1
|
Rivera M. Mobilization of iron stored in bacterioferritin, a new target for perturbing iron homeostasis and developing antibacterial and antibiofilm molecules. J Inorg Biochem 2023; 247:112306. [PMID: 37451083 DOI: 10.1016/j.jinorgbio.2023.112306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/08/2023] [Accepted: 06/24/2023] [Indexed: 07/18/2023]
Abstract
Antibiotic resistance is a global public health threat. The care of chronic infections is complicated by bacterial biofilms. Biofilm embedded cells can be up to 1000-fold more tolerant to antibiotic treatment than planktonic cells. Antibiotic tolerance is a condition which does not involve mutation and enables bacteria to survive in the presence of antibiotics. The antibiotic tolerance of biofilm-cells often renders antibiotics ineffective, even against strains that do not carry resistance-impairing mutations. This review discusses bacterial iron homeostasis and the strategies being developed to target this bacterial vulnerability, with emphasis on a recently proposed approach which aims at targeting the iron storage protein bacterioferritin (Bfr) and its physiological partner, the ferredoxin Bfd. Bfr regulates cytosolic iron concentrations by oxidizing Fe2+ and storing Fe3+ in its internal cavity, and by forming a complex with Bfd to reduce Fe3+ in the internal cavity and release Fe2+ to the cytosol. Blocking the Bfr-Bfd complex in P. aeruginosa cells causes an irreversible accumulation of Fe3+ in BfrB and simultaneous cytosolic iron depletion, which leads to impaired biofilm maintenance and biofilm cell death. Recently discovered small molecule inhibitors of the Bfr-Bfd complex, which bind Bfr at the Bfd binding site, inhibit iron mobilization, and elicit biofilm cell death.
Collapse
Affiliation(s)
- Mario Rivera
- Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, LA 70803, USA.
| |
Collapse
|
2
|
Bihani SC, Nagar V, Kumar M. Mechanistic and evolutionary insights into alkaline phosphatase superfamily through structure-function studies on Sphingomonas alkaline phosphatase. Arch Biochem Biophys 2023; 736:109524. [PMID: 36716801 DOI: 10.1016/j.abb.2023.109524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/20/2022] [Accepted: 01/20/2023] [Indexed: 01/28/2023]
Abstract
Alkaline phosphatases (APs), represented by E. coli AP (ECAP), employ an arginine residue to stabilize the phosphoryl group in the active site; whereas, AP from Sphingomonas (SPAP) shows a unique combination of substrate-binding residues; Thr89, Asn110, Lys171, and Arg173. Although such combination has been observed only in SPAP, these residues are present separately in different members of the AP superfamily. Here, we establish the presence of two distinct classes of APs; ECAP-type and SPAP-type. Bioinformatic analyses show that SPAP-type of APs are widely distributed in the bacterial kingdom. The role of active site residues in the catalytic mechanism has been delineated through a set of crystal structures reported here. These structures, representing different stages of the reaction pathway provide wealth of information for the catalytic mechanism. Despite critical differences in the substrate binding residues, SPAP follows a mechanism similar to that of ECAP-type of APs. Structure-based phylogenetic analysis suggests that SPAP and ECAP may have diverged very early during the evolution from a common ancestor. Moreover, it is proposed that the SPAP-type of APs are fundamental members of the AP superfamily and are more closely related to other members of the superfamily as compared to the ECAP-type of APs.
Collapse
Affiliation(s)
- Subhash C Bihani
- Protein Crystallography Section, Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India.
| | - Vandan Nagar
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India; Food Microbiology Group, Food Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Mukesh Kumar
- Protein Crystallography Section, Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| |
Collapse
|
3
|
McCord JP, Kohanov ZA, Lowell AN. Thermorubin Biosynthesis Initiated by a Salicylate Synthase Suggests an Unusual Conversion of Phenols to Pyrones. ACS Chem Biol 2022; 17:3169-3177. [PMID: 36255735 DOI: 10.1021/acschembio.2c00606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Thermorubin is a tetracyclic naphthoisocoumarin natural product that demands investigation due to its novel mechanism of bacterial protein synthesis inhibition and its unusual structural features. In this work, we describe the identification of the biosynthetic cluster responsible for thermorubin from the sequenced Laceyella sacchari producer species and its confirmation via heterologous production in Escherichia coli. Based on an in-depth annotation of the cluster, we propose a biosynthetic pathway that accounts for the formation of the unique, nonterminal pyrone. Additionally, the expression and use of salicylate synthase TheO enabled testing of the stability properties of this extremophile-derived enzyme. TheO displayed rapid kinetics and a remarkably robust secondary structure, converting chorismate to salicylate with a KM of 109 ± 12 μM, kcat of 9.17 ± 0.36 min-1, and catalytic efficiency (kcat/KM) of 84 ± 9 nM-1 min-1, and retained significant activity up to 50 °C. These studies serve as the basis for continued biosynthetic investigations and bioinspired synthetic approaches.
