1
|
Alasmari AA, Alhussain MH, Al-Khalifah AS, Alshiban NM, Alharthi R, Alyami NM, Alodah HS, Alahmed MF, Aljahdali BA, BaHammam AS. Ramadan fasting model modulates biomarkers of longevity and metabolism in male obese and non-obese rats. Sci Rep 2024; 14:28731. [PMID: 39567585 PMCID: PMC11579461 DOI: 10.1038/s41598-024-79557-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024] Open
Abstract
The health advantages of Ramadan fasting, a time-restricted eating from dawn to dusk, have garnered attention. Nevertheless, prior observational studies have found inconsistent findings because of challenges regulating variables such as sleep patterns, dietary habits, and physical activity. This study sought to investigate the impact of the Ramadan fasting model (RFM) on longevity and metabolic biomarkers in obese and non-obese rats. For 12 weeks, 48 male Wistar albino rats were separated into two groups and fed either a standard or a high-fat diet (HFD). During the final four weeks, rats in each group were separated into four subgroups to investigate the effect of RFM with/without training (on Treadmill) or glucose administration on the biomarkers of interest. The HFD groups subjected to RFM had significantly lower Insulin-like growth factor 1 (IGF-1) and mechanistic target of rapamycin (mTOR) serum, whereas AMPK, anti-inflammatory, and antioxidative stress serum levels were significantly higher. All groups reported decreased serum levels of Interleukin-6 (IL-6) and Tumor Necrosis Factor-alpha (TNF-α) compared to the HFD control group. Furthermore, the Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR) results indicated a significant elevation in the TP53 gene expression in groups subjected to RFM. The data indicate that RFM can improve longevity and metabolic biomarkers and reduce pro-inflammation and oxidative stress. Also, RFM improves anti-inflammatory and antioxidant markers in HFD-induced obese rats.
Collapse
Affiliation(s)
- Abeer Abdallah Alasmari
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Maha H Alhussain
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia.
| | - Abdulrahman Saleh Al-Khalifah
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Noura Mohammed Alshiban
- Experimental Surgery and Animal Lab, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Rawan Alharthi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nouf M Alyami
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Hesham S Alodah
- Experimental Surgery and Animal Lab, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed F Alahmed
- Experimental Surgery and Animal Lab, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Bayan A Aljahdali
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed S BaHammam
- Department of Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Keizer HG, Brands R, Seinen W. An AMP Kinase-pathway dependent integrated stress response regulates ageing and longevity. Biogerontology 2023:10.1007/s10522-023-10024-3. [PMID: 36877293 DOI: 10.1007/s10522-023-10024-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/18/2023] [Indexed: 03/07/2023]
Abstract
The purpose of this article is to investigate the role of the AMP-kinase pathway (AMPK pathway) in the induction of a concomitant set of health benefits by exercise, numerous drugs, and health ingredients, all of which are adversely affected by ageing. Despite the AMPK pathway being frequently mentioned in relation to both these health effects and ageing, it appears challenging to understand how the activation of a single biochemical pathway by various treatments can produce such a diverse range of concurrent health benefits, involving so many organs. We discovered that the AMPK pathway functions as an integrated stress response system because of the presence of a feedback loop in it. This evolutionary conserved stress response system detects changes in AMP/ATP and NAD/NADH ratios, as well as the presence of potential toxins, and responds by activating a common protective transcriptional response that protects against aging and promotes longevity. The inactivation of the AMPK pathway with age most likely explains why ageing has a negative impact on the above-mentioned set of health benefits. We conclude that the presence of a feedback loop in the AMP-kinase pathway positions this pathway as an AMPK-ISR (AMP Kinase-dependent integrated stress response) system that responds to almost any type of (moderate) environmental stress by inducing various age-related health benefits and longevity.
Collapse
Affiliation(s)
- H G Keizer
- AMRIF Biotechnology, Agrobusiness Park 10, 6708 PW, Wageningen, The Netherlands.
| | - R Brands
- AMRIF Biotechnology, Agrobusiness Park 10, 6708 PW, Wageningen, The Netherlands.,Institute for Risk Assessment Sciences (IRAS), Yalelaan 1, 3584 CL, Utrecht, The Netherlands
| | - W Seinen
- AMRIF Biotechnology, Agrobusiness Park 10, 6708 PW, Wageningen, The Netherlands.,Institute for Risk Assessment Sciences (IRAS), Yalelaan 1, 3584 CL, Utrecht, The Netherlands
| |
Collapse
|
3
|
Marra PS, Yamanashi T, Crutchley KJ, Wahba NE, Anderson ZEM, Modukuri M, Chang G, Tran T, Iwata M, Cho HR, Shinozaki G. Metformin use history and genome-wide DNA methylation profile: potential molecular mechanism for aging and longevity. Aging (Albany NY) 2023; 15:601-616. [PMID: 36734879 PMCID: PMC9970305 DOI: 10.18632/aging.204498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 01/16/2023] [Indexed: 02/04/2023]
Abstract
BACKGROUND Metformin, a commonly prescribed anti-diabetic medication, has repeatedly been shown to hinder aging in pre-clinical models and to be associated with lower mortality for humans. It is, however, not well understood how metformin can potentially prolong lifespan from a biological standpoint. We hypothesized that metformin's potential mechanism of action for longevity is through its epigenetic modifications. METHODS To test our hypothesis, we conducted a post-hoc analysis of available genome-wide DNA methylation (DNAm) data obtained from whole blood collected from inpatients with and without a history of metformin use. We assessed the methylation profile of 171 patients (first run) and only among 63 diabetic patients (second run) and compared the DNAm rates between metformin users and nonusers. RESULTS Enrichment analysis from the Kyoto Encyclopedia of Genes and Genome (KEGG) showed pathways relevant to metformin's mechanism of action, such as longevity, AMPK, and inflammatory pathways. We also identified several pathways related to delirium whose risk factor is aging. Moreover, top hits from the Gene Ontology (GO) included HIF-1α pathways. However, no individual CpG site showed genome-wide statistical significance (p < 5E-08). CONCLUSION This study may elucidate metformin's potential role in longevity through epigenetic modifications and other possible mechanisms of action.
