1
|
Yue YZ, Li MX, Wang XH, Qin YY, Wang YH, Tan JH, Su LL, Yan S. UPLC-Q-TOF/MS-Based Serum Metabolomics Reveals Potential Anti-tumor Mechanism of Banxia Xiexin Decoction in Colorectal Cancer Mice. Chin J Integr Med 2024; 30:623-632. [PMID: 37222828 DOI: 10.1007/s11655-023-3552-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2023] [Indexed: 05/25/2023]
Abstract
OBJECTIVE To clarify the potential mechanism of Banxia Xiexin Decoction (BXD) on colorectal cancer (CRC) from the perspective of metabolomics. METHODS Forty male C57BL/6 mice were randomly divided into normal control (NC), azoxymethane/dextran sulfate sodium (AOM/DSS) model, low-dose BXD (L-BXD), high-dose BXD (H-BXD) and mesalamine (MS) groups according to a random number table, 8 mice in each group. Colorectal cancer model was induced by AOM/DSS. BXD was administered daily at doses of 3.915 (L-BXD) and 15.66 g/kg (H-BXD) by gavage for consecutive 21 days, and 100 mg/kg MS was used as positive control. Following the entire modeling cycle, colon length of mice was measured and quantity of colorectal tumors were counted. The spleen and thymus index were determined by calculating the spleen/thymus weight to body weight. Inflammatory cytokine and changes of serum metabolites were analyzed by enzyme-linked immunosorbent assay kits and ultra performance liquid chromatography-quadrupole/time-of-flight mass spectrometry (UPLC-Q/TOF-MS), respectively. RESULTS Notably, BXD supplementation protected against weight loss, mitigated tumor formation, and diminished histologic damage in mice treated with AOM/DSS (P<0.05 or P<0.01). Moreover, BXD suppressed expression of serum inflammatory enzymes, and improved the spleen and thymus index (P<0.05). Compared with the normal group, 102 kinds of differential metabolites were screened in the AOM/DSS group, including 48 potential biomarkers, involving 18 main metabolic pathways. Totally 18 potential biomarkers related to CRC were identified, and the anti-CRC mechanism of BXD was closely related to D-glutamine and D-glutamate metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, arginine biosynthesis, nitrogen metabolism and so on. CONCLUSION BXD exerts partial protective effects on AOM/DSS-induced CRC by reducing inflammation, protecting organism immunity ability, and regulating amino acid metabolism.
Collapse
Affiliation(s)
- Yin-Zi Yue
- Department of General Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, China
| | - Ming-Xuan Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiao-Hui Wang
- Department of General Surgery, Bayinguoleng Mongolian Autonomous Prefecture People's Hospital, Xinjiang Uygur Autonomous Region, Korla, 841000, China
| | - Yuan-Yuan Qin
- Department of Pharmacy, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, China
| | - Ya-Hui Wang
- Department of Anorectal Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, China
| | - Jin-Hua Tan
- Department of General Surgery, Bayinguoleng Mongolian Autonomous Prefecture People's Hospital, Xinjiang Uygur Autonomous Region, Korla, 841000, China
| | - Lian-Lin Su
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shuai Yan
- Department of Anorectal Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, China.
| |
Collapse
|
2
|
Wang X, Hu T, Jiang Y, He Y, Li P, Peng W, Wang Y, Su W. Jingzhi Guanxin Oral Liquids Attenuate Atherosclerotic Coronary Heart Disease via Modulating Lipid Metabolism and PPAR-Related Targets. Pharmaceuticals (Basel) 2024; 17:784. [PMID: 38931451 PMCID: PMC11206304 DOI: 10.3390/ph17060784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/27/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Jingzhi Guanxin Oral Liquids (JZGX), a traditional Chinese medicine formulation prepared from the decoction of five herbs, has been utilized to relieve chest pain with coronary artery disease (CAD). However, the chemical composition and therapeutic mechanisms of JZGX remain obscured. In this research, the potential targets and pathways of JZGX against CAD were anticipated through network pharmacology based on analyzing its chemical constituents using UPLC-Q-TOF-MS/MS. One hundred seven ingredients in JZGX were identified. The 39 active chemicals and 37 key targets were screened, and CAD-related signaling pathways were clustered, mainly associated with lipid metabolism. Subsequently, the atherosclerotic CAD animal model employing 24 weeks of high-fat diet (HFD) ApoE-/- mice was constructed to investigate the JZGX efficacy and underlying mechanisms validating network forecasts. The histological staining examination and cardiovascular biomarker tests confirmed that JZGX reduced plaque formation in the aorta and decreased blood lipids in vivo. It featured anti-inflammatory, anti-thrombotic, and myocardial protective effects. JZGX prevented excessive lipid deposits and inflammation within the liver and exhibited hepatoprotective properties. Serum untargeted metabolomics analysis indicated that JZGX ameliorated metabolic abnormalities in atherosclerotic CAD mice and prompted lipid metabolism, especially linoleic acid. The PPARs and attached critical targets (SREBP1, FASN, PTGS2, and CYP3A), filtered from the networks and connected with lipid metabolism, were dramatically modulated through JZGX administration, as revealed by western blotting. The molecular docking outcomes showed that all 39 active ingredients in JZGX had good binding activity with PPARα and PPARγ. These findings illustrate that JZGX alleviates atherosclerotic CAD progression by remodeling the lipid metabolism and regulating PPAR-related proteins.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Weiwei Su
