1
|
Heller C, Bachmann I, Spiegel M, Hufert FT, Dame G. Detection of Klebsiella pneumoniae Carbapenem Resistance Genes by qPCR: Choosing the Right Method for Total DNA Extraction. Microorganisms 2024; 12:1285. [PMID: 39065054 PMCID: PMC11278521 DOI: 10.3390/microorganisms12071285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Rapid and accurate detection of Klebsiella pneumoniae carbapenem resistance is important for infection control and targeted antibiotic therapy. PCR-based assay performance heavily depends on the quality and quantity of template DNA. Challenges arise from the necessity to isolate chromosomal and large plasmid-encoded resistance genes simultaneously from a limited number of target cells and to remove PCR inhibitors. qPCRs for the detection of K. pneumoniae strains carrying blaOXA-48, blaNDM-1, blaKPC-2, and blaVIM-1 carbapenemase genes were developed. We compared the performance of template DNA extracted with silica column-based methods, reversed elution systems, and lysis-only methods either from diluted culture fluid or from a synthetic stool matrix which contained PCR inhibitors typically present in stool. The synthetic stool matrix was chosen to mimic K. pneumoniae containing rectal swabs or stool samples in a reproducible manner. For total DNA isolated from culture fluid, resistance gene detection by qPCR was always possible, independent of the extraction method. However, when total DNA was isolated from synthetic stool matrix spiked with K. pneumoniae, most methods were insufficient. The best performance of template DNA was obtained with reversed elution. This highlights the importance of choosing the right DNA extraction method for consistent carbapenem resistance detection by PCR.
Collapse
Affiliation(s)
- Cecilia Heller
- Institute of Microbiology and Virology, Brandenburg Medical School Theodor Fontane, Universitätsplatz 1, 01968 Senftenberg, Germany; (C.H.); (I.B.); (M.S.); (F.T.H.)
| | - Iris Bachmann
- Institute of Microbiology and Virology, Brandenburg Medical School Theodor Fontane, Universitätsplatz 1, 01968 Senftenberg, Germany; (C.H.); (I.B.); (M.S.); (F.T.H.)
| | - Martin Spiegel
- Institute of Microbiology and Virology, Brandenburg Medical School Theodor Fontane, Universitätsplatz 1, 01968 Senftenberg, Germany; (C.H.); (I.B.); (M.S.); (F.T.H.)
- Infection Biology Unit, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany
| | - Frank T. Hufert
- Institute of Microbiology and Virology, Brandenburg Medical School Theodor Fontane, Universitätsplatz 1, 01968 Senftenberg, Germany; (C.H.); (I.B.); (M.S.); (F.T.H.)
- Brandenburg University of Technology Cottbus-Senftenberg, Universitätsplatz 1, 01968 Senftenberg, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, Am Neuen Palais 10, House 9, 14469 Potsdam, Germany
| | - Gregory Dame
- Institute of Microbiology and Virology, Brandenburg Medical School Theodor Fontane, Universitätsplatz 1, 01968 Senftenberg, Germany; (C.H.); (I.B.); (M.S.); (F.T.H.)
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, Am Neuen Palais 10, House 9, 14469 Potsdam, Germany
| |
Collapse
|
2
|
Liu Y, Kumblathan T, Tao J, Xu J, Feng W, Xiao H, Hu J, Huang CV, Wu Y, Zhang H, Li XF, Le XC. Recent advances in RNA sample preparation techniques for the detection of SARS-CoV-2 in saliva and gargle. Trends Analyt Chem 2023; 165:117107. [PMID: 37317683 PMCID: PMC10204347 DOI: 10.1016/j.trac.2023.117107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 06/16/2023]
Abstract
Molecular detection of SARS-CoV-2 in gargle and saliva complements the standard analysis of nasopharyngeal swabs (NPS) specimens. Although gargle and saliva specimens can be readily obtained non-invasively, appropriate collection and processing of gargle and saliva specimens are critical to the accuracy and sensitivity of the overall analytical method. This review highlights challenges and recent advances in the treatment of gargle and saliva samples for subsequent analysis using reverse transcription polymerase chain reaction (RT-PCR) and isothermal amplification techniques. Important considerations include appropriate collection of gargle and saliva samples, on-site inactivation of viruses in the sample, preservation of viral RNA, extraction and concentration of viral RNA, removal of substances that inhibit nucleic acid amplification reactions, and the compatibility of sample treatment protocols with the subsequent nucleic acid amplification and detection techniques. The principles and approaches discussed in this review are applicable to molecular detection of other microbial pathogens.
Collapse
Affiliation(s)
- Yanming Liu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Teresa Kumblathan
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Jeffrey Tao
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Jingyang Xu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Wei Feng
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Huyan Xiao
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Jianyu Hu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Camille V Huang
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Yiping Wu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Hongquan Zhang
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Xing-Fang Li
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - X Chris Le
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| |
Collapse
|
3
|
Leo S, Cherkaoui A, Renzi G, Schrenzel J. Mini Review: Clinical Routine Microbiology in the Era of Automation and Digital Health. Front Cell Infect Microbiol 2020; 10:582028. [PMID: 33330127 PMCID: PMC7734209 DOI: 10.3389/fcimb.2020.582028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
Clinical microbiology laboratories are the first line to combat and handle infectious diseases and antibiotic resistance, including newly emerging ones. Although most clinical laboratories still rely on conventional methods, a cascade of technological changes, driven by digital imaging and high-throughput sequencing, will revolutionize the management of clinical diagnostics for direct detection of bacteria and swift antimicrobial susceptibility testing. Importantly, such technological advancements occur in the golden age of machine learning where computers are no longer acting passively in data mining, but once trained, can also help physicians in making decisions for diagnostics and optimal treatment administration. The further potential of physically integrating new technologies in an automation chain, combined to machine-learning-based software for data analyses, is seducing and would indeed lead to a faster management in infectious diseases. However, if, from one side, technological advancement would achieve a better performance than conventional methods, on the other side, this evolution challenges clinicians in terms of data interpretation and impacts the entire hospital personnel organization and management. In this mini review, we discuss such technological achievements offering practical examples of their operability but also their limitations and potential issues that their implementation could rise in clinical microbiology laboratories.
Collapse
Affiliation(s)
- Stefano Leo
- Genomic Research Laboratory, Division of Infectious Diseases, Department of Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Abdessalam Cherkaoui
- Bacteriology Laboratory, Division of Laboratory Medicine, Department of Diagnostics, Geneva University Hospitals, Geneva, Switzerland
| | - Gesuele Renzi
- Bacteriology Laboratory, Division of Laboratory Medicine, Department of Diagnostics, Geneva University Hospitals, Geneva, Switzerland
| | - Jacques Schrenzel
- Genomic Research Laboratory, Division of Infectious Diseases, Department of Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Bacteriology Laboratory, Division of Laboratory Medicine, Department of Diagnostics, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|