1
|
Villalba Silva GC, Steindorff T, Silvestri Schuh R, Cardoso Flores N, Matte U. Drug Repositioning Applied to Cardiovascular Disease in Mucopolysaccharidosis. Life (Basel) 2022; 12:2085. [PMID: 36556450 PMCID: PMC9784427 DOI: 10.3390/life12122085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
Mucopolysaccharidoses (MPS) are genetic metabolic diseases characterized by defects in the activity of lysosomal hydrolases. In MPS, secondary cell disturbance affects pathways related to cardiovascular disorders. Hence, the study aimed to identify MPS-related drugs targeting cardiovascular disease and select a list of drugs for repositioning. We obtained a list of differentially expressed genes and pathways. To identify drug perturbation-driven gene expression and drug pathways interactions, we used the CMAP and LINCS databases. For molecular docking, we used the DockThor web server. Our results suggest that pirfenidone and colchicine are promising drugs to treat cardiovascular disease in MPS patients. We also provide a brief description of good practices for the repositioning analysis. Furthermore, the list of drugs and related MPS-enriched genes could be helpful to new treatments and considered for pathophysiological studies.
Collapse
Affiliation(s)
| | - Thiago Steindorff
- Bioinformatics Core, Hospital de Clinicas de Porto Alegre, Ramiro Barcelos, Porto Alegre 2350, RS, Brazil
- Gene Therapy Center, Hospital de Clinicas de Porto Alegre, Ramiro Barcelos, Porto Alegre 2350, RS, Brazil
- Biomedical Sciences School, Institute of Health Sciences, UFRGS, Ramiro Barcelos, Porto Alegre 2600, RS, Brazil
| | - Roselena Silvestri Schuh
- Gene Therapy Center, Hospital de Clinicas de Porto Alegre, Ramiro Barcelos, Porto Alegre 2350, RS, Brazil
- Pharmaceutical Sciences Graduate Program, UFRGS, Avenida Ipiranga, Porto Alegre 2752, RS, Brazil
| | - Natalia Cardoso Flores
- Bioinformatics Core, Hospital de Clinicas de Porto Alegre, Ramiro Barcelos, Porto Alegre 2350, RS, Brazil
- Gene Therapy Center, Hospital de Clinicas de Porto Alegre, Ramiro Barcelos, Porto Alegre 2350, RS, Brazil
- Biomedical Sciences School, Institute of Health Sciences, UFRGS, Ramiro Barcelos, Porto Alegre 2600, RS, Brazil
| | - Ursula Matte
- Bioinformatics Core, Hospital de Clinicas de Porto Alegre, Ramiro Barcelos, Porto Alegre 2350, RS, Brazil
- Gene Therapy Center, Hospital de Clinicas de Porto Alegre, Ramiro Barcelos, Porto Alegre 2350, RS, Brazil
- Genetics and Molecular Biology Graduate Program, UFRGS, Av. Bento Gonçalves, Porto Alegre 9500, RS, Brazil
| |
Collapse
|
2
|
Abstract
BACKGROUND Cardiac dysfunction, a common complication from severe sepsis, is associated with increased morbidity and mortality. However, the molecular mechanisms of septic cardiac dysfunction are poorly understood. SIRT1, a member of the sirtuin family of NAD+-dependent protein deacetylases, is an important immunometabolic regulator of sepsis, and sustained SIRT1 elevation is associated with worse outcomes and organ dysfunction in severe sepsis. Herein, we explore the role of SIRT1 in septic cardiac dysfunction using a murine model of sepsis. METHODS An in vitro model of inflammation in isolated H9c2 cardiomyocytes was used to confirm SIRT1 response to stimulation with lipopolysaccharide (LPS), followed by a murine model of cecal ligation and puncture (CLP) to investigate the molecular and echocardiographic response to sepsis. A selective SIRT1 inhibitor, EX-527, was employed to test for SIRT1 participation in septic cardiac dysfunction. RESULTS SIRT1 mRNA and protein levels in cultured H9c2 cardiomyocytes were significantly elevated at later time points after stimulation with LPS. Similarly, cardiac tissue harvested from C57BL/6 mice 36 h after CLP demonstrated increased expression of SIRT1 mRNA and protein compared with sham controls. Administration of EX-527 18 h after CLP reduced SIRT1 protein expression in cardiac tissue at 36 h. Moreover, treatment with EX-527 improved cardiac performance with increased global longitudinal strain and longitudinal strain rate. CONCLUSIONS Our findings reveal that SIRT1 expression increases in isolated cardiomyocytes and cardiac tissue after sepsis inflammation. Moreover, rebalancing SIRT1 excess in late sepsis improves cardiac performance, suggesting that SIRT1 may serve as a therapeutic target for septic cardiomyopathy.
