1
|
Wang Q, Zeng F, Fang C, Sun Y, Zhao X, Rong X, Zhang H, Xu Y. Galectin-3 alleviates demyelination by modulating microglial anti-inflammatory polarization through PPARγ-CD36 axis. Brain Res 2024; 1842:149106. [PMID: 38986827 DOI: 10.1016/j.brainres.2024.149106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/12/2024]
Abstract
Demyelination is characterized by disruption of myelin sheath and disorders in myelin formation. Currently, there are no effective therapeutic treatments available. Microglia, especially anti-inflammatory phenotype microglia are critical for remyelination. Galectin-3 (Gal-3), which is known to modulate microglia activation, is correlated with myelination. In this study, we aimed to elucidate the roles of Gal-3 during myelin formation and explore the efficiency and mechanism of rGal-3 administration in remyelination. We enrolled Gal-3 knockout (Lgals3 KO) mice and demonstrated Lgals3 KO causes demyelination during spontaneous myelinogenesis. We performed a cuprizone (CPZ) intoxication model and found Lgals3 KO aggravates demyelinated lesions and favors microglial pro-inflammatory phenotype polarization. Recombinant Gal-3 (rGal-3) administration alleviates CPZ intoxication and drives microglial towards anti-inflammatory phenotype. Additionally, RNA sequencing results reveal the correlation between Gal-3 and the PPARγ-CD36 axis. Thus, we performed SSO and GW9662 administration to inhibit the activation of the PPARγ-CD36 axis and found that rGal-3 administration modulates microglial phenotype polarization by regulating the PPARγ-CD36 axis. Together, our findings highlight the importance of Gal-3 in myelination and provide insights into rGal-3 administration for modulating microglial anti-inflammatory phenotype polarization through the PPARγ-CD36 axis.
Collapse
Affiliation(s)
- Qian Wang
- Department of Infectious and Liver Diseases, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, PR China; Department of Neonatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, PR China.
| | - Fansen Zeng
- Department of Infectious and Liver Diseases, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, PR China
| | - Chunxiao Fang
- Department of Infectious and Liver Diseases, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, PR China
| | - Yi Sun
- Department of Neonatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, PR China
| | - Xiaopeng Zhao
- Department of Neonatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, PR China
| | - Xiao Rong
- Department of Neonatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, PR China
| | - Huayan Zhang
- Department of Neonatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, PR China.
| | - Yi Xu
- Department of Infectious and Liver Diseases, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, PR China.
| |
Collapse
|
2
|
Mangano K, Petralia MC, Bella R, Pennisi M, Muñoz-Valle JF, Hernández-Bello J, Nicoletti F, Fagone P. Transcriptional upregulation of galectin-3 in multiple sclerosis. Immunol Res 2023; 71:950-958. [PMID: 37491623 PMCID: PMC10667405 DOI: 10.1007/s12026-023-09408-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 07/06/2023] [Indexed: 07/27/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune, demyelinating disorder of the central nervous system (CNS) affecting approximately 2.5 million people worldwide. The mechanisms underlying the pathogenesis of MS are still only partially elucidated. Galectins are a family of β-galactoside-binding lectins that are involved in the regulation of immune and inflammatory responses and have been shown to exert a role in the maintenance of central nervous system (CNS) homeostasis. There has been an increasing interest in the role of galectin-3 in neuroinflammation and neurodegeneration. In the current study, we have evaluated the expression levels of galectin-3 in different cellular populations involved in the etiopathogenesis of MS. We have observed dramatically higher transcriptomic levels of galectin-3 in encephalitogenic CD4+ T cells in a preclinical model of MS, the MOG-induced experimental allergic encephalomyelitis (EAE). Also, significantly higher levels of galectin-3 were found in microglial cells, astrocytes, and oligodendrocytes isolated from the spinal cord of EAE mice, as well as in human MS-related white matter lesions. Modular co-expression analysis revealed that galectin-3 is co-expressed with genes involved in the regulation of microglia, cytokine production, and chemotaxis. This is the first comprehensive analysis of the expression of galectin-3 in MS, further strengthening its potential pathogenetic role in the etiopathogenesis of this CNS autoimmune disorder.