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
3
|
Sheashea M, El-Hawary S, Ahmed FA, Salem MA, Ezzat MI. UPLC-MS-Based Metabolomics Profiling and Chemometric Analysis for Hypericum sinaicum Boiss and the Endophytic Aspergillus foetidus in Comparison to Hypericum perforatum L. Chem Biodivers 2023; 20:e202301135. [PMID: 37788977 DOI: 10.1002/cbdv.202301135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/25/2023] [Accepted: 10/01/2023] [Indexed: 10/05/2023]
Abstract
One of the endangered plant species in Saint Catherine protectorate is Hypericum sinaicum Boiss which is endemic to Egypt, Jordan, and Saudi Arabia. The fungus-host relationship can assist in the investigation of bioactive compounds produced by H. sinaicum paving the way for economic and medicinal implications. Therefore, a comprehensive metabolic approach via MS and chemical analysis was used to track and compare metabolites from H. sinaicum and Aspergillus foetidus var. pallidus, the endophytic fungus, with Hypericum perforatum. Metabolomics analysis revealed the presence of 25 metabolites distributed among samples and the discovery of new chemotaxonomic compounds, i. e., phloroglucinols and xanthones, allowing the discrimination between species. A. foetidus extract is considered a reliable source of furohyperforin and naphthodianthrone derivatives. In conclusion, using A. foetidus as an in vitro technique for producing potential phytoconstituents was cost effective, having easier optimization conditions and faster growth with fewer contamination rates than other in vitro methods.
Collapse
Affiliation(s)
- Mohamed Sheashea
- Medicinal and Aromatic Plants Department, Desert Research Center, Mathaf El-Mataria Street, 11753, Cairo, Egypt
| | - Seham El-Hawary
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562, Cairo, Egypt
| | - Fatma A Ahmed
- Medicinal and Aromatic Plants Department, Desert Research Center, Mathaf El-Mataria Street, 11753, Cairo, Egypt
| | - Mohamed A Salem
- Pharmacognosy Department, Faculty of Pharmacy, Menoufia University, Gamal Abd El Nasr St., Shibin Elkom, 32511, Menoufia, Egypt
| | - Marwa I Ezzat
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562, Cairo, Egypt
| |
Collapse
|
4
|
Vrobel O, Tarkowski P. Can plant hormonomics be built on simple analysis? A review. PLANT METHODS 2023; 19:107. [PMID: 37833752 PMCID: PMC10576392 DOI: 10.1186/s13007-023-01090-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023]
Abstract
The field of plant hormonomics focuses on the qualitative and quantitative analysis of the hormone complement in plant samples, akin to other omics sciences. Plant hormones, alongside primary and secondary metabolites, govern vital processes throughout a plant's lifecycle. While active hormones have received significant attention, studying all related compounds provides valuable insights into internal processes. Conventional single-class plant hormone analysis employs thorough sample purification, short analysis and triple quadrupole tandem mass spectrometry. Conversely, comprehensive hormonomics analysis necessitates minimal purification, robust and efficient separation and better-performing mass spectrometry instruments. This review summarizes the current status of plant hormone analysis methods, focusing on sample preparation, advances in chromatographic separation and mass spectrometric detection, including a discussion on internal standard selection and the potential of derivatization. Moreover, current approaches for assessing the spatiotemporal distribution are evaluated. The review touches on the legitimacy of the term plant hormonomics by exploring the current status of methods and outlining possible future trends.
Collapse
Affiliation(s)
- Ondřej Vrobel
- Department of Biochemistry, Faculty of Science, Palacky University, Olomouc, Czech Republic
- Czech Advanced Technology and Research Institute, Palacky University, Olomouc, Czech Republic
- Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Olomouc, Czech Republic
| | - Petr Tarkowski
- Czech Advanced Technology and Research Institute, Palacky University, Olomouc, Czech Republic.
- Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Olomouc, Czech Republic.
| |
Collapse
|
5
|
Maritha V, Harlina PW, Musfiroh I, Gazzali AM, Muchtaridi M. The Application of Chemometrics in Metabolomic and Lipidomic Analysis Data Presentation for Halal Authentication of Meat Products. Molecules 2022; 27:7571. [PMID: 36364396 PMCID: PMC9656406 DOI: 10.3390/molecules27217571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/23/2022] [Accepted: 11/02/2022] [Indexed: 09/08/2024] Open
Abstract
The halal status of meat products is an important factor being considered by many parties, especially Muslims. Analytical methods that have good specificity for the authentication of halal meat products are important as quality assurance to consumers. Metabolomic and lipidomic are two useful strategies in distinguishing halal and non-halal meat. Metabolomic and lipidomic analysis produce a large amount of data, thus chemometrics are needed to interpret and simplify the analytical data to ease understanding. This review explored the published literature indexed in PubMed, Scopus, and Google Scholar on the application of chemometrics as a tool in handling the large amount of data generated from metabolomic and lipidomic studies specifically in the halal authentication of meat products. The type of chemometric methods used is described and the efficiency of time in distinguishing the halal and non-halal meat products using chemometrics methods such as PCA, HCA, PLS-DA, and OPLS-DA is discussed.