Collapse
|
3
|
McCarty MF. Nutraceutical, Dietary, and Lifestyle Options for Prevention and Treatment of Ventricular Hypertrophy and Heart Failure. Int J Mol Sci 2021; 22:ijms22073321. [PMID: 33805039 PMCID: PMC8037104 DOI: 10.3390/ijms22073321] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Although well documented drug therapies are available for the management of ventricular hypertrophy (VH) and heart failure (HF), most patients nonetheless experience a downhill course, and further therapeutic measures are needed. Nutraceutical, dietary, and lifestyle measures may have particular merit in this regard, as they are currently available, relatively safe and inexpensive, and can lend themselves to primary prevention as well. A consideration of the pathogenic mechanisms underlying the VH/HF syndrome suggests that measures which control oxidative and endoplasmic reticulum (ER) stress, that support effective nitric oxide and hydrogen sulfide bioactivity, that prevent a reduction in cardiomyocyte pH, and that boost the production of protective hormones, such as fibroblast growth factor 21 (FGF21), while suppressing fibroblast growth factor 23 (FGF23) and marinobufagenin, may have utility for preventing and controlling this syndrome. Agents considered in this essay include phycocyanobilin, N-acetylcysteine, lipoic acid, ferulic acid, zinc, selenium, ubiquinol, astaxanthin, melatonin, tauroursodeoxycholic acid, berberine, citrulline, high-dose folate, cocoa flavanols, hawthorn extract, dietary nitrate, high-dose biotin, soy isoflavones, taurine, carnitine, magnesium orotate, EPA-rich fish oil, glycine, and copper. The potential advantages of whole-food plant-based diets, moderation in salt intake, avoidance of phosphate additives, and regular exercise training and sauna sessions are also discussed. There should be considerable scope for the development of functional foods and supplements which make it more convenient and affordable for patients to consume complementary combinations of the agents discussed here. Research Strategy: Key word searching of PubMed was employed to locate the research papers whose findings are cited in this essay.
Collapse
Affiliation(s)
- Mark F McCarty
- Catalytic Longevity Foundation, 811 B Nahant Ct., San Diego, CA 92109, USA
| |
Collapse
|
4
|
Jakovac H. COVID-19 and hypertension: is the HSP60 culprit for the severe course and worse outcome? Am J Physiol Heart Circ Physiol 2020; 319:H793-H796. [PMID: 32886002 PMCID: PMC7516379 DOI: 10.1152/ajpheart.00506.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The 60-kDa heat shock protein (HSP60) is a chaperone essential for mitochondrial proteostasis ensuring thus sufficient aerobic energy production. In pathological conditions, HSP60 can be translocated from the mitochondria and excreted from the cell. In turn, the extracellular HSP60 has a strong ability to trigger and enhance inflammatory response with marked proinflammatory cytokine induction, which is mainly mediated by Toll-like receptor binding. Previous studies have found increased circulating levels of HSP60 in hypertensive patients, as well as enhanced HSP60 expression and membrane translocation in the hypertrophic myocardium. These observations are of particular interest, since they could provide a possible pathophysiological explanation of the severe course and worse outcome of severe acute respiratory syndrome coronavirus 2 infection in hypertensive patients, repeatedly reported during the recent coronavirus disease 2019 (COVID-19) pandemic and related to hyperinflammatory response and cytokine storm development during the third phase of the disease. In this regard, pharmacological inhibition of HSP60 could attract attention to potentially ameliorate inappropriate inflammatory reaction in severe COVID-19 patients. Among HSP60 antagonizing drugs, mizoribine is the most intriguing, since it is clinically approved and exerts antiviral activity. However, this topic requires to be further scrutinized.