Collapse
Affiliation(s)
- Katia Mangano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123, Catania, Italy
| | - Maria Cristina Petralia
- Department of Clinical and Experimental Medicine, University of Messina, 98122, Messina, Italy
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Via S. Sofia 78, 95123, Catania, Italy
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123, Catania, Italy
| | - José Francisco Muñoz-Valle
- Institute for Research in Biomedical Sciences, University Center for Health Sciences, University of Guadalajara, Guadalajara, Mexico
| | - Jorge Hernández-Bello
- Institute for Research in Biomedical Sciences, University Center for Health Sciences, University of Guadalajara, Guadalajara, Mexico
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123, Catania, Italy.
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123, Catania, Italy
| |
Collapse
|
3
|
Kipp M. Astrocytes: Lessons Learned from the Cuprizone Model. Int J Mol Sci 2023; 24:16420. [PMID: 38003609 PMCID: PMC10671869 DOI: 10.3390/ijms242216420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
A diverse array of neurological and psychiatric disorders, including multiple sclerosis, Alzheimer's disease, and schizophrenia, exhibit distinct myelin abnormalities at both the molecular and histological levels. These aberrations are closely linked to dysfunction of oligodendrocytes and alterations in myelin structure, which may be pivotal factors contributing to the disconnection of brain regions and the resulting characteristic clinical impairments observed in these conditions. Astrocytes, which significantly outnumber neurons in the central nervous system by a five-to-one ratio, play indispensable roles in the development, maintenance, and overall well-being of neurons and oligodendrocytes. Consequently, they emerge as potential key players in the onset and progression of a myriad of neurological and psychiatric disorders. Furthermore, targeting astrocytes represents a promising avenue for therapeutic intervention in such disorders. To gain deeper insights into the functions of astrocytes in the context of myelin-related disorders, it is imperative to employ appropriate in vivo models that faithfully recapitulate specific aspects of complex human diseases in a reliable and reproducible manner. One such model is the cuprizone model, wherein metabolic dysfunction in oligodendrocytes initiates an early response involving microglia and astrocyte activation, culminating in multifocal demyelination. Remarkably, following the cessation of cuprizone intoxication, a spontaneous process of endogenous remyelination occurs. In this review article, we provide a historical overview of studies investigating the responses and putative functions of astrocytes in the cuprizone model. Following that, we list previously published works that illuminate various aspects of the biology and function of astrocytes in this multiple sclerosis model. Some of the studies are discussed in more detail in the context of astrocyte biology and pathology. Our objective is twofold: to provide an invaluable overview of this burgeoning field, and, more importantly, to inspire fellow researchers to embark on experimental investigations to elucidate the multifaceted functions of this pivotal glial cell subpopulation.
Collapse
Affiliation(s)
- Markus Kipp
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany
| |
Collapse
|
4
|
Leo H, Kipp M. Remyelination in Multiple Sclerosis: Findings in the Cuprizone Model. Int J Mol Sci 2022; 23:ijms232416093. [PMID: 36555733 PMCID: PMC9783537 DOI: 10.3390/ijms232416093] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Remyelination therapies, which are currently under development, have a great potential to delay, prevent or even reverse disability in multiple sclerosis patients. Several models are available to study the effectiveness of novel compounds in vivo, among which is the cuprizone model. This model is characterized by toxin-induced demyelination, followed by endogenous remyelination after cessation of the intoxication. Due to its high reproducibility and ease of use, this model enjoys high popularity among various research and industrial groups. In this review article, we will summarize recent findings using this model and discuss the potential of some of the identified compounds to promote remyelination in multiple sclerosis patients.