Collapse
Affiliation(s)
- Vevi Maritha
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Putri Widyanti Harlina
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Ida Musfiroh
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Amirah Mohd Gazzali
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, USM, Penang 11800, Malaysia
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia
| |
Collapse
|
6
|
Monti MC, Frei P, Weber S, Scheurer E, Mercer-Chalmers-Bender K. Beyond Δ9-tetrahydrocannabinol and cannabidiol: chemical differentiation of cannabis varieties applying targeted and untargeted analysis. Anal Bioanal Chem 2022; 414:3847-3862. [PMID: 35380230 PMCID: PMC9061671 DOI: 10.1007/s00216-022-04026-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 12/18/2022]
Abstract
Cannabis sativa (C. sativa) is commonly chemically classified based on its Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) content ratios. However, the plant contains nearly 150 additional cannabinoids, referred to as minor cannabinoids. Minor cannabinoids are gaining interest for improved plant and product characterization, e.g., for medical use, and bioanalytical questions in the medico-legal field. This study describes the development and validation of an analytical method for the elucidation of minor cannabinoid fingerprints, employing liquid chromatography coupled to high-resolution mass spectrometry. The method was used to characterize inflorescences from 18 different varieties of C. sativa, which were cultivated under the same standardized conditions. Complementing the targeted detection of 15 cannabinoids, untargeted metabolomics employing in silico assisted data analysis was used to detect additional plant ingredients with focus on cannabinoids. Principal component analysis (PCA) was used to evaluate differences between varieties. The overall purpose of this study was to examine the ability of targeted and non-targeted metabolomics using the mentioned techniques to distinguish cannabis varieties from each other by their minor cannabinoid fingerprint. Quantitative determination of targeted cannabinoids already gave valuable information on cannabinoid fingerprints as well as inter- and intra-variety variability of cannabinoid contents. The untargeted workflow led to the detection of 19 additional compounds. PCA of the targeted and untargeted datasets revealed further subgroups extending commonly applied phenotype classification systems of cannabis. This study presents an analytical method for the comprehensive characterization of C. sativa varieties.
Collapse
Affiliation(s)
- Manuela Carla Monti
- Institute of Forensic Medicine, Department of Biomedical Engineering, University of Basel, Pestalozzistrasse 22, 4056, Basel, Switzerland
| | - Priska Frei
- Institute of Forensic Medicine, Department of Biomedical Engineering, University of Basel, Pestalozzistrasse 22, 4056, Basel, Switzerland
| | - Sophie Weber
- Institute of Forensic Medicine, Department of Biomedical Engineering, University of Basel, Pestalozzistrasse 22, 4056, Basel, Switzerland
| | - Eva Scheurer
- Institute of Forensic Medicine, Department of Biomedical Engineering, University of Basel, Pestalozzistrasse 22, 4056, Basel, Switzerland
| | - Katja Mercer-Chalmers-Bender
- Institute of Forensic Medicine, Department of Biomedical Engineering, University of Basel, Pestalozzistrasse 22, 4056, Basel, Switzerland.
| |
Collapse
|
7
|
Fuentes ZC, Schwartz YL, Robuck AR, Walker DI. Operationalizing the Exposome Using Passive Silicone Samplers. CURRENT POLLUTION REPORTS 2022; 8:1-29. [PMID: 35004129 PMCID: PMC8724229 DOI: 10.1007/s40726-021-00211-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/11/2021] [Indexed: 05/15/2023]
Abstract
The exposome, which is defined as the cumulative effect of environmental exposures and corresponding biological responses, aims to provide a comprehensive measure for evaluating non-genetic causes of disease. Operationalization of the exposome for environmental health and precision medicine has been limited by the lack of a universal approach for characterizing complex exposures, particularly as they vary temporally and geographically. To overcome these challenges, passive sampling devices (PSDs) provide a key measurement strategy for deep exposome phenotyping, which aims to provide comprehensive chemical assessment using untargeted high-resolution mass spectrometry for exposome-wide association studies. To highlight the advantages of silicone PSDs, we review their use in population studies and evaluate the broad range of applications and chemical classes characterized using these samplers. We assess key aspects of incorporating PSDs within observational studies, including the need to preclean samplers prior to use to remove impurities that interfere with compound detection, analytical considerations, and cost. We close with strategies on how to incorporate measures of the external exposome using PSDs, and their advantages for reducing variability in exposure measures and providing a more thorough accounting of the exposome. Continued development and application of silicone PSDs will facilitate greater understanding of how environmental exposures drive disease risk, while providing a feasible strategy for incorporating untargeted, high-resolution characterization of the external exposome in human studies.