Collapse
Affiliation(s)
- Hrvoje Jakovac
- Medical Faculty, Department of Physiology and Immunology, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
5
|
Krishnan-Sivadoss I, Mijares-Rojas IA, Villarreal-Leal RA, Torre-Amione G, Knowlton AA, Guerrero-Beltrán CE. Heat shock protein 60 and cardiovascular diseases: An intricate love-hate story. Med Res Rev 2020; 41:29-71. [PMID: 32808366 PMCID: PMC9290735 DOI: 10.1002/med.21723] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 12/23/2022]
Abstract
Cardiovascular diseases (CVDs) are the result of complex pathophysiological processes in the tissues comprising the heart and blood vessels. Inflammation is the main culprit for the development of cardiovascular dysfunction, and it may be traced to cellular stress events including apoptosis, oxidative and shear stress, and cellular and humoral immune responses, all of which impair the system's structure and function. An intracellular chaperone, heat shock protein 60 (HSP60) is an intriguing example of a protein that may both be an ally and a foe for cardiovascular homeostasis; on one hand providing protection against cellular injury, and on the other triggering damaging responses through innate and adaptive immunity. In this review we will discuss the functions of HSP60 and its effects on cells and the immune system regulation, only to later address its implications in the development and progression of CVD. Lastly, we summarize the outcome of various studies targeting HSP60 as a potential therapeutic strategy for cardiovascular and other diseases.
Collapse
Affiliation(s)
- Indumathi Krishnan-Sivadoss
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Medicina Cardiovascular y Metabolómica, Monterrey, Nuevo León, México
| | - Iván A Mijares-Rojas
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Medicina Cardiovascular y Metabolómica, Monterrey, Nuevo León, México
| | - Ramiro A Villarreal-Leal
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Medicina Cardiovascular y Metabolómica, Monterrey, Nuevo León, México
| | - Guillermo Torre-Amione
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Medicina Cardiovascular y Metabolómica, Monterrey, Nuevo León, México.,Methodist DeBakey Heart and Vascular Center, The Methodist Hospital, Houston, Texas
| | - Anne A Knowlton
- Veterans Affairs Medical Center, Sacramento, California, USA.,Department of Internal Medicine, Molecular and Cellular Cardiology, Cardiovascular Division, University of California, Davis, California, USA.,Department of Pharmacology, University of California, Davis, California, USA
| | - C Enrique Guerrero-Beltrán
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Medicina Cardiovascular y Metabolómica, Monterrey, Nuevo León, México.,Tecnologico de Monterrey, Hospital Zambrano Hellion, TecSalud, Centro de Investigación Biomédica, San Pedro Garza García, Nuevo León, México
| |
Collapse
|
6
|
Xu W, Zhang K, Zhang Y, Ma S, Jin D. Downregulation of DEC1 by RNA interference attenuates ischemia/reperfusion-induced myocardial inflammation by inhibiting the TLR4/NF-κB signaling pathway. Exp Ther Med 2020; 20:343-350. [PMID: 32537000 PMCID: PMC7282085 DOI: 10.3892/etm.2020.8706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
Inflammation has been implicated in the pathogenesis of myocardial ischemia/reperfusion (I/R) injury (MIRI). Previous studies have confirmed that deleted in esophageal cancer 1 (DEC1) is an important transcription factor in inflammation. However, the role of DEC1 in MIRI remains unclear. The present study aimed to determine whether the downregulation of DEC1 by RNA interference alleviated inflammation to protect against MIRI. Adult Sprague-Dawley rats (n=48) were randomly divided into four groups: Sham; I/R; adenovirus expressing green fluorescent protein control (Ad-G-Control); and DEC1-targeting RNA interference (Ad-G-DEC1) groups. Following gene delivery 4 days later, the rat myocardial I/R model was established and myocardial enzymes [creatine kinase (CK) and lactate dehydrogenase (LDH)] were detected. Hematoxylin and eosin (H&E) staining was performed to evaluate the myocardial damage and the infarct area was assessed using Evans Blue/triphenyltetrazolium chloride staining. The inflammatory mediators interleukin (IL)-β and tumor necrosis factor (TNF)-α were also detected using ELISA kits to assess the inflammatory response. Finally, western blotting and reverse transcription-quantitative PCR were used to analyze the expression levels of associated proteins and mRNAs. Ad-G-DEC1 RNA interference markedly decreased DEC1 expression levels. In addition, following the downregulation of DEC1 expression, the infarct size, CK, LDH, Toll-like receptor (TLR)4, NF-κB, IL-β and TNF-α levels were all significantly decreased. In conclusion, the results of the present study suggested that the downregulation of DEC1 may decrease the inflammation by suppressing the TLR4/NF-κB signaling pathway, which may represent a therapeutic target for MIRI.