Collapse
Affiliation(s)
- Pedro S. Marra
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94304, USA,Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Takehiko Yamanashi
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94304, USA,Department of Neuropsychiatry, Tottori University Faculty of Medicine, Yonago-shi, Tottori 680-8550, Japan
| | - Kaitlyn J. Crutchley
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94304, USA,Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA,University of Nebraska Medical Center College of Medicine, Omaha, NE 68131, USA
| | - Nadia E. Wahba
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA,Department of Psychiatry, Oregon Health and Science University School of Medicine, Portland, OR 97239, USA
| | - Zoe-Ella M. Anderson
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Manisha Modukuri
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Gloria Chang
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Tammy Tran
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Masaaki Iwata
- Department of Neuropsychiatry, Tottori University Faculty of Medicine, Yonago-shi, Tottori 680-8550, Japan
| | - Hyunkeun Ryan Cho
- Department of Biostatistics, University of Iowa College of Public Health, Iowa City, IA 52242, USA
| | - Gen Shinozaki
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94304, USA,Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| |
Collapse
|
4
|
Takla M, Saadeh K, Tse G, Huang CLH, Jeevaratnam K. Ageing and the Autonomic Nervous System. Subcell Biochem 2023; 103:201-252. [PMID: 37120470 DOI: 10.1007/978-3-031-26576-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
The vertebrate nervous system is divided into central (CNS) and peripheral (PNS) components. In turn, the PNS is divided into the autonomic (ANS) and enteric (ENS) nervous systems. Ageing implicates time-related changes to anatomy and physiology in reducing organismal fitness. In the case of the CNS, there exists substantial experimental evidence of the effects of age on individual neuronal and glial function. Although many such changes have yet to be experimentally observed in the PNS, there is considerable evidence of the role of ageing in the decline of ANS function over time. As such, this chapter will argue that the ANS constitutes a paradigm for the physiological consequences of ageing, as well as for their clinical implications.
Collapse
Affiliation(s)
| | | | - Gary Tse
- Kent and Medway Medical School, Canterbury, UK
- University of Surrey, Guildford, UK
| | | | | |
Collapse
|
5
|
Munneke AS, Chakraborty TS, Porter SS, Gendron CM, Pletcher SD. The serotonin receptor 5-HT2A modulates lifespan and protein feeding in Drosophila melanogaster. FRONTIERS IN AGING 2022; 3:1068455. [PMID: 36531741 PMCID: PMC9751412 DOI: 10.3389/fragi.2022.1068455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/14/2022] [Indexed: 12/04/2022]
Abstract
The conserved neurotransmitter serotonin has been shown to be an important modulator of lifespan in specific nutritional contexts; however, it remained unclear how serotonin signaling influences lifespan under normal conditions. Here, we show that serotonin signaling through the 5-HT2A receptor influences lifespan, behavior, and physiology in Drosophila. Loss of the 5-HT2A receptor extends lifespan and induces a resistance to changes in dietary protein that are normally detrimental to lifespan. 5-HT2A -/- null mutant flies also display decreased protein feeding and protein content in the body. Therefore, serotonin signaling through receptor 5-HT2A is likely recruited to promote motivation for protein intake, and chronic reduction of protein-drive through loss of 5-HT2A signaling leads to a lower protein set-point adaptation, which influences physiology, decreases feeding, and increases lifespan. Our findings reveal insights into the mechanisms by which organisms physiologically adapt in response to perceived inability to satisfy demand.
Collapse
Affiliation(s)
- Allyson S. Munneke
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, United States
| | - Tuhin S. Chakraborty
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Saige S. Porter
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Christi M. Gendron
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Scott D. Pletcher
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, United States
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
- Gertiatrics Center, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
6
|
Lack of age-related respiratory changes in Daphnia. Biogerontology 2022; 23:85-97. [PMID: 34989913 DOI: 10.1007/s10522-021-09947-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/23/2021] [Indexed: 12/29/2022]
Abstract
Aging is a multifaceted process of accumulation of damage and waste in cells and tissues; age-related changes in mitochondria and in respiratory metabolism have the focus of aging research for decades. Studies of aging in nematodes, flies and mammals all revealed age-related decline in respiratory functions, with somewhat controversial causative role. Here we investigated age-related changes in respiration rates, lactate/pyruvate ratio, a commonly used proxy for NADH/NAD+ balance, and mitochondrial membrane potential in 4 genotypes of an emerging model organism for aging research, a cyclic parthenogen Daphnia magna. We show that total body weight-adjusted respiration rate decreased with age, although this decrease was small in magnitude and could be fully accounted for by the decrease in locomotion and feeding activity. Neither total respiration normalized by protein content, nor basal respiration rate measured in anaesthetized animals decreased with age. Lactate/pyruvate ratio and mitochondrial membrane potential (∆Ψmt) showed no age-related changes, with possible exceptions of ∆Ψmt in epipodites (excretory and gas exchange organs) in which ∆Ψmt decreased with age and in the optical lobe of the brain, in which ∆Ψmt showed a maximum at middle age. We conclude that actuarial senescence in Daphnia is not caused by a decline in respiratory metabolism and discuss possible mechanisms of maintaining mitochondrial healthspan throughout the lifespan.