Collapse
Affiliation(s)
- Jennifer P McCord
- Department of Chemistry, Virginia Tech (Virginia Polytechnic Institute and State University), Davidson Hall Rm. 480, 1040 Drillfield Dr., Blacksburg, Virginia 24061, United States
| | - Zachary A Kohanov
- Department of Chemistry, Virginia Tech (Virginia Polytechnic Institute and State University), Davidson Hall Rm. 480, 1040 Drillfield Dr., Blacksburg, Virginia 24061, United States
| | - Andrew N Lowell
- Department of Chemistry, Virginia Tech (Virginia Polytechnic Institute and State University), Davidson Hall Rm. 480, 1040 Drillfield Dr., Blacksburg, Virginia 24061, United States
| |
Collapse
|
4
|
Bacterioferritin nanocage: Structure, biological function, catalytic mechanism, self-assembly and potential applications. Biotechnol Adv 2022; 61:108057. [DOI: 10.1016/j.biotechadv.2022.108057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/22/2022]
|
5
|
Huan H, Jiang Q, Wu Y, Qiu X, Lu C, Su C, Zhou J, Li Y, Ming T, Su X. Structure determination of ferritin from Dendrorhynchus zhejiangensis. Biochem Biophys Res Commun 2020; 531:195-202. [PMID: 32792196 DOI: 10.1016/j.bbrc.2020.07.069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 11/26/2022]
Abstract
Ferritin is an important hub of iron metabolism because it stores iron during times of iron overload and releases iron during iron deficiency. Here, we present the first crystal structure of ferritin from the marine invertebrate Dendrorhynchus zhejiangensis with a 2.3 Å resolution. D. zhejiangensis ferritin (DzFer) exhibits a common cage-shaped hollow sphere with 24 subunits containing the ferroxidase centers and 3-fold and 4-fold channels. The structure of DzFer shows highly conserved catalytic residues in the ferroxidase center. The metal wire formed by ferrous ions in the 3-fold channel reveals the path that iron ions use to enter and translocate into the ferroxidase site to be oxidized and finally arrive at the nucleation site. However, the electrostatic environment of the channels and pores exhibits significant and extensive variability, suggesting that ferritins execute diverse functions in different environments.
Collapse
Affiliation(s)
- Hengshang Huan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China; College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, 315823, China
| | - Qinqin Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China; College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, 315823, China
| | - Yan Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China; College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, 315823, China
| | - Xiaoting Qiu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, 315823, China
| | - Chenyang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China; School of Marine Science, Ningbo University, Ningbo, Zhejiang, 315823, China
| | - Chang Su
- Zhejiang Collaborative Innovation Center for High Value Utilization of Byproducts from Ethylene Project, Ningbo Polytechnic, Ningbo, Zhejiang, 315800, China
| | - Jun Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China; School of Marine Science, Ningbo University, Ningbo, Zhejiang, 315823, China
| | - Ye Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China; School of Marine Science, Ningbo University, Ningbo, Zhejiang, 315823, China
| | - Tinghong Ming
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China; School of Marine Science, Ningbo University, Ningbo, Zhejiang, 315823, China.
| | - Xiurong Su
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China; School of Marine Science, Ningbo University, Ningbo, Zhejiang, 315823, China.