Collapse
Affiliation(s)
- Weipan Xu
- Department of Cardiology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, Hubei 435000, P.R. China
| | - Kai Zhang
- Department of Cardiology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, Hubei 435000, P.R. China
| | - Yi Zhang
- Department of Cardiology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, Hubei 435000, P.R. China
| | - Shanxue Ma
- Department of Cardiology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, Hubei 435000, P.R. China
| | - Daoqun Jin
- Department of Cardiology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, Hubei 435000, P.R. China
| |
Collapse
|
7
|
Duan Y, Tang H, Mitchell-Silbaugh K, Fang X, Han Z, Ouyang K. Heat Shock Protein 60 in Cardiovascular Physiology and Diseases. Front Mol Biosci 2020; 7:73. [PMID: 32426370 PMCID: PMC7203681 DOI: 10.3389/fmolb.2020.00073] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/31/2020] [Indexed: 01/01/2023] Open
Abstract
Heat shock protein 60 (HSP60) is a highly conserved protein abundantly expressed in both prokaryotic and eukaryotic cells. In mammals, HSP60 has been primarily considered to reside in the mitochondria, where HSP60 and HSP10 form a complex and facilitate mitochondrial protein folding. However, HSP60 is also observed in the cytoplasm, the plasma membrane, and the extracellular space. HSP60 regulates a broad spectrum of cellular events including protein trafficking, peptide hormone signaling, cell survival, cell proliferation, inflammation, and immunization. In the cardiovascular system, growing evidence indicates that HSP60 could not only play an important role under physiological conditions, but also regulate the initiation and progression of heart failure and atherosclerosis. In this review, we focus on recent progress in understanding the function of HSP60 in cardiomyocytes, endothelial cells, and vascular smooth muscle cells (VSMCs), respectively, and discuss the related signaling pathways that have been found in these cells, so as to illustrate the role of HSP60 in the development of cardiovascular disease.
Collapse
Affiliation(s)
- Yaoyun Duan
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Huayuan Tang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Kali Mitchell-Silbaugh
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Xi Fang
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Zhen Han
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Kunfu Ouyang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| |
Collapse
|
8
|
Zhong Z, Huang Y, Hu Q, He W, Duan B, Yan X, Yang Z, Liang W, Liu Z, Peng Z, Wang Y, Zhang L, Ye Q. Elucidation of molecular pathways responsible for the accelerated wound healing induced by a novel fibrous chitin dressing. Biomater Sci 2020; 7:5247-5257. [PMID: 31602445 DOI: 10.1039/c9bm00404a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fibrous chitin dressing (FCD) prepared from a NaOH-urea aqueous solution of chitin via a physical process was used to study its effect on wound healing using a full-thickness cutaneous wound model in rats and mice. It was demonstrated that wounds in rats covered with the FCD showed faster collagen (especially type I collagen) growth and speedier healing than those with Gauze (12 days versus 16 days). The ability of FCD to promote wound healing was also observed on wild-type (WT) mice. For MyD88-knockout mice, however, FCD displayed no beneficial but an adverse effect on wound healing: the healing time for wounds treated with FCD was even longer than those treated with gauze. Importantly, in vivo studies indicated that FCD-treated mice, compared to gauze-treated ones, exhibited markedly higher expressions of MyD88, IKBα, TGF-β, P-TβR II, TβR II and P-Smad2/3 in wild-type mice. For MyD88 knockout mice, however, the expressions of those molecules were inhibited and lowered in FCD-treated ones than those treated with gauze. In vitro studies confirmed that chitin increased the expression of TGF-β, P-TβRII and P-Smad2/3 while the expressions of those molecules were significantly inhibited with CD14 antibody (p < 0.05). These results indicated that FCD accelerated wound healing through a MyD88-dependent pathway, followed by a TGF-β/Smad pathway. This work not only demonstrated the superior wound healing effect of chitin-derived dressing, but also provided for the first time the underlying molecular mechanism, further establishing chitin as an important biomedical material for potential clinical applications.
