- and high enantioselectivity. This tandem carboalumination process creates two new C-C bonds as well as one C-Al bond, which can be oxidized in situ with O2 or hydrolyzed. Furthermore, the obtained chiral cyclopentanes can be readily functionalized to provide various chiral compounds.
Collapse
Affiliation(s)
- Shiqing Xu
- Herbert C. Brown Laboratories of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47906, USA
| | - Chuan Wang
- Herbert C. Brown Laboratories of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47906, USA.,Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Heifei, Anhui, 230026, P.R. China
| | - Masato Komiyama
- Herbert C. Brown Laboratories of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47906, USA
| | - Yasuhiko Tomonari
- Herbert C. Brown Laboratories of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47906, USA
| | - Ei-Ichi Negishi
- Herbert C. Brown Laboratories of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47906, USA
| |
Collapse
|
29
|
Dahms HU, Dobretsov S. Antifouling Compounds from Marine Macroalgae. Mar Drugs 2017; 15:md15090265. [PMID: 28846625 PMCID: PMC5618404 DOI: 10.3390/md15090265] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/29/2017] [Accepted: 07/12/2017] [Indexed: 12/14/2022] Open
Abstract
Marine macroalgae produce a wide variety of biologically-active metabolites that have been developed into commercial products, such as antibiotics, immunosuppressive, anti-inflammatory, cytotoxic agents, and cosmetic products. Many marine algae remain clean over longer periods of time, suggesting their strong antifouling potential. Isolation of biogenic compounds and the determination of their structure could provide leads for the development of environmentally-friendly antifouling paints. Isolated substances with potent antifouling activity belong to fatty acids, lipopeptides, amides, alkaloids, lactones, steroids, terpenoids, and pyrroles. It is unclear as yet to what extent symbiotic microorganisms are involved in the synthesis of these compounds. Algal secondary metabolites have the potential to be produced commercially using genetic and metabolic engineering techniques. This review provides an overview of publications from 2010 to February 2017 about antifouling activity of green, brown, and red algae. Some researchers were focusing on antifouling compounds of brown macroalgae, while metabolites of green algae received less attention. Several studies tested antifouling activity against bacteria, microalgae and invertebrates, but in only a few studies was the quorum sensing inhibitory activity of marine macroalgae tested. Rarely, antifouling compounds from macroalgae were isolated and tested in an ecologically-relevant way.
Collapse
Affiliation(s)
- Hans Uwe Dahms
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, No. 100, Shin-Chuan 1st Road, Kaohsiung 80708, Taiwan.
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, No. 70, Lienhai Road, Kaohsiung 80424, Taiwan.
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Sergey Dobretsov
- Center of Excellence in Marine Biotechnology, Sultan Qaboos University, Muscat 123, Oman.
- Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat 123, Oman.
| |
Collapse
|
30
|
Sutour S, Esselin H, Bighelli A, Casanova J, Le Gall L, Tomi F. Discrimination and Characterization of Two Mediterranean Species from the Laurencia Complex (Rhodomelacea) Using an NMR-Based Metabolomic Approach. Chem Biodivers 2017; 14. [PMID: 28724197 DOI: 10.1002/cbdv.201700226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/17/2017] [Indexed: 11/05/2022]
Abstract
Generic and specific determination among the Laurencia complex is a challenging task. DNA barcoding combined with phenotypic investigations are mandatory for species differentiation. In this study, two morphologically different members of the Laurencia complex were investigated using untargeted 1 H-NMR-based metabolomics. Twenty-one population samples were collected in order to evaluate both temporal and geographical homogeneity. Data obtained from 1 H-NMR analysis followed by statistical analysis allowed a clear separation of all the samples into two groups. DNA mitochondrial tests confirmed this pattern and identified the two species as Laurenciella sp. and Laurencia obtusa. In addition, metabolites responsible of this discrimination were investigated directly in crude extracts by 13 C-NMR using an in-house computer-assisted method. The combination of both untargeted (1 H) and targeted (13 C) NMR-based metabolomic approaches proves to be a powerful and complementary approach to discriminate species from the Laurencia complex.