Collapse
|
7
|
Pérez-Aldana BE, Martínez-Magaña JJ, Mayén-Lobo YG, Dávila-Ortiz de Montellano DJ, Aviña-Cervantes CL, Ortega-Vázquez A, Genis-Mendoza AD, Sarmiento E, Soto-Reyes E, Juárez-Rojop IE, Tovilla-Zarate CA, González-Castro TB, Nicolini H, López-López M, Monroy-Jaramillo N. Clozapine Long-Term Treatment Might Reduce Epigenetic Age Through Hypomethylation of Longevity Regulatory Pathways Genes. Front Psychiatry 2022; 13:870656. [PMID: 35664466 PMCID: PMC9157596 DOI: 10.3389/fpsyt.2022.870656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Long-term studies have shown significantly lower mortality rates in patients with continuous clozapine (CLZ) treatment than other antipsychotics. We aimed to evaluate epigenetic age and DNA methylome differences between CLZ-treated patients and those without psychopharmacological treatment. The DNA methylome was analyzed using the Infinium MethylationEPIC BeadChip in 31 CLZ-treated patients with psychotic disorders and 56 patients with psychiatric disorders naive to psychopharmacological treatment. Delta age (Δage) was calculated as the difference between predicted epigenetic age and chronological age. CLZ-treated patients were stratified by sex, age, and years of treatment. Differential methylation sites between both groups were determined using linear regression models. The Δage in CLZ-treated patients was on average lower compared with drug-naive patients for the three clocks analyzed; however, after data-stratification, this difference remained only in male patients. Additional differences were observed in Hannum and Horvath clocks when comparing chronological age and years of CLZ treatment. We identified 44,716 differentially methylated sites, of which 87.7% were hypomethylated in CLZ-treated patients, and enriched in the longevity pathway genes. Moreover, by protein-protein interaction, AMPK and insulin signaling pathways were found enriched. CLZ could promote a lower Δage in individuals with long-term treatment and modify the DNA methylome of the longevity-regulating pathways genes.
Collapse
Affiliation(s)
| | - José Jaime Martínez-Magaña
- Laboratorio de Genómica de Enfermedades Psiquiátricas y Neurodegenerativas, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Yerye Gibrán Mayén-Lobo
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | | | - Carlos Luis Aviña-Cervantes
- Departamento de Psiquiatría, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City, Mexico
| | - Alberto Ortega-Vázquez
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Alma Delia Genis-Mendoza
- Laboratorio de Genómica de Enfermedades Psiquiátricas y Neurodegenerativas, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Emmanuel Sarmiento
- Dirección General, Hospital Psiquiátrico Infantil Juan N Navarro, Mexico City, Mexico
| | - Ernesto Soto-Reyes
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Mexico City, Mexico
| | - Isela Esther Juárez-Rojop
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico
| | | | - Thelma Beatriz González-Castro
- División Académica Multidisciplinaria de Jalpa de Méndez, Universidad Juárez Autónoma de Tabasco, Jalpa de Méndez, Mexico
| | - Humberto Nicolini
- Laboratorio de Genómica de Enfermedades Psiquiátricas y Neurodegenerativas, Instituto Nacional de Medicina Genómica, Mexico City, Mexico.,Grupo de Estudios Médicos y Familiares Carracci, Mexico City, Mexico
| | - Marisol López-López
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Nancy Monroy-Jaramillo
- Departamento de Genética, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City, Mexico
| |
Collapse
|
8
|
The New Role of AMP-Activated Protein Kinase in Regulating Fat Metabolism and Energy Expenditure in Adipose Tissue. Biomolecules 2021; 11:biom11121757. [PMID: 34944402 PMCID: PMC8698496 DOI: 10.3390/biom11121757] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022] Open
Abstract
Obesity is characterized by excessive accumulation of fat in the body, which is triggered by a body energy intake larger than body energy consumption. Due to complications such as cardiovascular diseases, type 2 diabetes (T2DM), obstructive pneumonia and arthritis, as well as high mortality, morbidity and economic cost, obesity has become a major health problem. The global prevalence of obesity, and its comorbidities is escalating at alarming rates, demanding the development of additional classes of therapeutics to reduce the burden of disease further. As a central energy sensor, the AMP-activated protein kinase (AMPK) has recently been elucidated to play a paramount role in fat synthesis and catabolism, especially in regulating the energy expenditure of brown/beige adipose tissue and the browning of white adipose tissue (WAT). This review discussed the role of AMPK in fat metabolism in adipose tissue, emphasizing its role in the energy expenditure of brown/beige adipose tissue and browning of WAT. A deeper understanding of the role of AMPK in regulating fat metabolism and energy expenditure can provide new insights into obesity research and treatment.
Collapse
|
9
|
Prospective Pharmacological Potential of Resveratrol in Delaying Kidney Aging. Int J Mol Sci 2021; 22:ijms22158258. [PMID: 34361023 PMCID: PMC8348580 DOI: 10.3390/ijms22158258] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 01/22/2023] Open
Abstract
Aging is an unavoidable part of life. The more aged we become, the more susceptible we become to various complications and damages to the vital organs, including the kidneys. The existing drugs for kidney diseases are mostly of synthetic origins; thus, natural compounds with minimal side-effects have attracted growing interest from the scientific community and pharmaceutical companies. A literature search was carried out to collect published research information on the effects of resveratrol on kidney aging. Recently, resveratrol has emerged as a potential anti-aging agent. This versatile polyphenol exerts its anti-aging effects by intervening in various pathologies and multi-signaling systems, including sirtuin type 1, AMP-activated protein kinase, and nuclear factor-κB. Researchers are trying to figure out the detailed mechanisms and possible resveratrol-mediated interventions in divergent pathways at the molecular level. This review highlights (i) the causative factors implicated in kidney aging and the therapeutic aspects of resveratrol, and (ii) the effectiveness of resveratrol in delaying the aging process of the kidney while minimizing all possible side effects.