Collapse
Affiliation(s)
- Zibiao Zhong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of, Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, 430071, China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Ferenčić A, Cuculić D, Stemberga V, Šešo B, Arbanas S, Jakovac H. Left ventricular hypertrophy is associated with overexpression of HSP60, TLR2, and TLR4 in the myocardium. Scand J Clin Lab Invest 2020; 80:236-246. [PMID: 32057259 DOI: 10.1080/00365513.2020.1725977] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Left ventricular hypertrophy is a common adaptive response to increased cardiac workload. Cardiomyocytes growth and increase in contractile force are conditioned by sufficient energy production, which implies appropriate mitochondrial function. The 60 kDa heat shock protein (HSP60) is a chaperone essential for mitochondrial proteostasis, but when translocates from mitochondria, it can also act as a potent inflammatory mediator binding to toll-like receptors (TLRs). In this study, we aimed to compare the expression pattern of HSP60, TLR2, and TLR4 in hypertrophic vs non-hypertrophic, normal human myocardium. We further examined whether HSP60 in situ binds to TLRs in hypertrophic myocardial tissue. In addition, expression of activated downstream targets of TLR 2/4 pathways was also evaluated.For this purpose, immunohistochemical expression analyses were performed on myocardial tissue samples obtained during the autopsy of human subjects in which left ventricular hypertrophy was the only cardiopathological finding and had died from sudden cardiac death, as well as from the subjects without any cardiac pathology, that died by unnatural death (accident or suicide). Double immunofluorescence was used to examine HSP60 translocation, while proximity ligation assay (PLA) was performed to assess HSP60 and TLRs interactions.Hypertrophic myocardium showed significantly higher expression of HSP60, TLR2, and TLR4 compared to normal myocardium. Furthermore, in hypertrophic cardiomyocytes, we found membrane translocation of HSP60 and signs of HSP60/TLR interactions.Conclusion: The obtained data point to an important supportive role of HSP60 in adaptive cardiomyocytes growth, while concomitant induction of TLR2 and TLR4 candidates HSP60-TLRs interactions as an early events during pathogenesis of secondary complications consequently to the left ventricular hypertrophy.