Collapse
Affiliation(s)
| | - Markus Kipp
- Correspondence: ; Tel.: +49-(0)-381-494-8400
| |
Collapse
|
5
|
Ramos-Martínez E, Ramos-Martínez I, Sánchez-Betancourt I, Ramos-Martínez JC, Peña-Corona SI, Valencia J, Saucedo R, Almeida-Aguirre EKP, Cerbón M. Association between Galectin Levels and Neurodegenerative Diseases: Systematic Review and Meta-Analysis. Biomolecules 2022; 12:1062. [PMID: 36008956 PMCID: PMC9406080 DOI: 10.3390/biom12081062] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 02/05/2023] Open
Abstract
Galectins are a family of proteins with an affinity for β-galactosides that have roles in neuroprotection and neuroinflammation. Several studies indicate that patients with neurodegenerative diseases have alterations in the concentration of galectins in their blood and brain. However, the results of the studies are contradictory; hence, a meta-analysis is performed to clarify whether patients with neurodegenerative diseases have elevated galectin levels compared to healthy individuals. Related publications are obtained from the databases: PubMed, Central-Conchrane, Web of Science database, OVID-EMBASE, Scope, and EBSCO host until February 2022. A pooled standard mean difference (SMD) with a 95% confidence interval (CI) is calculated by fixed-effect or random-effect model analysis. In total, 17 articles are included in the meta-analysis with a total of 905 patients. Patients with neurodegenerative diseases present a higher level of galectin expression compared to healthy individuals (MDS = 0.70, 95% CI 0.28-1.13, p = 0.001). In the subgroup analysis by galectin type, a higher galectin-3 expression is observed in patients with neurodegenerative diseases. Patients with Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALD), and Parkinson's disease (PD) expressed higher levels of galectin-3. Patients with multiple sclerosis (MS) have higher levels of galectin-9. In conclusion, our meta-analysis shows that patients with neurovegetative diseases have higher galectin levels compared to healthy individuals. Galectin levels are associated with the type of disease, sample, detection technique, and region of origin of the patients.
Collapse
Affiliation(s)
- Edgar Ramos-Martínez
- Facultad de Química, Universidad Nacional Autónoma de México, Coyoacán 04510, Mexico; (E.R.-M.); (S.I.P.-C.); (E.K.P.A.-A.)
| | - Iván Ramos-Martínez
- Departamento de Medicina y Zootecnia de Cerdos, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Coyoacán 04510, Mexico; (I.R.-M.); (I.S.-B.)
| | - Iván Sánchez-Betancourt
- Departamento de Medicina y Zootecnia de Cerdos, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Coyoacán 04510, Mexico; (I.R.-M.); (I.S.-B.)
| | - Juan Carlos Ramos-Martínez
- Departamento de Cardiología, Hospital General Regional Lic Ignacio Garcia Tellez IMSS, Cuauhtémoc 97150, Mexico;
| | - Sheila Irais Peña-Corona
- Facultad de Química, Universidad Nacional Autónoma de México, Coyoacán 04510, Mexico; (E.R.-M.); (S.I.P.-C.); (E.K.P.A.-A.)
| | - Jorge Valencia
- Unidad de Investigación en Endocrinología, UMAE Hospital de Especialidades, Instituto Mexicano del Seguro Social, Cuauhtémoc 06720, Mexico; (J.V.); (R.S.)
| | - Renata Saucedo
- Unidad de Investigación en Endocrinología, UMAE Hospital de Especialidades, Instituto Mexicano del Seguro Social, Cuauhtémoc 06720, Mexico; (J.V.); (R.S.)
| | | | - Marco Cerbón
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología “Isidro Espinosa de los Reyes”—Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
6
|
Galectin-3, a rising star in modulating microglia activation under conditions of neurodegeneration. Cell Death Dis 2022; 13:628. [PMID: 35859075 PMCID: PMC9300700 DOI: 10.1038/s41419-022-05058-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 01/21/2023]
Abstract
The advent of high-throughput single-cell transcriptomic analysis of microglia has revealed different phenotypes that are inherently associated with disease conditions. A common feature of some of these activated phenotypes is the upregulation of galectin-3. Representative examples of these phenotypes include disease-associated microglia (DAM) and white-associated microglia (WAM), whose role(s) in neuroprotection/neurotoxicity is a matter of high interest in the microglia community. In this review, we summarise the main findings that demonstrate the ability of galectin-3 to interact with key pattern recognition receptors, including, among others, TLR4 and TREM2 and the importance of galectin-3 in the regulation of microglia activation. Finally, we discuss increasing evidence supporting the involvement of this lectin in the main neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis, traumatic brain injury, and stroke.