Collapse
Affiliation(s)
- Sylvain Sutour
- UMR 6134, CNRS, SPE, Equipe Chimie et Biomasse, Université de Corse, 2000, Ajaccio, France
| | - Hélène Esselin
- UMR 6134, CNRS, SPE, Equipe Chimie et Biomasse, Université de Corse, 2000, Ajaccio, France
| | - Ange Bighelli
- UMR 6134, CNRS, SPE, Equipe Chimie et Biomasse, Université de Corse, 2000, Ajaccio, France
| | - Joseph Casanova
- UMR 6134, CNRS, SPE, Equipe Chimie et Biomasse, Université de Corse, 2000, Ajaccio, France
| | - Line Le Gall
- UMR 7205, CNRS, MNHN, UPMC, EPHE, Muséum National d'Histoire Naturelle, 75005, Paris, France
| | - Félix Tomi
- UMR 6134, CNRS, SPE, Equipe Chimie et Biomasse, Université de Corse, 2000, Ajaccio, France
| |
Collapse
|
31
|
Cuparane sesquiterpenes from Laurencia natalensis Kylin as inhibitors of alpha-glucosidase, dipeptidyl peptidase IV and xanthine oxidase. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
32
|
Esselin H, Sutour S, Liberal J, Cruz MT, Salgueiro L, Siegler B, Freuze I, Castola V, Paoli M, Bighelli A, Tomi F. Chemical Composition of Laurencia obtusa Extract and Isolation of a New C 15-Acetogenin. Molecules 2017; 22:molecules22050779. [PMID: 28492496 PMCID: PMC6154620 DOI: 10.3390/molecules22050779] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 04/27/2017] [Accepted: 05/06/2017] [Indexed: 11/21/2022] Open
Abstract
A new C15-acetogenin, sagonenyne (20), exhibiting an unusual single tetrahydropyran ring was isolated from an ethyl acetate extract of Laurencia obtusa collected on the Corsican coastline. Its structure was established by detailed NMR spectroscopic analysis, mass spectrometry, and comparison with literature data. Twenty-three known compounds were identified in the same extract by means of column chromatography steps, using a 13C-NMR computer aided method developed in our laboratory. In addition to sesquiterpenes, which represent the main chemical class of this extract, diterpenes, sterols, and C15-acetogenins were identified. The crude extract was submitted to a cytotoxicity assay and was particularly active against THP-1 cells, a human leukemia monocytic cell line.
Collapse
Affiliation(s)
- Hélène Esselin
- Université de Corse-CNRS, UMR 6134 SPE, Equipe Chimie et Biomasse, Route des Sanguinaires, 20000 Ajaccio, France.
| | - Sylvain Sutour
- Université de Corse-CNRS, UMR 6134 SPE, Equipe Chimie et Biomasse, Route des Sanguinaires, 20000 Ajaccio, France.
| | - Joana Liberal
- CNC.IBILI/Faculty of Pharmacy, University of Coimbra, Health Sciences Campus, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal.
- Escola Superior de Saúde Dr. Lopes Dias, Instituto Politécnico de Castelo Branco, Campus da Talagueira, 6000-767 Castelo Branco, Portugal.
| | - Maria Teresa Cruz
- CNC.IBILI/Faculty of Pharmacy, University of Coimbra, Health Sciences Campus, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal.
| | - Ligia Salgueiro
- CNC.IBILI/Faculty of Pharmacy, University of Coimbra, Health Sciences Campus, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal.
| | - Benjamin Siegler
- Plateforme d'Ingénierie et d'Analyses Moléculaires, Université d'Angers, UFR Sciences, 49000 Angers, France.
| | - Ingrid Freuze
- Plateforme d'Ingénierie et d'Analyses Moléculaires, Université d'Angers, UFR Sciences, 49000 Angers, France.
| | - Vincent Castola
- Université de Corse-CNRS, UMR 6134 SPE, Equipe Chimie et Biomasse, Route des Sanguinaires, 20000 Ajaccio, France.
| | - Mathieu Paoli
- Université de Corse-CNRS, UMR 6134 SPE, Equipe Chimie et Biomasse, Route des Sanguinaires, 20000 Ajaccio, France.
| | - Ange Bighelli
- Université de Corse-CNRS, UMR 6134 SPE, Equipe Chimie et Biomasse, Route des Sanguinaires, 20000 Ajaccio, France.
| | - Félix Tomi
- Université de Corse-CNRS, UMR 6134 SPE, Equipe Chimie et Biomasse, Route des Sanguinaires, 20000 Ajaccio, France.
| |
Collapse
|
33
|
Lin R, Cao L, West FG. Medium-Sized Cyclic Ethers via Stevens [1,2]-Shift of Mixed Monothioacetal-Derived Sulfonium Ylides: Application to Formal Synthesis of (+)-Laurencin. Org Lett 2017; 19:552-555. [PMID: 28102079 DOI: 10.1021/acs.orglett.6b03719] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel approach to medium-sized cyclic ethers was devised using a Stevens [1,2]-shift of a sulfonium ylide derived from a readily accessible six-membered mixed-monothioacetal precursor. The concise and efficient transformation offers a surprising degree of chirality transfer with observed retention of stereochemical configuration on the anomeric migrating carbon and has been applied as the key step in an enantioselective formal synthesis of (+)-laurencin.
Collapse
Affiliation(s)
- Rongrong Lin
- Department of Chemistry, University of Alberta , E3-43 Gunning-Lemieux Chemistry Center, Edmonton, AB T6G 2G2, Canada
| | - Liya Cao
- Department of Chemistry, University of Alberta , E3-43 Gunning-Lemieux Chemistry Center, Edmonton, AB T6G 2G2, Canada
| | - F G West
- Department of Chemistry, University of Alberta , E3-43 Gunning-Lemieux Chemistry Center, Edmonton, AB T6G 2G2, Canada
| |
Collapse
|