Collapse
Affiliation(s)
- Zoe Coates Fuentes
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1428 Madison Ave, New York, NY USA
| | - Yuri Levin Schwartz
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1428 Madison Ave, New York, NY USA
| | - Anna R. Robuck
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1428 Madison Ave, New York, NY USA
| | - Douglas I. Walker
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1428 Madison Ave, New York, NY USA
| |
Collapse
|
8
|
Plant DNA barcoding and metabolomics for comprehensive discrimination of German Chamomile from its poisonous adulterants for food safety. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Zamora Obando HR, Duarte GHB, Simionato AVC. Metabolomics Data Treatment: Basic Directions of the Full Process. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1336:243-264. [PMID: 34628635 DOI: 10.1007/978-3-030-77252-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The present chapter describes basic aspects of the main steps for data processing on mass spectrometry-based metabolomics platforms, focusing on the main objectives and important considerations of each step. Initially, an overview of metabolomics and the pivotal techniques applied in the field are presented. Important features of data acquisition and preprocessing such as data compression, noise filtering, and baseline correction are revised focusing on practical aspects. Peak detection, deconvolution, and alignment as well as missing values are also discussed. Special attention is given to chemical and mathematical normalization approaches and the role of the quality control (QC) samples. Methods for uni- and multivariate statistical analysis and data pretreatment that could impact them are reviewed, emphasizing the most widely used multivariate methods, i.e., principal components analysis (PCA), partial least squares-discriminant analysis (PLS-DA), orthogonal partial least square-discriminant analysis (OPLS-DA), and hierarchical cluster analysis (HCA). Criteria for model validation and softwares used in data processing were also approached. The chapter ends with some concerns about the minimal requirements to report metadata in metabolomics.
Collapse
Affiliation(s)
- Hans Rolando Zamora Obando
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas, Campinas, SP, Brazil
| | | | | |
Collapse
|
10
|
Yan J, Kuzhiumparambil U, Bandodkar S, Dale RC, Fu S. Cerebrospinal fluid metabolomics: detection of neuroinflammation in human central nervous system disease. Clin Transl Immunology 2021; 10:e1318. [PMID: 34386234 PMCID: PMC8343457 DOI: 10.1002/cti2.1318] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 04/26/2021] [Accepted: 07/06/2021] [Indexed: 12/15/2022] Open
Abstract
The high morbidity and mortality of neuroinflammatory diseases drives significant interest in understanding the underlying mechanisms involved in the innate and adaptive immune response of the central nervous system (CNS). Diagnostic biomarkers are important to define treatable neuroinflammation. Metabolomics is a rapidly evolving research area offering novel insights into metabolic pathways, and elucidation of reliable metabolites as biomarkers for diseases. This review focuses on the emerging literature regarding the detection of neuroinflammation using cerebrospinal fluid (CSF) metabolomics in human cohort studies. Studies of classic neuroinflammatory disorders such as encephalitis, CNS infection and multiple sclerosis confirm the utility of CSF metabolomics. Additionally, studies in neurodegeneration and neuropsychiatry support the emerging potential of CSF metabolomics to detect neuroinflammation in common CNS diseases such as Alzheimer's disease and depression. We demonstrate metabolites in the tryptophan-kynurenine pathway, nitric oxide pathway, neopterin and major lipid species show moderately consistent ability to differentiate patients with neuroinflammation from controls. Integration of CSF metabolomics into clinical practice is warranted to improve recognition and treatment of neuroinflammation.
Collapse
Affiliation(s)
- Jingya Yan
- Centre for Forensic ScienceUniversity of Technology SydneySydneyNSWAustralia
| | | | - Sushil Bandodkar
- Department of Clinical BiochemistryThe Children's Hospital at WestmeadSydneyNSWAustralia
- Clinical SchoolThe Children's Hospital at WestmeadFaculty of Medicine and HealthUniversity of SydneySydneyNSWAustralia
| | - Russell C Dale
- Clinical SchoolThe Children's Hospital at WestmeadFaculty of Medicine and HealthUniversity of SydneySydneyNSWAustralia
| | - Shanlin Fu
- Centre for Forensic ScienceUniversity of Technology SydneySydneyNSWAustralia
| |
Collapse
|
11
|
Ahmad Azam A, Ismail IS, Shaikh MF, Abas F, Shaari K. Multi-Platform Metabolomics Analyses Revealed the Complexity of Serum Metabolites in LPS-Induced Neuroinflammed Rats Treated with Clinacanthus nutans Aqueous Extract. Front Pharmacol 2021; 12:629561. [PMID: 34177565 PMCID: PMC8220158 DOI: 10.3389/fphar.2021.629561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
The use of metabolomics as a comprehensive tool in the analysis of metabolic profiles in disease progression and therapeutic intervention is rapidly advancing. Yet, a single analytical platform could not be applied to cover the entire spectrum of a biological sample’s metabolome. In the present paper, multi-platform metabolomics approaches were explored to determine the diverse rat sera metabolites extracted from intracerebroventricular lipopolysaccharides (LPS)-induced neuroinflammed rats treated with oral therapeutic interventions of positive drug (dextromethorphan, 5 mg/kg BW); with Clinacanthus nutans (CN) aqueous extract (CNE, 500 mg/kg BW); and with phosphate buffer saline (PBS) as the control group for 14 days. Analyzed by nuclear magnetic resonance (NMR) and liquid chromatography-mass spectrometry (LC-MS) techniques, this study depicted the potential of metabolites associated with neuroinflammation and verified by MetDisease. The key observations in the perturbed metabolic pathways that showed ameliorative effects were linked to the class of amino acid and peptide metabolism involving valine, leucine, and isoleucine biosynthesis; phenylalanine, tyrosine, and tryptophan biosynthesis; and phenylalanine metabolism. Lipid metabolism of arachidonic acid metabolism, glycerophospholipid metabolism, terpenoid backbone biosynthesis, and glycosphingolipid metabolism were also affected. Current findings suggested that the putative biomarkers, especially lysophosphatidic acid (LPA) and 5-diphosphomevalonic acid from glycerophospholipid and squalene/terpenoid and cholesterol biosynthesis, respectively, showed the ameliorative effects of the drug and CN treatments by controlling cell differentiation and proliferation. Our study proved that the complex and dynamic sera profiling affected during the CN treatment was greatly influenced by the analytical platform selection as integration between the two data yielded a more holistic summary of the metabolite pattern changes. Hence, an evidence-based herb, such as CN, can be used for novel diagnostic tools in the quest for ethnopharmacological studies.