Collapse
|
10
|
Lee GY, Sohn J, Lee SJV. Combinatorial Approach Using Caenorhabditis elegans and Mammalian Systems for Aging Research. Mol Cells 2021; 44:425-432. [PMID: 34248055 PMCID: PMC8334350 DOI: 10.14348/molcells.2021.0080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 12/13/2022] Open
Abstract
Aging is associated with functional and structural declines in organisms over time. Organisms as diverse as the nematode Caenorhabditis elegans and mammals share signaling pathways that regulate aging and lifespan. In this review, we discuss recent combinatorial approach to aging research employing C. elegans and mammalian systems that have contributed to our understanding of evolutionarily conserved aging-regulating pathways. The topics covered here include insulin/IGF-1, mechanistic target of rapamycin (mTOR), and sirtuin signaling pathways; dietary restriction; autophagy; mitochondria; and the nervous system. A combinatorial approach employing high-throughput, rapid C. elegans systems, and human model mammalian systems is likely to continue providing mechanistic insights into aging biology and will help develop therapeutics against age-associated disorders.
Collapse
Affiliation(s)
- Gee-Yoon Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Jooyeon Sohn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Seung-Jae V. Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| |
Collapse
|
11
|
Zia A, Pourbagher-Shahri AM, Farkhondeh T, Samarghandian S. Molecular and cellular pathways contributing to brain aging. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2021; 17:6. [PMID: 34118939 PMCID: PMC8199306 DOI: 10.1186/s12993-021-00179-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022]
Abstract
Aging is the leading risk factor for several age-associated diseases such as neurodegenerative diseases. Understanding the biology of aging mechanisms is essential to the pursuit of brain health. In this regard, brain aging is defined by a gradual decrease in neurophysiological functions, impaired adaptive neuroplasticity, dysregulation of neuronal Ca2+ homeostasis, neuroinflammation, and oxidatively modified molecules and organelles. Numerous pathways lead to brain aging, including increased oxidative stress, inflammation, disturbances in energy metabolism such as deregulated autophagy, mitochondrial dysfunction, and IGF-1, mTOR, ROS, AMPK, SIRTs, and p53 as central modulators of the metabolic control, connecting aging to the pathways, which lead to neurodegenerative disorders. Also, calorie restriction (CR), physical exercise, and mental activities can extend lifespan and increase nervous system resistance to age-associated neurodegenerative diseases. The neuroprotective effect of CR involves increased protection against ROS generation, maintenance of cellular Ca2+ homeostasis, and inhibition of apoptosis. The recent evidence about the modem molecular and cellular methods in neurobiology to brain aging is exhibiting a significant potential in brain cells for adaptation to aging and resistance to neurodegenerative disorders.
Collapse
Affiliation(s)
- Aliabbas Zia
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Ali Mohammad Pourbagher-Shahri
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), 9717853577 Birjand, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
- Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
12
|
Burkewitz K, Feng G, Dutta S, Kelley CA, Steinbaugh M, Cram EJ, Mair WB. Atf-6 Regulates Lifespan through ER-Mitochondrial Calcium Homeostasis. Cell Rep 2021; 32:108125. [PMID: 32905769 PMCID: PMC8030272 DOI: 10.1016/j.celrep.2020.108125] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/24/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022] Open
Abstract
Individually, dysfunction of both the endoplasmic reticulum (ER) and mitochondria has been linked to aging, but how communication between these organelles might be targeted to promote longevity is unclear. Here, we provide evidence that, in Caenorhabditis elegans, inhibition of the conserved unfolded protein response (UPRER) mediator, activating transcription factor (atf)-6, increases lifespan by modulating calcium homeostasis and signaling to mitochondria. Atf-6 loss confers longevity via downregulation of the ER calcium buffer, calreticulin. ER calcium release via the inositol triphosphate receptor (IP3R/itr-1) is required for longevity, while IP3R/itr-1 gain of function is sufficient to extend lifespan. Highlighting coordination between organelles, the mitochondrial calcium import channel mcu-1 is also required for atf-6 longevity. IP3R inhibition leads to impaired mitochondrial bioenergetics and hyperfusion, which is sufficient to suppress long life in atf-6 mutants. This study reveals the importance of organellar calcium handling as a critical output for the UPRER in determining the quality of aging. Burkewitz et al. show that modulating subcellular calcium compartmentalization and signaling is a mechanism of both aging and longevity. The loss of ATF-6, a conserved mediator of the unfolded protein response, disrupts calcium retention in the ER; subsequently, ER calcium release triggers lifespan extension by stimulating mitochondrial dynamics and function.