Collapse
|
7
|
Soares LC, Al-Dalahmah O, Hillis J, Young CC, Asbed I, Sakaguchi M, O’Neill E, Szele FG. Novel Galectin-3 Roles in Neurogenesis, Inflammation and Neurological Diseases. Cells 2021; 10:3047. [PMID: 34831271 PMCID: PMC8618878 DOI: 10.3390/cells10113047] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022] Open
Abstract
Galectin-3 (Gal-3) is an evolutionarily conserved and multifunctional protein that drives inflammation in disease. Gal-3's role in the central nervous system has been less studied than in the immune system. However, recent studies show it exacerbates Alzheimer's disease and is upregulated in a large variety of brain injuries, while loss of Gal-3 function can diminish symptoms of neurodegenerative diseases such as Alzheimer's. Several novel molecular pathways for Gal-3 were recently uncovered. It is a natural ligand for TREM2 (triggering receptor expressed on myeloid cells), TLR4 (Toll-like receptor 4), and IR (insulin receptor). Gal-3 regulates a number of pathways including stimulation of bone morphogenetic protein (BMP) signaling and modulating Wnt signalling in a context-dependent manner. Gal-3 typically acts in pathology but is now known to affect subventricular zone (SVZ) neurogenesis and gliogenesis in the healthy brain. Despite its myriad interactors, Gal-3 has surprisingly specific and important functions in regulating SVZ neurogenesis in disease. Gal-1, a similar lectin often co-expressed with Gal-3, also has profound effects on brain pathology and adult neurogenesis. Remarkably, Gal-3's carbohydrate recognition domain bears structural similarity to the SARS-CoV-2 virus spike protein necessary for cell entry. Gal-3 can be targeted pharmacologically and is a valid target for several diseases involving brain inflammation. The wealth of molecular pathways now known further suggest its modulation could be therapeutically useful.
Collapse
Affiliation(s)
- Luana C. Soares
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, South Parks Road, Oxford OX1 3QX, UK; (L.C.S.); (I.A.)
- Department of Oncology, University of Oxford, Oxford OX1 3QX, UK;
| | - Osama Al-Dalahmah
- Irving Medical Center, Columbia University, New York, NY 10032, USA;
| | - James Hillis
- Massachusets General Hospital, Harvard Medical School, 15 Parkman Street, Boston, MA 02114, USA;
| | - Christopher C. Young
- Department of Neurological Surgery, University of Washington, 325 Ninth Avenue, Seattle, WA 98104, USA;
| | - Isaiah Asbed
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, South Parks Road, Oxford OX1 3QX, UK; (L.C.S.); (I.A.)
| | - Masanori Sakaguchi
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba 305-8575, Japan;
| | - Eric O’Neill
- Department of Oncology, University of Oxford, Oxford OX1 3QX, UK;
| | - Francis G. Szele
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, South Parks Road, Oxford OX1 3QX, UK; (L.C.S.); (I.A.)
| |
Collapse
|
8
|
Pentz R, Iulita MF, Mikutra-Cencora M, Ducatenzeiler A, Bennett DA, Cuello AC. A new role for matrix metalloproteinase-3 in the NGF metabolic pathway: Proteolysis of mature NGF and sex-specific differences in the continuum of Alzheimer's pathology. Neurobiol Dis 2021; 148:105150. [PMID: 33130223 PMCID: PMC7856186 DOI: 10.1016/j.nbd.2020.105150] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
Matrix metalloproteinase-3 (MMP-3) has been associated with risk of Alzheimer's disease (AD). In this study we introduce a novel role for MMP-3 in degrading nerve growth factor (NGF) in vivo and examine its mRNA and protein expression across the continuum of AD pathology. We provide evidence that MMP-3 participates in the degradation of mature NGF in vitro and in vivo and that it is secreted from the rat cerebral cortex in an activity-dependent manner. We show that cortical MMP-3 is upregulated in the McGill-R-Thy1-APP transgenic rat model of AD-like amyloidosis. A similar upregulation was found in AD and MCI brains as well as in cognitively normal individuals with elevated amyloid deposition. We also observed that frontal cortex MMP-3 protein levels are higher in males. MMP-3 protein correlated with more AD neuropathology, markers of NGF metabolism, and lower cognitive scores in males but not in females. These results suggest that MMP-3 upregulation in AD might contribute to NGF dysmetabolism, and therefore to cholinergic atrophy and cognitive deficits, in a sex-specific manner. MMP-3 should be further investigated as a biomarker candidate or as a therapeutic target in AD.