Collapse
Affiliation(s)
- Amalina Ahmad Azam
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Intan Safinar Ismail
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah, School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | - Faridah Abas
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Khozirah Shaari
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
12
|
Fernández-Ochoa Á, Leyva-Jiménez FJ, De la Luz Cádiz-Gurrea M, Pimentel-Moral S, Segura-Carretero A. The Role of High-Resolution Analytical Techniques in the Development of Functional Foods. Int J Mol Sci 2021; 22:ijms22063220. [PMID: 33809986 PMCID: PMC8004826 DOI: 10.3390/ijms22063220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 03/18/2021] [Indexed: 12/17/2022] Open
Abstract
The approaches based on high-resolution analytical techniques, such as nuclear magnetic resonance or mass spectrometry coupled to chromatographic techniques, have a determining role in several of the stages necessary for the development of functional foods. The analyses of botanical extracts rich in bioactive compounds is one of the fundamental steps in order to identify and quantify their phytochemical composition. However, the compounds characterized in the extracts are not always responsible for the bioactive properties because they generally undergo metabolic reactions before reaching the therapeutic targets. For this reason, analytical techniques are also applied to analyze biological samples to know the bioavailability, pharmacokinetics and/or metabolism of the compounds ingested by animal or human models in nutritional intervention studies. In addition, these studies have also been applied to determine changes of endogenous metabolites caused by prolonged intake of compounds with bioactive potential. This review aims to describe the main types and modes of application of high-resolution analytical techniques in all these steps for functional food development.
Collapse
Affiliation(s)
- Álvaro Fernández-Ochoa
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
- Berlin Institute of Health Metabolomics Platform, 10178 Berlin, Germany
- Correspondence: (Á.F.-O.); (M.D.l.L.C.-G.)
| | - Francisco Javier Leyva-Jiménez
- Functional Food Research and Development Center, Health Science Technological Park, Avenida del Conocimiento s/n, E-18100 Granada, Spain; (F.J.L.-J.); (A.S.-C.)
| | - María De la Luz Cádiz-Gurrea
- Functional Food Research and Development Center, Health Science Technological Park, Avenida del Conocimiento s/n, E-18100 Granada, Spain; (F.J.L.-J.); (A.S.-C.)
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, E-18071 Granada, Spain;
- Correspondence: (Á.F.-O.); (M.D.l.L.C.-G.)
| | - Sandra Pimentel-Moral
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, E-18071 Granada, Spain;
| | - Antonio Segura-Carretero
- Functional Food Research and Development Center, Health Science Technological Park, Avenida del Conocimiento s/n, E-18100 Granada, Spain; (F.J.L.-J.); (A.S.-C.)
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, E-18071 Granada, Spain;
| |
Collapse
|
13
|
Ma Y, Zhou H, Li C, Zou X, Luo X, Wu L, Li T, Chen X, Mao M, Huang Y, Li E, An Y, Zhang L, Wang T, Xu X, Yan W, Jiang Y, Wang Y. Differential Metabolites in Chinese Autistic Children: A Multi-Center Study Based on Urinary 1H-NMR Metabolomics Analysis. Front Psychiatry 2021; 12:624767. [PMID: 34045978 PMCID: PMC8144639 DOI: 10.3389/fpsyt.2021.624767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/16/2021] [Indexed: 02/05/2023] Open
Abstract
Background: Autism spectrum disorder (ASD) is a group of early-onset neurodevelopmental disorders. However, there is no valuable biomarker for the early diagnosis of ASD. Our large-scale and multi-center study aims to identify metabolic variations between ASD and healthy children and to investigate differential metabolites and associated pathogenic mechanisms. Methods: One hundred and seventeen autistic children and 119 healthy children were recruited from research centers of 7 cities. Urine samples were assayed by 1H-NMR metabolomics analysis to detect metabolic variations. Multivariate statistical analysis, including principal component analysis (PCA), and orthogonal projection to latent structure discriminant analysis (OPLS-DA), as well as univariate analysis were used to assess differential metabolites between the ASD and control groups. The differential metabolites were further analyzed by receiver operating characteristics (ROC) curve analysis and metabolic pathways analysis. Results: Compared with the control group, the ASD group showed higher levels of glycine, guanidinoacetic acid, creatine, hydroxyphenylacetylglycine, phenylacetylglycine, and formate and lower levels of 3-aminoisobutanoic acid, alanine, taurine, creatinine, hypoxanthine, and N-methylnicotinamide. ROC curve showed relatively significant diagnostic values for hypoxanthine [area under the curve (AUC) = 0.657, 95% CI 0.588 to 0.726], creatinine (AUC = 0.639, 95% CI 0.569 to 0.709), creatine (AUC = 0.623, 95% CI 0.552 to 0.694), N-methylnicotinamide (AUC = 0.595, 95% CI 0.523 to 0.668), and guanidinoacetic acid (AUC = 0.574, 95% CI 0.501 to 0.647) in the ASD group. Combining the metabolites creatine, creatinine and hypoxanthine, the AUC of the ROC curve reached 0.720 (95% CI 0.659 to 0.777). Significantly altered metabolite pathways associated with differential metabolites were glycine, serine and threonine metabolism, arginine and proline metabolism, and taurine and hypotaurine metabolism. Conclusions: Urinary amino acid metabolites were significantly altered in children with ASD. Amino acid metabolic pathways might play important roles in the pathogenic mechanisms of ASD.
