1
|
Priya AK, Muruganandam M, Suresh S. Bio-derived carbon-based materials for sustainable environmental remediation and wastewater treatment. CHEMOSPHERE 2024; 362:142731. [PMID: 38950744 DOI: 10.1016/j.chemosphere.2024.142731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 05/22/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024]
Abstract
Biosynthesized nanocomposites, particularly those incorporating carbon-based materials, exhibit exceptional tunability and multifunctionality, surpassing the capabilities of conventional materials in these aspects. Developing practical solutions is critical to address environmental toxins from pharmaceuticals, heavy metals, pesticides, and dyes. Biomass waste is a readily available carbon source, which emerges as a promising material for producing biochar due to its inherent advantages: abundance, low cost, and environmentally friendly nature. This distribution mainly uses carbon-based materials (CBMs) and biomass waste in wastewater treatment. This review paper investigates several CBM types, including carbon aerogels, nanotubes, graphene, and activated carbon. The development of bio-derived carbon-based nanomaterials are discussed, along with the properties and composition of carbon materials derived from biomass waste and various cycles, such as photodegradation, adsorption, and high-level oxidation processes for natural remediation. In conclusion, this review examines the challenges associated with biochar utilization, including cost, recovery, and practical implementation.
Collapse
Affiliation(s)
- A K Priya
- Project Prioritization, Monitoring & Evaluation, and Knowledge Management Unit, ICAR Indian Institute of Soil & Water Conservation (ICAR-IISWC), Dehradun, India; Department of Chemical Engineering, KPR Institute of Engineering and Technology, Tamilnadu, India
| | - M Muruganandam
- Project Prioritization, Monitoring & Evaluation, and Knowledge Management Unit, ICAR Indian Institute of Soil & Water Conservation (ICAR-IISWC), Dehradun, India
| | - Sagadevan Suresh
- Nanotechnology & Catalysis Research Centre, Universiti Malaya, Kuala Lumpur, 50603, Malaysia; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, 603103, India.
| |
Collapse
|
2
|
Ahtasham Iqbal M, Akram S, Khalid S, Lal B, Hassan SU, Ashraf R, Kezembayeva G, Mushtaq M, Chinibayeva N, Hosseini-Bandegharaei A. Advanced photocatalysis as a viable and sustainable wastewater treatment process: A comprehensive review. ENVIRONMENTAL RESEARCH 2024; 253:118947. [PMID: 38744372 DOI: 10.1016/j.envres.2024.118947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/14/2024] [Accepted: 04/14/2024] [Indexed: 05/16/2024]
Abstract
In our era, water pollution not only poses a serious threat to human, animal, and biotic life but also causes serious damage to infrastructure and the ecosystem. A set of physical, chemical, and biological technologies have been exploited to decontaminate and/or disinfect water pollutants, toxins, microbes, and contaminants, but none of these could be ranked as sustainable and scalable wastewater technology. The photocatalytic process can harmonize the sunlight to degrade certain toxins, chemicals, microbes, and antibiotics, present in water. For example, transition metal oxides (ZnO, SnO2, TiO2, etc.), when integrated into an organic framework of graphene or nitrides, can bring about more than 90% removal of dyes, microbial load, pesticides, and antibiotics. Similarly, a modified network of graphitic carbon nitride can completely decontaminate petrochemicals. The present review will primarily highlight the mechanistic aspects for the removal and/or degradation of highly concerned contaminants, factors affecting photocatalysis, engineering designs of photoreactors, and pros and cons of various wastewater treatment technologies already in practice. The photocatalytic reactor can be a more viable and sustainable wastewater treatment opportunity. We hope the researcher will find a handful of information regarding the advanced oxidation process accomplished via photocatalysis and the benefits associated with the photocatalytic-type degradation of water pollutants and contaminants.
Collapse
Affiliation(s)
| | - Sumia Akram
- Division of Science and Technology, University of Education Lahore, Pakistan
| | - Shahreen Khalid
- Department of Chemistry, Government College University Lahore, Pakistan
| | - Basant Lal
- Department of Chemistry, Institute of Applied Science and Humanities, GLA University, Mathura, 281406, India
| | - Sohaib Ul Hassan
- Department of Irrigation & Drainage, University of Agriculture, Faisalabad, Pakistan
| | - Rizwan Ashraf
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Gulmira Kezembayeva
- Mining and Metallurgical Institute Named After O.A. Baikonurov, Department Chemical Processes and Industrial Ecology, Satbayev University, Almaty, Kazakhstan
| | - Muhammad Mushtaq
- Department of Chemistry, Government College University Lahore, Pakistan.
| | | | - Ahmad Hosseini-Bandegharaei
- Faculty of Chemistry, Semnan University, Semnan, Iran; Centre of Research Impact and Outcome, Chitkara University, Rajpura-140417, Punjab, India; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai-602105, Tamil Nadu, India.