Collapse
Affiliation(s)
- Rowan Pentz
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada.
| | - M Florencia Iulita
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada; Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Maya Mikutra-Cencora
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada.
| | | | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA.
| | - A Claudio Cuello
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada.
| |
Collapse
|
9
|
Dong F, Liu D, Jiang F, Liu Y, Wu X, Qu X, Liu J, Chen Y, Fan H, Yao R. Conditional Deletion of Foxg1 Alleviates Demyelination and Facilitates Remyelination via the Wnt Signaling Pathway in Cuprizone-Induced Demyelinated Mice. Neurosci Bull 2020; 37:15-30. [PMID: 33015737 PMCID: PMC7811968 DOI: 10.1007/s12264-020-00583-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 05/31/2020] [Indexed: 12/13/2022] Open
Abstract
The massive loss of oligodendrocytes caused by various pathological factors is a basic feature of many demyelinating diseases of the central nervous system (CNS). Based on a variety of studies, it is now well established that impairment of oligodendrocyte precursor cells (OPCs) to differentiate and remyelinate axons is a vital event in the failed treatment of demyelinating diseases. Recent evidence suggests that Foxg1 is essential for the proliferation of certain precursors and inhibits premature neurogenesis during brain development. To date, very little attention has been paid to the role of Foxg1 in the proliferation and differentiation of OPCs in demyelinating diseases of the CNS. Here, for the first time, we examined the effects of Foxg1 on demyelination and remyelination in the brain using a cuprizone (CPZ)-induced mouse model. In this work, 7-week-old Foxg1 conditional knockout and wild-type (WT) mice were fed a diet containing 0.2% CPZ w/w for 5 weeks, after which CPZ was withdrawn to enable remyelination. Our results demonstrated that, compared with WT mice, Foxg1-knockout mice exhibited not only alleviated demyelination but also accelerated remyelination of the demyelinated corpus callosum. Furthermore, we found that Foxg1 knockout decreased the proliferation of OPCs and accelerated their differentiation into mature oligodendrocytes both in vivo and in vitro. Wnt signaling plays a critical role in development and in a variety of diseases. GSK-3β, a key regulatory kinase in the Wnt pathway, regulates the ability of β-catenin to enter nuclei, where it activates the expression of Wnt target genes. We then used SB216763, a selective inhibitor of GSK-3β activity, to further demonstrate the regulatory mechanism by which Foxg1 affects OPCs in vitro. The results showed that SB216763 clearly inhibited the expression of GSK-3β, which abolished the effect of the proliferation and differentiation of OPCs caused by the knockdown of Foxg1. These results suggest that Foxg1 is involved in the proliferation and differentiation of OPCs through the Wnt signaling pathway. The present experimental results are some of the first to suggest that Foxg1 is a new therapeutic target for the treatment of demyelinating diseases of the CNS.
Collapse
Affiliation(s)
- Fuxing Dong
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
- Public Experimental Research Center, Xuzhou Medical University, Xuzhou, 221004, China
| | - Dajin Liu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Feiyu Jiang
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yaping Liu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xiuxiang Wu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xuebin Qu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Jing Liu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yan Chen
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Hongbin Fan
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China.