Collapse
Affiliation(s)
- Yu Ma
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China
| | - Hao Zhou
- Department of Pediatrics, Guizhou Provincial People's Hospital, Guiyang, China
| | - Chunpei Li
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China
| | - Xiaobing Zou
- Child Development Behaviour Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuerong Luo
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lijie Wu
- Department of Children and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, China
| | - Tingyu Li
- Department of Child Health Care, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiang Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Meng Mao
- Department of Child Health Care, Chengdu Women and Children's Hospital, Chengdu, China
| | - Yi Huang
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, China
| | - Erzhen Li
- Department of Neurology, Capital Institute of Paediatrics, Beijing, China
| | - Yanpeng An
- State Key Laboratory of Genetic Engineering, Metabonomics and Systems Biology Laboratory, School of Life Sciences, Fudan University, Shanghai, China
| | - Lili Zhang
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China
| | - Tianqi Wang
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China
| | - Xiu Xu
- Department of Child Health Care, Children's Hospital of Fudan University, Shanghai, China
| | - Weili Yan
- Department of Clinical Epidemiology, Children's Hospital of Fudan University, Shanghai, China
| | - Yonghui Jiang
- Department of Genetics and Paediatrics, Yale School of Medicine, New Haven, CT, United States
| | - Yi Wang
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
14
|
Chen X, Xu J, Tang J, Dai X, Huang H, Cao R, Hu J. Dysregulation of amino acids and lipids metabolism in schizophrenia with violence. BMC Psychiatry 2020; 20:97. [PMID: 32131778 PMCID: PMC7055102 DOI: 10.1186/s12888-020-02499-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/14/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Many studies have related biochemical characteristics to violence and have reported schizophrenia could elevated the risk of violent behaviour. However, the metabolic characteristics of schizophrenia patients with violence (V.SC) are unclear. METHODS To explore the metabolic characteristics of schizophrenia with violence and to identify potential biomarkers, untargeted metabolomics was performed by using gas chromatography time-of-flight mass spectrometry to analyse the plasma metabolites of fifty-three V.SC and twenty-four schizophrenia patients without violence (NV.SC). Multivariate and univariate analyses were performed to identify differential metabolites and biomarkers. Violence was assessed by the MacArthur Violence Assessment Study method. Psychiatric symptoms were assessed by the Positive and Negative Syndrome Scale. RESULTS Multivariate analysis was unable to distinguish V.SC from NV.SC. Glycerolipid metabolism and phenylalanine, tyrosine and tryptophan biosynthesis were the differential metabolic pathways between V.SC and NV.SC. We confirmed ten metabolites and five metabolites as metabolic biomarkers of V.SC by random forest and support vector machine analysis, respectively. The biomarker panel, including the ratio of L-asparagine to L-aspartic acid, vanillylmandelic acid and glutaric acid, yielded an area under the receiver operating characteristic curve of 0.808. CONCLUSIONS This study gives a holistic view of the metabolic phenotype of schizophrenia with violence which is characterized by the dysregulation of lipids and amino acids. These results might provide information for the aetiological understanding and management of violence in schizophrenia; however, this is a preliminary metabolomics study about schizophrenia with violence, which needs to be repeated in future studies.
Collapse
Affiliation(s)
- Xiacan Chen
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Jiajun Xu
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Tang
- Chengdu Compulsory Medical Center, Chengdu, China
| | - Xinhua Dai
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041 China
| | - Haolan Huang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041 China
| | - Ruochen Cao
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041 China
| | - Junmei Hu
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041 China
| |
Collapse
|
15
|
Salem MA, Perez de Souza L, Serag A, Fernie AR, Farag MA, Ezzat SM, Alseekh S. Metabolomics in the Context of Plant Natural Products Research: From Sample Preparation to Metabolite Analysis. Metabolites 2020; 10:E37. [PMID: 31952212 PMCID: PMC7023240 DOI: 10.3390/metabo10010037] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/25/2019] [Accepted: 01/11/2020] [Indexed: 12/22/2022] Open
Abstract
Plant-derived natural products have long been considered a valuable source of lead compounds for drug development. Natural extracts are usually composed of hundreds to thousands of metabolites, whereby the bioactivity of natural extracts can be represented by synergism between several metabolites. However, isolating every single compound from a natural extract is not always possible due to the complex chemistry and presence of most secondary metabolites at very low levels. Metabolomics has emerged in recent years as an indispensable tool for the analysis of thousands of metabolites from crude natural extracts, leading to a paradigm shift in natural products drug research. Analytical methods such as mass spectrometry (MS) and nuclear magnetic resonance (NMR) are used to comprehensively annotate the constituents of plant natural products for screening, drug discovery as well as for quality control purposes such as those required for phytomedicine. In this review, the current advancements in plant sample preparation, sample measurements, and data analysis are presented alongside a few case studies of the successful applications of these processes in plant natural product drug discovery.