Collapse
Affiliation(s)
- Kristopher Burkewitz
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| | - Gaomin Feng
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Sneha Dutta
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | | | - Michael Steinbaugh
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Erin J Cram
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - William B Mair
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
13
|
Hecht JT, Coustry F, Veerisetty AC, Hossain MG, Posey KL. Resveratrol Reduces COMPopathy in Mice Through Activation of Autophagy. JBMR Plus 2021; 5:e10456. [PMID: 33778324 PMCID: PMC7990140 DOI: 10.1002/jbm4.10456] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/07/2020] [Accepted: 12/15/2020] [Indexed: 12/20/2022] Open
Abstract
Misfolding mutations in cartilage oligomeric matrix protein (COMP) cause it to be retained within the endoplasmic reticulum (ER) of chondrocytes, stimulating a multitude of damaging cellular responses including ER stress, inflammation, and oxidative stress, which ultimately culminates in the death of growth plate chondrocytes and pseudoachondroplasia (PSACH). Previously, we demonstrated that an antioxidant, resveratrol, substantially reduces the intracellular accumulation of mutant-COMP, dampens cellular stress, and lowers the level of growth plate chondrocyte death. In addition, we showed that resveratrol reduces mammalian target of rapamycin complex 1 (mTORC1) signaling, suggesting a potential mechanism. In this work, we investigate the role of autophagy in treatment of COMPopathies. In cultured chondrocytes expressing wild-type COMP or mutant-COMP, resveratrol significantly increased the number of Microtubule-associated protein 1A/1B-light chain 3 (LC3) vesicles, directly demonstrating that resveratrol-stimulated autophagy is an important component of the resveratrol-driven mechanism responsible for the degradation of mutant-COMP. Moreover, pharmacological inhibitors of autophagy suppressed degradation of mutant-COMP in our established mouse model of PSACH. In contrast, blockage of the proteasome did not substantially alter resveratrol clearance of mutant-COMP from growth plate chondrocytes. Mechanistically, resveratrol increased SIRT1 and PP2A expression and reduced MID1 expression and activation of phosphorylated protein kinase B (pAKT) and mTORC1 signaling in growth plate chondrocytes, allowing clearance of mutant-COMP by autophagy. Importantly, we show that optimal reduction in growth plate pathology, including decreased mutant-COMP retention, decreased mTORC1 signaling, and restoration of chondrocyte proliferation was attained when treatment was initiated between birth to 1 week of age in MT-COMP mice, translating to birth to approximately 2 years of age in children with PSACH. These results clearly demonstrate that resveratrol stimulates clearance of mutant-COMP by an autophagy-centric mechanism. © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Jacqueline T Hecht
- Department of Pediatrics, McGovern Medical SchoolThe University of Texas Health Science Center at Houston (UTHealth)HoustonTXUSA
- UTHealth School of DentistryHoustonTXUSA
| | - Francoise Coustry
- Department of Pediatrics, McGovern Medical SchoolThe University of Texas Health Science Center at Houston (UTHealth)HoustonTXUSA
| | - Alka C Veerisetty
- Department of Pediatrics, McGovern Medical SchoolThe University of Texas Health Science Center at Houston (UTHealth)HoustonTXUSA
| | | | - Karen L Posey
- Department of Pediatrics, McGovern Medical SchoolThe University of Texas Health Science Center at Houston (UTHealth)HoustonTXUSA
| |
Collapse
|
14
|
Albosta M, Bakke J. Intermittent fasting: is there a role in the treatment of diabetes? A review of the literature and guide for primary care physicians. Clin Diabetes Endocrinol 2021; 7:3. [PMID: 33531076 PMCID: PMC7856758 DOI: 10.1186/s40842-020-00116-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/03/2020] [Indexed: 01/08/2023] Open
Abstract
Background Type 2 Diabetes is a metabolic disorder characterized by hyperglycemia that causes numerous complications with significant long-term morbidity and mortality. The disorder is primarily due to insulin resistance particularly in liver, skeletal muscle, and adipose tissue. In this review, we detail the hormonal mechanisms leading to the development of diabetes and discuss whether intermittent fasting should be considered as an alternative, non-medicinal treatment option for patients with this disorder. Methods We searched PubMed, Ovid MEDLINE, and Google Scholar databases for review articles, clinical trials, and case series related to type 2 diabetes, insulin resistance, and intermittent fasting. Articles were carefully reviewed and included based on relevance to our topic. We excluded abstracts and any non-English articles. Results The majority of the available research demonstrates that intermittent fasting is effective at reducing body weight, decreasing fasting glucose, decreasing fasting insulin, reducing insulin resistance, decreasing levels of leptin, and increasing levels of adiponectin. Some studies found that patients were able to reverse their need for insulin therapy during therapeutic intermittent fasting protocols with supervision by their physician. Conclusion Current evidence suggests that intermittent fasting is an effective non-medicinal treatment option for type 2 diabetes. More research is needed to delineate the effects of intermittent fasting from weight loss. Physicians should consider educating themselves regarding the benefits of intermittent fasting. Diabetic patients should consult their physician prior to beginning an intermittent fasting regimen in order to allow for appropriate oversight and titration of the patients medication regimen during periods of fasting. Supplementary Information The online version contains supplementary material available at 10.1186/s40842-020-00116-1.
Collapse
Affiliation(s)
- Michael Albosta
- Central Michigan University College of Medicine, 1200 S. Franklin St., Mount Pleasant, MI, 48858, USA. .,, Saginaw, MI, 48602, USA.
| | - Jesse Bakke
- Central Michigan University College of Medicine, 1200 S. Franklin St., Mount Pleasant, MI, 48858, USA
| |
Collapse
|
15
|
Smith HJ, Sharma A, Mair WB. Metabolic Communication and Healthy Aging: Where Should We Focus Our Energy? Dev Cell 2020; 54:196-211. [PMID: 32619405 DOI: 10.1016/j.devcel.2020.06.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/01/2020] [Accepted: 06/07/2020] [Indexed: 02/09/2023]
Abstract
Aging is associated with a loss of metabolic homeostasis and plasticity, which is causally linked to multiple age-onset pathologies. The majority of the interventions-genetic, dietary, and pharmacological-that have been found to slow aging and protect against age-related disease in various organisms do so by targeting central metabolic pathways. However, targeting metabolic pathways chronically and ubiquitously makes it difficult to define the downstream effects responsible for lifespan extension and often results in negative effects on growth and health, limiting therapeutic potential. Insight into how metabolic signals are relayed between tissues, cells, and organelles opens up new avenues to target metabolic regulators locally rather than globally for healthy aging. In this review, we discuss the pro-longevity effects of targeting metabolic pathways in specific tissues and how these interventions communicate with distal cells to modulate aging. These studies may be crucial in designing interventions that promote longevity without negative health consequences.