| | - Ruiqin Yao
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
10
|
Gorter RP, Baron W. Matrix metalloproteinases shape the oligodendrocyte (niche) during development and upon demyelination. Neurosci Lett 2020; 729:134980. [PMID: 32315713 DOI: 10.1016/j.neulet.2020.134980] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 04/04/2020] [Accepted: 04/09/2020] [Indexed: 12/19/2022]
Abstract
The oligodendrocyte lineage cell is crucial to proper brain function. During central nervous system development, oligodendrocyte progenitor cells (OPCs) migrate and proliferate to populate the entire brain and spinal cord, and subsequently differentiate into mature oligodendrocytes that wrap neuronal axons in an insulating myelin layer. When damage occurs to the myelin sheath, OPCs are activated and recruited to the demyelinated site, where they differentiate into oligodendrocytes that remyelinate the denuded axons. The process of OPC attraction and differentiation is influenced by a multitude of factors from the cell's niche. Matrix metalloproteinases (MMPs) are powerful and versatile enzymes that do not only degrade extracellular matrix proteins, but also cleave cell surface receptors, growth factors, signaling molecules, proteases and other precursor proteins, leading to their activation or degradation. MMPs are markedly upregulated during brain development and upon demyelinating injury, where their broad functions influence the behavior of neural progenitor cells (NPCs), OPCs and oligodendrocytes. In this review, we focus on the role of MMPs in (re)myelination. We will start out in the developing brain with describing the effects of MMPs on NPCs, OPCs and eventually oligodendrocytes. Then, we will outline their functions in oligodendrocyte process extension and developmental myelination. Finally, we will review their potential role in demyelination, describe their significance in remyelination and discuss the evidence for a role of MMPs in remyelination failure, focusing on multiple sclerosis. In conclusion, MMPs shape the oligodendrocyte (niche) both during development and upon demyelination, and thus are important players in directing the fate and behavior of oligodendrocyte lineage cells throughout their life cycle.
Collapse
Affiliation(s)
- Rianne P Gorter
- University of Groningen, University Medical Center Groningen, Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Wia Baron
- University of Groningen, University Medical Center Groningen, Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands.
| |
Collapse
|
11
|
de Jong CGHM, Gabius HJ, Baron W. The emerging role of galectins in (re)myelination and its potential for developing new approaches to treat multiple sclerosis. Cell Mol Life Sci 2020; 77:1289-1317. [PMID: 31628495 PMCID: PMC7113233 DOI: 10.1007/s00018-019-03327-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 12/12/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory, demyelinating and neurodegenerative disease of the central nervous system with unknown etiology. Currently approved disease-modifying treatment modalities are immunomodulatory or immunosuppressive. While the applied drugs reduce the frequency and severity of the attacks, their efficacy to regenerate myelin membranes and to halt disease progression is limited. To achieve such therapeutic aims, understanding biological mechanisms of remyelination and identifying factors that interfere with remyelination in MS can give respective directions. Such a perspective is given by the emerging functional profile of galectins. They form a family of tissue lectins, which are potent effectors in processes as diverse as adhesion, apoptosis, immune mediator release or migration. This review focuses on endogenous and exogenous roles of galectins in glial cells such as oligodendrocytes, astrocytes and microglia in the context of de- and (re)myelination and its dysregulation in MS. Evidence is arising for a cooperation among family members so that timed expression and/or secretion of galectins-1, -3 and -4 result in modifying developmental myelination, (neuro)inflammatory processes, de- and remyelination. Dissecting the mechanisms that underlie the distinct activities of galectins and identifying galectins as target or tool to modulate remyelination have the potential to contribute to the development of novel therapeutic strategies for MS.
Collapse
Affiliation(s)
- Charlotte G H M de Jong
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Wia Baron
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
| |
Collapse
|
12
|
Thomas L, Pasquini LA. Galectin-3-Mediated Glial Crosstalk Drives Oligodendrocyte Differentiation and (Re)myelination. Front Cell Neurosci 2018; 12:297. [PMID: 30258354 PMCID: PMC6143789 DOI: 10.3389/fncel.2018.00297] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/17/2018] [Indexed: 12/17/2022] Open
Abstract
Galectin-3 (Gal-3) is the only chimeric protein in the galectin family. Gal-3 structure comprises unusual tandem repeats of proline and glycine-rich short stretches bound to a carbohydrate-recognition domain (CRD). The present review summarizes Gal-3 functions in the extracellular and intracellular space, its regulation and its internalization and secretion, with a focus on the current knowledge of Gal-3 role in central nervous system (CNS) health and disease, particularly oligodendrocyte (OLG) differentiation, myelination and remyelination in experimental models of multiple sclerosis (MS). During myelination, microglia-expressed Gal-3 promotes OLG differentiation by binding glycoconjugates present only on the cell surface of OLG precursor cells (OPC). During remyelination, microglia-expressed Gal-3 favors an M2 microglial phenotype, hence fostering myelin debris phagocytosis through TREM-2b phagocytic receptor and OLG differentiation. Gal-3 is necessary for myelin integrity and function, as evidenced by myelin ultrastructural and behavioral studies from LGALS3-/- mice. Mechanistically, Gal-3 enhances actin assembly and reduces Erk 1/2 activation, leading to early OLG branching. Gal-3 later induces Akt activation and increases MBP expression, promoting gelsolin release and actin disassembly and thus regulating OLG final differentiation. Altogether, findings indicate that Gal-3 mediates the glial crosstalk driving OLG differentiation and (re)myelination and may be regarded as a target in the design of future therapies for a variety of demyelinating diseases.