Collapse
Affiliation(s)
- Mohamed A. Salem
- Department of Pharmacognosy, Faculty of Pharmacy, Menoufia University, Gamal Abd El Nasr st., Shibin Elkom, Menoufia 32511, Egypt
| | - Leonardo Perez de Souza
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; (L.P.d.S.); (A.R.F.)
| | - Ahmed Serag
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11751, Egypt;
| | - Alisdair R. Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; (L.P.d.S.); (A.R.F.)
- Center of Plant Systems Biology and Biotechnology (CPSBB), Plovdiv 4000, Bulgaria
| | - Mohamed A. Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (M.A.F.); (S.M.E.)
- Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Shahira M. Ezzat
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (M.A.F.); (S.M.E.)
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 11787, Egypt
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; (L.P.d.S.); (A.R.F.)
- Center of Plant Systems Biology and Biotechnology (CPSBB), Plovdiv 4000, Bulgaria
| |
Collapse
|
16
|
Cui X, Yu X, Sun G, Hu T, Likhodii S, Zhang J, Randell E, Gao X, Fan Z, Zhang W. Differential metabolomics networks analysis of menopausal status. PLoS One 2019; 14:e0222353. [PMID: 31532787 PMCID: PMC6750885 DOI: 10.1371/journal.pone.0222353] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/27/2019] [Indexed: 12/22/2022] Open
Abstract
Menopause is an endocrine-related transition that induces a number of physiological and potentially pathological changes in middle-aged and elderly women. The intention of this research was to investigate the influence of menopause on the intricate relationships between major biochemical metabolites. The study involved metabolic profiling of 186 metabolic markers measured in blood plasma collected from 120 healthy female participants. We developed a method of network analysis using differential correlation that enabled us to detect and characterize differences in metabolites and changes in inter-relationships in pre- and post-menopausal women. A topological analysis was performed on the differential network that uncovered metabolite differences in pre-and post-menopausal women. In this analysis, our method identified two key metabolites, sphingomyelins and phosphatidylcholines, which may be useful in directing further studies into menopause-specific differences in the metabolome, and how these differences may underlie the body's response to stress and disease following the transition from pre- to post-menopausal status for women.
Collapse
Affiliation(s)
- Xiujuan Cui
- School of Pharmaceutical Sciences, Jilin University, Changchun, P.R. China
- Department of Pharmacy, Daqing Oil-Field General Hospital, Daqing, China
| | - Xiaoyan Yu
- School of Pharmaceutical Sciences, Jilin University, Changchun, P.R. China
| | - Guang Sun
- Discipline of Medicine, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
| | - Ting Hu
- Department of Computer Science, Memorial University, St John’s, NL, Canada
| | - Sergei Likhodii
- BC Provincial Toxicology Centre, Provincial Health Services Authority, Vancouver, British Columbia, Canada
| | - Jingmin Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun, P.R. China
| | - Edward Randell
- Department of Laboratory Medicine, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
| | - Xiang Gao
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Zhaozhi Fan
- Department of Mathematics and Statistics, Memorial University, St. John’s, NL, Canada
| | - Weidong Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun, P.R. China
- Discipline of Genetics, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
- * E-mail:
| |
Collapse
|
17
|
Li Z, Zhang Y, Hu T, Likhodii S, Sun G, Zhai G, Fan Z, Xuan C, Zhang W. Differential metabolomics analysis allows characterization of diversity of metabolite networks between males and females. PLoS One 2018; 13:e0207775. [PMID: 30500833 PMCID: PMC6267973 DOI: 10.1371/journal.pone.0207775] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 11/06/2018] [Indexed: 12/30/2022] Open
Abstract
Females and males are known to have different abilities to cope with stress and disease. This study was designed to investigate the effect of sex on properties of a complex interlinked network constructed of central biochemical metabolites. The study involved the blood collection and analysis of a large set of blood metabolic markers from a total of 236 healthy participants, which included 140 females and 96 males. Metabolic profiling yielded concentrations of 168 metabolites for each subject. A differential correlation network analysis approach was developed for this study that allowed detection and characterization of interconnection differences in metabolites in males and females. Through topological analysis of the differential network that depicted metabolite differences in the sexes, we identified metabolites with high centralities in this network. These key metabolites were identified as 10 phosphatidylcholines (PCaaC34:4, PCaaC36:6, PCaaC34:3, PCaaC42:2, PCaeC38:1, PCaeC38:2, PCaaC40:1, PCaeC34:1, PC aa C32:1 and PC aa C40:6) and 4 acylcarnitines (C3-OH, C7-DC, C3 and C0). Identification of these metabolites may help further studies of sex-specific differences in the metabolome that may underlie different responses to stress and disease in males and females.