Collapse
Affiliation(s)
- Hannah J Smith
- Harvard T.H. Chan School of Public Health, Department of Molecular Metabolism, Boston, MA, USA
| | - Arpit Sharma
- Harvard T.H. Chan School of Public Health, Department of Molecular Metabolism, Boston, MA, USA
| | - William B Mair
- Harvard T.H. Chan School of Public Health, Department of Molecular Metabolism, Boston, MA, USA.
| |
Collapse
|
16
|
Pulakat L, Chen HH. Pro-Senescence and Anti-Senescence Mechanisms of Cardiovascular Aging: Cardiac MicroRNA Regulation of Longevity Drug-Induced Autophagy. Front Pharmacol 2020; 11:774. [PMID: 32528294 PMCID: PMC7264109 DOI: 10.3389/fphar.2020.00774] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/11/2020] [Indexed: 12/15/2022] Open
Abstract
Chronological aging as well as biological aging accelerated by various pathologies such as diabetes and obesity contribute to cardiovascular aging, and structural and functional tissue damage of the heart and vasculature. Cardiovascular aging in humans is characterized by structural pathologic remodeling including cardiac and vascular fibrosis, hypertrophy, stiffness, micro- and macro-circulatory impairment, left ventricular diastolic dysfunction precipitating heart failure with either reduced or preserved ejection fraction, and cardiovascular cell death. Cellular senescence, an important hallmark of aging, is a critical factor that impairs repair and regeneration of damaged cells in cardiovascular tissues whereas autophagy, an intracellular catabolic process is an essential inherent mechanism that removes senescent cells throughout life time in all tissues. Several recent reviews have highlighted the fact that all longevity treatment paradigms to mitigate progression of aging-related pathologies converge in induction of autophagy, activation of AMP kinase (AMPK) and Sirtuin pathway, and inhibition of mechanistic target of rapamycin (mTOR). These longevity treatments include health style changes such as caloric restriction, and drug treatments using rapamycin, the first FDA-approved longevity drug, as well as other experimental longevity drugs such as metformin, rapamycin, aspirin, and resveratrol. However, in the heart tissue, autophagy induction has to be tightly regulated since evidence show excessive autophagy results in cardiomyopathy and heart failure. Here we discuss emerging evidence for microRNA-mediated tight regulation of autophagy in the heart in response to treatment with rapamycin, and novel approaches to monitor autophagy progression in a temporal manner to diagnose and regulate autophagy induction by longevity treatments.
Collapse
Affiliation(s)
- Lakshmi Pulakat
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States.,Department of Medicine, Tufts University School of Medicine, Boston, MA, United States
| | - Howard H Chen
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States.,Department of Medicine, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
17
|
Dakik P, McAuley M, Chancharoen M, Mitrofanova D, Lozano Rodriguez ME, Baratang Junio JA, Lutchman V, Cortes B, Simard É, Titorenko VI. Pairwise combinations of chemical compounds that delay yeast chronological aging through different signaling pathways display synergistic effects on the extent of aging delay. Oncotarget 2019; 10:313-338. [PMID: 30719227 PMCID: PMC6349451 DOI: 10.18632/oncotarget.26553] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 12/20/2018] [Indexed: 01/08/2023] Open
Abstract
We have recently discovered six plant extracts that delay yeast chronological aging. Most of them affect different nodes, edges and modules of an evolutionarily conserved network of longevity regulation that integrates certain signaling pathways and protein kinases; this network is also under control of such aging-delaying chemical compounds as spermidine and resveratrol. We have previously shown that, if a strain carrying an aging-delaying single-gene mutation affecting a certain node, edge or module of the network is exposed to some of the six plant extracts, the mutation and the plant extract enhance aging-delaying efficiencies of each other so that their combination has a synergistic effect on the extent of aging delay. We therefore hypothesized that a pairwise combination of two aging-delaying plant extracts or a combination of one of these plant extracts and spermidine or resveratrol may have a synergistic effect on the extent of aging delay only if each component of this combination targets a different element of the network. To test our hypothesis, we assessed longevity-extending efficiencies of all possible pairwise combinations of the six plant extracts or of one of them and spermidine or resveratrol in chronologically aging yeast. In support of our hypothesis, we show that only pairwise combinations of naturally-occurring chemical compounds that slow aging through different nodes, edges and modules of the network delay aging in a synergistic manner.