Collapse
Affiliation(s)
- Laura Thomas
- Department of Biological Chemistry, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina.,Institute of Chemistry and Biological Physicochemistry (IQUIFIB), National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Laura Andrea Pasquini
- Department of Biological Chemistry, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina.,Institute of Chemistry and Biological Physicochemistry (IQUIFIB), National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
13
|
Lack of Galectin-3 attenuates neuroinflammation and protects the retina and optic nerve of diabetic mice. Brain Res 2018; 1700:126-137. [PMID: 30016630 DOI: 10.1016/j.brainres.2018.07.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 12/17/2022]
Abstract
Diabetic retinopathy is the leading cause of acquired blindness in working-age individuals. Recent work has revealed that neurodegeneration occurs earlier than vascular insult and that distal optic nerve damage precedes retinal degeneration and vascular insult. Since we have shown that optic nerve degeneration is reduced after optic nerve crush in Galectin-3 knockout (Gal-3 -/-) mice, we decided to investigate whether Gal-3 -/- could relieve inflammation and preserve both neurons and the structure of the retina and optic nerve following 8 weeks of diabetes. Diabetes was induced in 2-month-old male C57/bl6 WT or Gal-3 -/- mice by a single injection of streptozotocin (160 mg/kg). Histomorphometric retinal analyses showed no gross difference, except for a reduced number of retinal ganglion cells in WT diabetic mice, correlated to increased apoptosis. In the optic nerve, Gal-3 -/- mice showed reduced neuroinflammation, suggested by the smaller number of Iba1+ cells, particularly the amoeboid profiles in the distal end. Furthermore, iNOS staining was reduced in the optic nerves of Gal-3 -/- mice, as well as GFAP in the distal segment of the optic nerve. Finally, optic nerve histomorphometric analyses revealed that the number of myelinated fibers was higher in the Gal-3 -/- mice and myelin was more rectilinear compared to WT diabetic mice. Therefore, the present study provided evidence that Gal-3 is a central target that stimulates neuroinflammation and impairs neurological outcomes in visual complications of diabetes. Our findings provide support for the clinical use of Gal-3 inhibitors against diabetic visual complications in the near future.
Collapse
|
14
|
Tian H, Sun W, Zhang Q, Li X, Sang Y, Li J, Niu Y, Ding H. Procyanidin B2 mitigates behavioral impairment and protects myelin integrity in cuprizone-induced schizophrenia in mice. RSC Adv 2018; 8:23835-23846. [PMID: 35540280 PMCID: PMC9081829 DOI: 10.1039/c8ra03854f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 06/11/2018] [Indexed: 01/18/2023] Open
Abstract
Numerous studies have suggested that neuropathological changes in schizophrenia may be related to damage to white matter or demyelination. Procyanidin B2, which is a constituent of many fruits such as grapes and strawberries, has various biological activities such as anti-inflammatory and anti-tumor activity, as has been reported. This study aimed to estimate the effects of procyanidin B2 on behavioral impairment and the protection of myelin integrity in a cuprizone-induced schizophrenia model. Mice were exposed to cuprizone (0.2% w/w in chow) for five weeks to induce schizophrenia-like behavioral changes and demyelination. Procyanidin B2 (20 or 100 mg kg−1 day−1) or vehicle was administered orally to mice after withdrawal from cuprizone. Behavioral impairment was detected with an open-field test, a rotarod test and a Morris water maze. Myelin integrity was assessed using LFB staining and MBP expression, including immunofluorescence and western blotting. In addition, enhancements in the expression of HO-1 and NQO1 suggested that procyanidin B2 may regulate oxidative homeostasis via promoting the translation of Nrf2 to the nucleus. Data indicated that procyanidin B2 could mitigate behavioral impairment and protect myelin integrity in the cuprizone-induced model via regulating oxidative stress by activating Nrf2 signaling. Numerous studies have suggested that neuropathological changes in schizophrenia may be related to damage to white matter or demyelination.![]()
Collapse
Affiliation(s)