Collapse
Affiliation(s)
- Zimin Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
- Department of pharmacy, Daqing people's hospital, Daqing, China
| | - Yuxi Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
- Department of pharmacy, Daqing oil-field general hospital, Daqing, China
| | - Ting Hu
- Department of Computer Science, Memorial University, St John’s, NL, Canada
| | - Sergei Likhodii
- Provincial Toxicology Centre, Provincial Health Services Authority, Vancouver, British Columbia, Canada
| | - Guang Sun
- Discipline of Medicine, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
| | - Guangju Zhai
- Discipline of Genetics, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
| | - Zhaozhi Fan
- Department of Mathematics and Statistics, Memorial University, St. John’s, NL, Canada
| | - Chunji Xuan
- Northeast Asian Studies College, Jilin University, Changchun, China
| | - Weidong Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
- Discipline of Genetics, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
- * E-mail:
| |
Collapse
|
18
|
Lomnytska M, Pinto R, Becker S, Engström U, Gustafsson S, Björklund C, Templin M, Bergstrand J, Xu L, Widengren J, Epstein E, Franzén B, Auer G. Platelet protein biomarker panel for ovarian cancer diagnosis. Biomark Res 2018; 6:2. [PMID: 29344361 PMCID: PMC5767003 DOI: 10.1186/s40364-018-0118-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 01/03/2018] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Platelets support cancer growth and spread making platelet proteins candidates in the search for biomarkers. METHODS Two-dimensional (2D) gel electrophoresis, Partial Least Squares Discriminant Analysis (PLS-DA), Western blot, DigiWest. RESULTS PLS-DA of platelet protein expression in 2D gels suggested differences between the International Federation of Gynaecology and Obstetrics (FIGO) stages III-IV of ovarian cancer, compared to benign adnexal lesions with a sensitivity of 96% and a specificity of 88%. A PLS-DA-based model correctly predicted 7 out of 8 cases of FIGO stages I-II of ovarian cancer after verification by western blot. Receiver-operator curve (ROC) analysis indicated a sensitivity of 83% and specificity of 76% at cut-off >0.5 (area under the curve (AUC) = 0.831, p < 0.0001) for detecting these cases. Validation on an independent set of samples by DigiWest with PLS-DA differentiated benign adnexal lesions and ovarian cancer, FIGO stages III-IV, with a sensitivity of 70% and a specificity of 83%. CONCLUSION We identified a group of platelet protein biomarker candidates that can quantify the differential expression between ovarian cancer cases as compared to benign adnexal lesions.
Collapse
Affiliation(s)
- Marta Lomnytska
- Department of Obstetrics and Gynaecology, Academical Uppsala University Hospital, Uppsala University, SE-751 85 Uppsala, Sweden
- Institute of Women’s and Children’s Health, Karolinska Institute, SE-171 76 Stockholm, Sweden
- Department of Oncology and Pathology, Cancer Centre Karolinska, Karolinska Institute, SE-171 76 Stockholm, Sweden
| | - Rui Pinto
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, St. Mary’s Campus, Norfolk Place, W2 1PG, London, England UK
| | - Susanne Becker
- Department of Oncology and Pathology, Cancer Centre Karolinska, Karolinska Institute, SE-171 76 Stockholm, Sweden
| | - Ulla Engström
- Ludwig Institute for Cancer Research Ltd, Box 595, SE-751 24 Uppsala, Sweden
| | - Sonja Gustafsson
- NeoProteomics AB, Cancer Centre Karolinska, SE-17176 Stockholm, Sweden
| | | | - Markus Templin
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| | - Jan Bergstrand
- Experimental Biomolecular Physics, Department of Applied Physics, Royal Institute of Technology, AlbaNova University Center, SE-106 91 Stockholm, Sweden
| | - Lei Xu
- Experimental Biomolecular Physics, Department of Applied Physics, Royal Institute of Technology, AlbaNova University Center, SE-106 91 Stockholm, Sweden
| | - Jerker Widengren
- Experimental Biomolecular Physics, Department of Applied Physics, Royal Institute of Technology, AlbaNova University Center, SE-106 91 Stockholm, Sweden
| | - Elisabeth Epstein
- Institute of Women’s and Children’s Health, Karolinska Institute, SE-171 76 Stockholm, Sweden
- Department of Obstetrics and Gynaecology, Department of Clinical Science and Education, Södersjukhuset, SE-118 83 Stockholm, Sweden
| | - Bo Franzén
- Department of Oncology and Pathology, Cancer Centre Karolinska, Karolinska Institute, SE-171 76 Stockholm, Sweden
- NeoProteomics AB, Cancer Centre Karolinska, SE-17176 Stockholm, Sweden
| | - Gert Auer
- Department of Oncology and Pathology, Cancer Centre Karolinska, Karolinska Institute, SE-171 76 Stockholm, Sweden
- NeoProteomics AB, Cancer Centre Karolinska, SE-17176 Stockholm, Sweden
| |
Collapse
|