Collapse
Affiliation(s)
- Pamela Dakik
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Mélissa McAuley
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | | - Darya Mitrofanova
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | | | | - Vicky Lutchman
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Berly Cortes
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Éric Simard
- Idunn Technologies Inc., Rosemere, Quebec, Canada
| | | |
Collapse
|
18
|
Li J, Zhang D, Wiersma M, Brundel BJJM. Role of Autophagy in Proteostasis: Friend and Foe in Cardiac Diseases. Cells 2018; 7:cells7120279. [PMID: 30572675 PMCID: PMC6316637 DOI: 10.3390/cells7120279] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/13/2018] [Accepted: 12/18/2018] [Indexed: 12/11/2022] Open
Abstract
Due to ageing of the population, the incidence of cardiovascular diseases will increase in the coming years, constituting a substantial burden on health care systems. In particular, atrial fibrillation (AF) is approaching epidemic proportions. It has been identified that the derailment of proteostasis, which is characterized by the loss of homeostasis in protein biosynthesis, folding, trafficking, and clearance by protein degradation systems such as autophagy, underlies the development of common cardiac diseases. Among various safeguards within the proteostasis system, autophagy is a vital cellular process that modulates clearance of misfolded and proteotoxic proteins from cardiomyocytes. On the other hand, excessive autophagy may result in derailment of proteostasis and therefore cardiac dysfunction. Here, we review the interplay between autophagy and proteostasis in the healthy heart, discuss the imbalance between autophagy and proteostasis during cardiac diseases, including AF, and finally explore new druggable targets which may limit cardiac disease initiation and progression.
Collapse
Affiliation(s)
- Jin Li
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, 1081 HV Amsterdam, The Netherlands.
| | - Deli Zhang
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, 1081 HV Amsterdam, The Netherlands.
| | - Marit Wiersma
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, 1081 HV Amsterdam, The Netherlands.
| | - Bianca J J M Brundel
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, 1081 HV Amsterdam, The Netherlands.
| |
Collapse
|
19
|
Hansen M, Rubinsztein DC, Walker DW. Autophagy as a promoter of longevity: insights from model organisms. Nat Rev Mol Cell Biol 2018; 19:579-593. [PMID: 30006559 DOI: 10.1038/s41580-018-0033-y] [Citation(s) in RCA: 505] [Impact Index Per Article: 72.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Autophagy is a conserved process that catabolizes intracellular components to maintain energy homeostasis and to protect cells against stress. Autophagy has crucial roles during development and disease, and evidence accumulated over the past decade indicates that autophagy also has a direct role in modulating ageing. In particular, elegant studies using yeasts, worms, flies and mice have demonstrated a broad requirement for autophagy-related genes in the lifespan extension observed in a number of conserved longevity paradigms. Moreover, several new and interesting concepts relevant to autophagy and its role in modulating longevity have emerged. First, select tissues may require or benefit from autophagy activation in longevity paradigms, as tissue-specific overexpression of single autophagy genes is sufficient to extend lifespan. Second, selective types of autophagy may be crucial for longevity by specifically targeting dysfunctional cellular components and preventing their accumulation. And third, autophagy can influence organismal health and ageing even non-cell autonomously, and thus, autophagy stimulation in select tissues can have beneficial, systemic effects on lifespan. Understanding these mechanisms will be important for the development of approaches to improve human healthspan that are based on the modulation of autophagy.
Collapse
Affiliation(s)
- Malene Hansen
- Sanford Burnham Prebys Medical Discovery Institute, Program of Development, Aging and Regeneration, La Jolla, CA, USA.
| | - David C Rubinsztein
- Cambridge Institute for Medical Research, Department of Medical Genetics, Cambridge, UK. .,UK Dementia Research Institute, University of Cambridge, Cambridge, UK.
| | - David W Walker
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA. .,Molecular Biology Institute, University of California, Los Angeles, CA, USA.
| |
Collapse
|
20
|
The Mitochondrial Basis of Aging and Age-Related Disorders. Genes (Basel) 2017; 8:genes8120398. [PMID: 29257072 PMCID: PMC5748716 DOI: 10.3390/genes8120398] [Citation(s) in RCA: 224] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/09/2017] [Accepted: 12/13/2017] [Indexed: 12/21/2022] Open
Abstract
Aging is a natural phenomenon characterized by progressive decline in tissue and organ function leading to increased risk of disease and mortality. Among diverse factors that contribute to human aging, the mitochondrial dysfunction has emerged as one of the key hallmarks of aging process and is linked to the development of numerous age-related pathologies including metabolic syndrome, neurodegenerative disorders, cardiovascular diseases and cancer. Mitochondria are central in the regulation of energy and metabolic homeostasis, and harbor a complex quality control system that limits mitochondrial damage to ensure mitochondrial integrity and function. The intricate regulatory network that balances the generation of new and removal of damaged mitochondria forms the basis of aging and longevity. Here, I will review our current understanding on how mitochondrial functional decline contributes to aging, including the role of somatic mitochondrial DNA (mtDNA) mutations, reactive oxygen species (ROS), mitochondrial dynamics and quality control pathways. I will further discuss the emerging evidence on how dysregulated mitochondrial dynamics, mitochondrial biogenesis and turnover mechanisms contribute to the pathogenesis of age-related disorders. Strategies aimed to enhance mitochondrial function by targeting mitochondrial dynamics, quality control, and mitohormesis pathways might promote healthy aging, protect against age-related diseases, and mediate longevity.
Collapse
|
21
|
Rodriguez RL, Albeck JG, Taha AY, Ori-McKenney KM, Recanzone GH, Stradleigh TW, Hernandez BC, Tang FYV, Chiang EPI, Cruz-Orengo L. Impact of diet-derived signaling molecules on human cognition: exploring the food-brain axis. NPJ Sci Food 2017; 1:2. [PMID: 31304244 PMCID: PMC6548416 DOI: 10.1038/s41538-017-0002-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 08/25/2017] [Accepted: 09/01/2017] [Indexed: 01/02/2023] Open
Abstract
The processes that define mammalian physiology evolved millions of years ago in response to ancient signaling molecules, most of which were acquired by ingestion and digestion. In this way, evolution inextricably linked diet to all major physiological systems including the nervous system. The importance of diet in neurological development is well documented, although the mechanisms by which diet-derived signaling molecules (DSMs) affect cognition are poorly understood. Studies on the positive impact of nutritive and non-nutritive bioactive molecules on brain function are encouraging but lack the statistical power needed to demonstrate strong positive associations. Establishing associations between DSMs and cognitive functions like mood, memory and learning are made even more difficult by the lack of robust phenotypic markers that can be used to accurately and reproducibly measure the effects of DSMs. Lastly, it is now apparent that processes like neurogenesis and neuroplasticity are embedded within layers of interlocked signaling pathways and gene regulatory networks. Within these interdependent pathways and networks, the various transducers of DSMs are used combinatorially to produce those emergent adaptive gene expression responses needed for stimulus-induced neurogenesis and neuroplasticity. Taken together, it appears that cognition is encoded genomically and modified by epigenetics and epitranscriptomics to produce complex transcriptional programs that are exquisitely sensitive to signaling molecules from the environment. Models for how DSMs mediate the interplay between the environment and various neuronal processes are discussed in the context of the food-brain axis.