Collapse
Affiliation(s)
- Antun Ferenčić
- Department of Forensic Medicine and Criminalistics, University of Rijeka, Faculty of Medicine, Rijeka, Croatia
| | - Dražen Cuculić
- Department of Forensic Medicine and Criminalistics, University of Rijeka, Faculty of Medicine, Rijeka, Croatia
| | - Valter Stemberga
- Department of Forensic Medicine and Criminalistics, University of Rijeka, Faculty of Medicine, Rijeka, Croatia
| | - Bernard Šešo
- Department of Clinical, Health and Organisational Psychology, Clinical Hospital Centre Rijeka, Rijeka, Croatia
| | - Silvia Arbanas
- Department of Forensic Medicine and Criminalistics, University of Rijeka, Faculty of Medicine, Rijeka, Croatia
| | - Hrvoje Jakovac
- Department of Physiology and Immunology, University of Rijeka, Faculty of Medicine, Rijeka, Croatia
| |
Collapse
|
10
|
Chen J, Ma Q, King JS, Sun Y, Xu B, Zhang X, Zohrabian S, Guo H, Cai W, Li G, Bruno I, Cooke JP, Wang C, Kontaridis M, Wang DZ, Luo H, Pu WT, Lin Z. aYAP modRNA reduces cardiac inflammation and hypertrophy in a murine ischemia-reperfusion model. Life Sci Alliance 2020; 3:e201900424. [PMID: 31843959 PMCID: PMC6918510 DOI: 10.26508/lsa.201900424] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 02/06/2023] Open
Abstract
Myocardial recovery from ischemia-reperfusion (IR) is shaped by the interaction of many signaling pathways and tissue repair processes, including the innate immune response. We and others previously showed that sustained expression of the transcriptional co-activator yes-associated protein (YAP) improves survival and myocardial outcome after myocardial infarction. Here, we asked whether transient YAP expression would improve myocardial outcome after IR injury. After IR, we transiently activated YAP in the myocardium with modified mRNA encoding a constitutively active form of YAP (aYAP modRNA). Histological studies 2 d after IR showed that aYAP modRNA reduced cardiomyocyte (CM) necrosis and neutrophil infiltration. 4 wk after IR, aYAP modRNA-treated mice had better heart function as well as reduced scar size and hypertrophic remodeling. In cultured neonatal and adult CMs, YAP attenuated H2O2- or LPS-induced CM necrosis. TLR signaling pathway components important for innate immune responses were suppressed by YAP/TEAD1. In summary, our findings demonstrate that aYAP modRNA treatment reduces CM necrosis, cardiac inflammation, and hypertrophic remodeling after IR stress.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/administration & dosage
- Adaptor Proteins, Signal Transducing/genetics
- Animals
- Animals, Newborn
- Apoptosis/drug effects
- Cardiomegaly/drug therapy
- Cardiomegaly/etiology
- Cell Survival/drug effects
- Cells, Cultured
- Disease Models, Animal
- Humans
- Injections, Intramuscular
- Mice
- Mice, Inbred C57BL
- Myocardial Reperfusion Injury/complications
- Myocarditis/drug therapy
- Myocarditis/etiology
- Myocardium/immunology
- Myocytes, Cardiac/metabolism
- Neutrophil Infiltration/drug effects
- RNA Editing
- RNA, Messenger/administration & dosage
- RNA, Messenger/genetics
- Transcription Factors/administration & dosage
- Transcription Factors/genetics
- YAP-Signaling Proteins
Collapse
Affiliation(s)
- Jinmiao Chen
- Boston Children's Hospital, Boston, MA, USA
- Department of Cardiovascular Surgery and Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qing Ma
- Boston Children's Hospital, Boston, MA, USA
| | | | - Yan Sun
- Masonic Medical Research Institute, Utica, NY, USA
| | - Bing Xu
- Masonic Medical Research Institute, Utica, NY, USA
| | | | | | - Haipeng Guo
- Boston Children's Hospital, Boston, MA, USA
- Department of Critical Care Medicine, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, China
| | - Wenqing Cai
- Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA, USA
| | - Gavin Li
- Boston Children's Hospital, Boston, MA, USA
| | - Ivone Bruno
- Houston Methodist Research Institute, Houston, TX, USA
| | - John P Cooke
- Houston Methodist Research Institute, Houston, TX, USA
| | - Chunsheng Wang
- Department of Cardiovascular Surgery and Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital, Fudan University, Shanghai, China
| | | | | | - Hongbo Luo
- Boston Children's Hospital, Boston, MA, USA
| | - William T Pu
- Boston Children's Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Zhiqiang Lin
- Boston Children's Hospital, Boston, MA, USA
- Masonic Medical Research Institute, Utica, NY, USA
| |
Collapse
|
11
|