- Hui Tian
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University Wuhan Hubei P. R. China +8613007162084
| | - Wanchun Sun
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University Wuhan Hubei P. R. China +8613007162084
| | - Qianying Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University Wuhan Hubei P. R. China +8613007162084
| | - Xiaofei Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University Wuhan Hubei P. R. China +8613007162084
| | - Ying Sang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University Wuhan Hubei P. R. China +8613007162084
| | - Jian Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University Wuhan Hubei P. R. China +8613007162084
| | - Yunhui Niu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University Wuhan Hubei P. R. China +8613007162084
| | - Hong Ding
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University Wuhan Hubei P. R. China +8613007162084
| |
Collapse
|
15
|
Siew JJ, Chern Y. Microglial Lectins in Health and Neurological Diseases. Front Mol Neurosci 2018; 11:158. [PMID: 29867350 PMCID: PMC5960708 DOI: 10.3389/fnmol.2018.00158] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 04/25/2018] [Indexed: 12/11/2022] Open
Abstract
Microglia are the innate sentinels of the central nervous system (CNS) and are responsible for the homeostasis and immune defense of the CNS. Under the influence of the local environment and cell-cell interaction, microglia exhibit a multidimensional and context-dependent phenotypes that can be cytotoxic and neuroprotective. Recent studies suggest that microglia express multitudinous types of lectins, including galectins, Siglecs, mannose-binding lectins (MBLs) and other glycan binding proteins. Because most studies that examine lectins focus on the peripheral system, the functions of lectins have not been critically investigated in the CNS. In addition, the types of brain cells that contribute to the altered levels of lectins present in diseases are often unclear. In this review, we will discuss how galectins, Siglecs, selectins and MBLs contribute to the dynamic functions of microglia. The interacting ligands of these lectins are complex glycoconjugates, which consist of glycoproteins and glycolipids that are expressed on microglia or surrounding cells. The current understanding of the heterogeneity and functions of glycans in the brain is limited. Galectins are a group of pleotropic proteins that recognize both β-galactoside-containing glycans and non- β-galactoside-containing proteins. The function and regulation of galectins have been implicated in immunomodulation, neuroinflammation, apoptosis, phagocytosis and oxidative bursts. Most Siglecs are expressed at a low level on the plasma membrane and bind to sialic acid residues for immunosurveillance and cell-cell communication. Siglecs are classified based on their inhibitory and activatory downstream signaling properties. Inhibitory Siglecs negatively regulate microglia activation upon recognizing the intact sialic acid patterns and vice versa. MBLs are expressed upon infection in cytoplasm and can be secreted in order to recognize molecules containing terminal mannose as an innate immune defense machinery. Most importantly, multiple studies have reported dysregulation of lectins in neurological disorders. Here, we reviewed recent studies on microglial lectins and their functions in CNS health and disease, and suggest that these lectin families are novel, potent therapeutic targets for neurological diseases.
Collapse
Affiliation(s)
- Jian Jing Siew
- Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yijuang Chern
- Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
16
|
Extracellular Galectin-3 Induces Accelerated Oligodendroglial Differentiation Through Changes in Signaling Pathways and Cytoskeleton Dynamics. Mol Neurobiol 2018; 56:336-349. [DOI: 10.1007/s12035-018-1089-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/16/2018] [Indexed: 02/01/2023]
|
17
|
Toscano MA, Martínez Allo VC, Cutine AM, Rabinovich GA, Mariño KV. Untangling Galectin-Driven Regulatory Circuits in Autoimmune Inflammation. Trends Mol Med 2018; 24:348-363. [DOI: 10.1016/j.molmed.2018.02.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 02/14/2018] [Accepted: 02/16/2018] [Indexed: 12/20/2022]
|