Collapse
Affiliation(s)
- Raymond L. Rodriguez
- Department of Molecular and Cellular Biology, College of Biological Sciences, One Shields Avenue, University of California, Davis, Davis, CA 95616 USA
| | - John G. Albeck
- Department of Molecular and Cellular Biology, College of Biological Sciences, One Shields Avenue, University of California, Davis, Davis, CA 95616 USA
| | - Ameer Y. Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, One Shields Avenue, University of California, Davis, Davis, CA 95616 USA
| | - Kassandra M. Ori-McKenney
- Department of Molecular and Cellular Biology, College of Biological Sciences, One Shields Avenue, University of California, Davis, Davis, CA 95616 USA
| | - Gregg H. Recanzone
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, One Shields Avenue, University of California, Davis, Davis, CA 95616 USA
- Center for Neuroscience, College of Biological Sciences, University of California, Davis, Davis, CA 95616 USA
| | - Tyler W. Stradleigh
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, One Shields Avenue, University of California, Davis, Davis, CA 95616 USA
- Center for Neuroscience, College of Biological Sciences, University of California, Davis, Davis, CA 95616 USA
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Davis, CA 95616 USA
| | - Bronte C. Hernandez
- Department of Molecular and Cellular Biology, College of Biological Sciences, One Shields Avenue, University of California, Davis, Davis, CA 95616 USA
| | | | - En-Pei Isabel Chiang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Lillian Cruz-Orengo
- Department of Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616 USA
| |
Collapse
|
22
|
Abstract
Cells constantly adapt their metabolism to meet their energy needs and respond to nutrient availability. Eukaryotes have evolved a very sophisticated system to sense low cellular ATP levels via the serine/threonine kinase AMP-activated protein kinase (AMPK) complex. Under conditions of low energy, AMPK phosphorylates specific enzymes and growth control nodes to increase ATP generation and decrease ATP consumption. In the past decade, the discovery of numerous new AMPK substrates has led to a more complete understanding of the minimal number of steps required to reprogramme cellular metabolism from anabolism to catabolism. This energy switch controls cell growth and several other cellular processes, including lipid and glucose metabolism and autophagy. Recent studies have revealed that one ancestral function of AMPK is to promote mitochondrial health, and multiple newly discovered targets of AMPK are involved in various aspects of mitochondrial homeostasis, including mitophagy. This Review discusses how AMPK functions as a central mediator of the cellular response to energetic stress and mitochondrial insults and coordinates multiple features of autophagy and mitochondrial biology.
Collapse
|
23
|
de Almeida AJPO, Ribeiro TP, de Medeiros IA. Aging: Molecular Pathways and Implications on the Cardiovascular System. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7941563. [PMID: 28874954 PMCID: PMC5569936 DOI: 10.1155/2017/7941563] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/27/2017] [Indexed: 02/06/2023]
Abstract
The world's population over 60 years is growing rapidly, reaching 22% of the global population in the next decades. Despite the increase in global longevity, individual healthspan needs to follow this growth. Several diseases have their prevalence increased by age, such as cardiovascular diseases, the leading cause of morbidity and mortality worldwide. Understanding the aging biology mechanisms is fundamental to the pursuit of cardiovascular health. In this way, aging is characterized by a gradual decline in physiological functions, involving the increased number in senescent cells into the body. Several pathways lead to senescence, including oxidative stress and persistent inflammation, as well as energy failure such as mitochondrial dysfunction and deregulated autophagy, being ROS, AMPK, SIRTs, mTOR, IGF-1, and p53 key regulators of the metabolic control, connecting aging to the pathways which drive towards diseases. In addition, senescence can be induced by cellular replication, which resulted from telomere shortening. Taken together, it is possible to draw a common pathway unifying aging to cardiovascular diseases, and the central point of this process, senescence, can be the target for new therapies, which may result in the healthspan matching the lifespan.
Collapse
Affiliation(s)
- Arthur José Pontes Oliveira de Almeida
- Departamento de Ciências Farmacêuticas/Centro de Ciências da Saúde, Universidade Federal da Paraíba, Cidade Universitária-Campus I, Caixa Postal 5009, 58.051-970 João Pessoa, PB, Brazil
| | - Thaís Porto Ribeiro
- Departamento de Ciências Farmacêuticas/Centro de Ciências da Saúde, Universidade Federal da Paraíba, Cidade Universitária-Campus I, Caixa Postal 5009, 58.051-970 João Pessoa, PB, Brazil
| | - Isac Almeida de Medeiros
- Departamento de Ciências Farmacêuticas/Centro de Ciências da Saúde, Universidade Federal da Paraíba, Cidade Universitária-Campus I, Caixa Postal 5009, 58.051-970 João Pessoa, PB, Brazil
| |
Collapse
|