| |
Collapse
|
6
|
Systematic Surveys of Iron Homeostasis Mechanisms Reveal Ferritin Superfamily and Nucleotide Surveillance Regulation to be Modified by PINK1 Absence. Cells 2020; 9:cells9102229. [PMID: 33023155 PMCID: PMC7650593 DOI: 10.3390/cells9102229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/21/2020] [Accepted: 09/29/2020] [Indexed: 12/13/2022] Open
Abstract
Iron deprivation activates mitophagy and extends lifespan in nematodes. In patients suffering from Parkinson’s disease (PD), PINK1-PRKN mutations via deficient mitophagy trigger iron accumulation and reduce lifespan. To evaluate molecular effects of iron chelator drugs as a potential PD therapy, we assessed fibroblasts by global proteome profiles and targeted transcript analyses. In mouse cells, iron shortage decreased protein abundance for iron-binding nucleotide metabolism enzymes (prominently XDH and ferritin homolog RRM2). It also decreased the expression of factors with a role for nucleotide surveillance, which associate with iron-sulfur-clusters (ISC), and are important for growth and survival. This widespread effect included prominently Nthl1-Ppat-Bdh2, but also mitochondrial Glrx5-Nfu1-Bola1, cytosolic Aco1-Abce1-Tyw5, and nuclear Dna2-Elp3-Pold1-Prim2. Incidentally, upregulated Pink1-Prkn levels explained mitophagy induction, the downregulated expression of Slc25a28 suggested it to function in iron export. The impact of PINK1 mutations in mouse and patient cells was pronounced only after iron overload, causing hyperreactive expression of ribosomal surveillance factor Abce1 and of ferritin, despite ferritin translation being repressed by IRP1. This misregulation might be explained by the deficiency of the ISC-biogenesis factor GLRX5. Our systematic survey suggests mitochondrial ISC-biogenesis and post-transcriptional iron regulation to be important in the decision, whether organisms undergo PD pathogenesis or healthy aging.
Collapse
|
7
|
Mebs S, Srinivas V, Kositzki R, Griese JJ, Högbom M, Haumann M. Fate of oxygen species from O 2 activation at dimetal cofactors in an oxidase enzyme revealed by 57Fe nuclear resonance X-ray scattering and quantum chemistry. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:148060. [PMID: 31394094 DOI: 10.1016/j.bbabio.2019.148060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/30/2019] [Accepted: 08/02/2019] [Indexed: 10/26/2022]
Abstract
Oxygen (O2) activation is a central challenge in chemistry and catalyzed at prototypic dimetal cofactors in biological enzymes with diverse functions. Analysis of intermediates is required to elucidate the reaction paths of reductive O2 cleavage. An oxidase protein from the bacterium Geobacillus kaustophilus, R2lox, was used for aerobic in-vitro reconstitution with only 57Fe(II) or Mn(II) plus 57Fe(II) ions to yield [FeFe] or [MnFe] cofactors under various oxygen and solvent isotopic conditions including 16/18O and H/D exchange. 57Fe-specific X-ray scattering techniques were employed to collect nuclear forward scattering (NFS) and nuclear resonance vibrational spectroscopy (NRVS) data of the R2lox proteins. NFS revealed Fe/Mn(III)Fe(III) cofactor states and Mössbauer quadrupole splitting energies. Quantum chemical calculations of NRVS spectra assigned molecular structures, vibrational modes, and protonation patterns of the cofactors, featuring a terminal water (H2O) bound at iron or manganese in site 1 and a metal-bridging hydroxide (μOH-) ligand. A procedure for quantitation and correlation of experimental and computational NRVS difference signals due to isotope labeling was developed. This approach revealed that the protons of the ligands as well as the terminal water at the R2lox cofactors exchange with the bulk solvent whereas 18O from 18O2 cleavage is incorporated in the hydroxide bridge. In R2lox, the two water molecules from four-electron O2 reduction are released in a two-step reaction to the solvent. These results establish combined NRVS and QM/MM for tracking of iron-based oxygen activation in biological and chemical catalysts and clarify the reductive O2 cleavage route in an enzyme.
Collapse
Affiliation(s)
- Stefan Mebs
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Vivek Srinivas
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16, 10691 Stockholm, Sweden
| | - Ramona Kositzki
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Julia J Griese
- Department of Cell and Molecular Biology, Structural Biology, Uppsala University, Box 596, 75124 Uppsala, Sweden
| | - Martin Högbom
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16, 10691 Stockholm, Sweden
| | - Michael Haumann
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany.
| |
Collapse
|
8
|
Tereshkin EV, Tereshkina KB, Kovalenko VV, Loiko NG, Krupyanskii YF. Structure of DPS Protein Complexes with DNA. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2019. [DOI: 10.1134/s199079311905021x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|