McCarty MF, Assanga SBI. Ferulic acid may target MyD88-mediated pro-inflammatory signaling - Implications for the health protection afforded by whole grains, anthocyanins, and coffee. Med Hypotheses 2018; 118:114-120. [PMID: 30037596 DOI: 10.1016/j.mehy.2018.06.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/27/2018] [Indexed: 01/08/2023]
Abstract
Higher dietary intakes of anthocyanins have been linked epidemiologically to decreased risk for metabolic syndrome, type 2 diabetes and cardiovascular events; clinical trials and rodent studies evaluating ingestion of anthocyanin-rich extracts confirm favorable effects of these agents on endothelial function and metabolic syndrome. However, these benefits of anthocyanins are lost in rats whose gut microbiome has been eliminated with antibiotic treatment - pointing to bacterial metabolites of anthocyanins as the likely protective agents. A human pharmacokinetic assessment of orally administered cyanidin-3-O-glucoside, a prominent anthocyanin, has revealed that, whereas this compound is minimally absorbed, ferulic acid (FA) is one of its primary metabolites that appears in plasma. FA is a strong antioxidant and phase 2 inducer that has exerted marked anti-inflammatory effects in a number of rodent and cell culture studies; in particular, FA is highly protective in rodent models of diet-induced weight gain and metabolic syndrome. FA, a precursor for lignan synthesis, is widely distributed in plant-based whole foods, mostly in conjugated form; whole grains are a notable source. Coffee ingestion boosts plasma FA owing to gastrointestinal metabolism of chlorogenic acid. Hence, it is reasonable to suspect that FA mediates some of the broad health benefits that have been associated epidemiologically with frequent consumption of whole grains, anthocyanins, coffee, and unrefined plant-based foods. The molecular basis of the anti-inflammatory effects of FA may have been clarified by a recent study demonstrating that FA can target the adaptor protein MyD88; this plays an essential role in pro-inflammatory signaling by most toll-like receptors and interleukin-1β. If feasible oral intakes of FA can indeed down-regulate MyD88-dependent signaling, favorable effects of FA on neurodegeneration, hypothalamic inflammation, weight gain, adipocyte and beta cell function, adiponectin secretion, vascular health, and cartilage and bone integrity can be predicted. Since FA is well tolerated, safe, and natural, it may have great potential as a protective nutraceutical, and clinical trials evaluating its effects are needed.
Collapse
Affiliation(s)
- Mark F McCarty
- Catalytic Longevity, 811 B Nahant Ct., San Diego, CA 92109, USA.
| | | |
Collapse
|
12
|
Abdullah M, Berthiaume JM, Willis MS. Tumor necrosis factor receptor-associated factor 6 as a nuclear factor kappa B-modulating therapeutic target in cardiovascular diseases: at the heart of it all. Transl Res 2018; 195:48-61. [PMID: 29175266 PMCID: PMC5898986 DOI: 10.1016/j.trsl.2017.10.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/17/2017] [Accepted: 10/30/2017] [Indexed: 02/06/2023]
Abstract
Inflammatory and immune signaling has been documented as a root cause of many cardiovascular pathologies. In this review, we explore the emerging role of tumor necrosis factor receptor-associated factor 6 (TRAF6)-nuclear factor kappa B (NF-κB) signaling axis in atherosclerosis, ischemic heart disease, pathologic cardiac hypertrophy or heart failure, myocarditis, and sepsis-induced cardiomyopathy. We discuss the current understanding of cardiac inflammation in heart disease, present the TRAF6 signaling axis in the heart, then summarize what is known about TRAF6 in pathophysiology of heart disease including proof-of-concept studies that identify the utility of blocking TRAF6 to attenuate cardiac dysfunction, which suggests that TRAF6 is a novel, druggable target in treating cardiovascular disease incurred by inflammatory processes.
Collapse
Affiliation(s)
- Muhammad Abdullah
- Department of Biochemistry, QuaidiAzam University, Islamabad, Pakistan; Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, NC
| | - Jessica M Berthiaume
- Department of Physiology & Biophysics, Case Western Reserve University, Cleveland, Ohio
| | - Monte S Willis
- Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, NC; Department of Pharmacology, University of North Carolina, Chapel Hill, NC.
| |
Collapse
|
13
|
Alvarez P, Briasoulis A. Immune Modulation in Heart Failure: the Promise of Novel Biologics. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2018. [DOI: 10.1007/s11936-018-0617-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|