| |
Collapse
|
3
|
Gomathi A, Priyadharsan A, Handayani M, Kumar KAR, Saranya K, Kumar AS, Srividhya B, Murugesan K, Maadeswaran P. Pioneering superior efficiency in Methylene blue and Rhodamine b dye degradation under solar light irradiation using CeO 2/Co 3O 4/g-C 3N 4 ternary photocatalysts. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124125. [PMID: 38461561 DOI: 10.1016/j.saa.2024.124125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/21/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
In this research work, we have successfully synthesized the CeO2/Co3O4/g-C3N4 ternary nanocomposite for hydrothermal method for photocatalytic applications. The synthesized nanocomposites were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Field emission scanning electron microscopy (FE-SEM), Transmission electron microscopy TEM, Photoluminescent spectra (PL), X-ray photoelectron spectroscopy (XPS), Brunauer- Emmett-Teller (BET) and Ultraviolet diffuse reflectance spectroscopy (UV-DRS) technique. As per the optical spectroscopic investigations CeO2/Co3O4/g-C3N4 ternary nanocomposite exhibited the high optical absorption range and its band gap is reduced from 2.95 eV to1.83 eV. The PL spectra showed the lowered emission peak intensity of ternary nanocomposite which is revealed that the better charge separation and slow recombination of electron hole pairs. The highest photocatalytic degradation efficiency of CeO2/Co3O4/g-C3N4 ternary nanocomposite showed 93 % and 86 % towards the pollutant methylene blue and Rhodamine B. Moreover, photodegradation of the pollutants followed pseudo-first order kinetics with a very high-rate constant of 0.02211 min-1 and 0.017756 min-1. Additionally, the ternary nano catalyst was delivered the remarkable stability performance even after five cycles. This research may provide a low-cost approach for synthesized visible light responsive catalysts for use in environmental remediation applications.
Collapse
Affiliation(s)
- Abimannan Gomathi
- Advanced Nanomaterials and Energy Research Laboratory, Department of Energy Science and Technology, Periyar University, Salem 636011, Tamil Nadu, India
| | - Arumugam Priyadharsan
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600 077, Tamil Nadu, India; Research Center for Nanotechnology Systems, National Research and Innovation Agency (BRIN), Puspiptek Area, Tangerang Selatan, Banten 15314, Indonesia
| | - Murni Handayani
- Research Center for Nanotechnology Systems, National Research and Innovation Agency (BRIN), Puspiptek Area, Tangerang Selatan, Banten 15314, Indonesia
| | - K A Ramesh Kumar
- Advanced Bioenergy and Biofuels Research Laboratory, Department of Energy Science and Technology, Periyar University, Salem 636011, Tamil Nadu, India
| | - K Saranya
- Department of Physics, Government College of Engineering, Thanjavur 613402, Tamil Nadu, India
| | - A Senthil Kumar
- Department of Applied Science, PSG College of Technology, Coimbatore 641004, Tamilnadu, India
| | - Balakrishnan Srividhya
- Department of Chemistry, KSR College of Technology, Tiruchengode 637 215, Tamil Nadu, India
| | - K Murugesan
- Department of Environmental Science, Periyar University, Salem 636 011, Tamil Nadu, India
| | - Palanisamy Maadeswaran
- Advanced Nanomaterials and Energy Research Laboratory, Department of Energy Science and Technology, Periyar University, Salem 636011, Tamil Nadu, India.
| |
Collapse
|
4
|
Chen Z, Feng M, Wang Y, Ling X. Comparison of treatment performance and microbial community evolution of typical dye wastewater by different combined processes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116226. [PMID: 38537479 DOI: 10.1016/j.ecoenv.2024.116226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/12/2024]
Abstract
The degradation of typical dye wastewater is a focus of research in the printing and dyeing industry. In this study, a combined micro-electrolysis and microbial treatment method was established to treat refractory dye wastewater, and the pivotal factors in the microbial treatment were optimized. In the series and coupled modes, the removal rates of chroma reached 98.75% and 92.50%, and the removal rates of chemical oxygen demand (COD) reached 96.17% and 82.29%, respectively. The high-throughput sequencing results showed that the microbial communities in the microbial system varied at different treatment stages. From the culture stage to the domestication stage, the dominant phylum was Proteobacteria; however, the community abundance of microorganisms decreased. A combination of micro-electrolysis and biological methods can alter the characteristics of the microbial community, increase the number of dominant phyla, and increase the abundance of microorganisms. The degradation effect of the series mode and the overall strengthening effect of micro-electrolysis on the microorganisms were better than those of the coupled mode. In actual wastewater, the maximum removal rates of chroma, COD, total nitrogen (TN), ammonia nitrogen (NH3-N), and total phosphorus (TP) are 97.50%, 98.90%, 94.35%, 93.95%, and 91.17%, respectively. Three-dimensional fluorescence spectrum analysis showed that microbial processes could significantly degrade fluorescent components in wastewater, and methanogenic active enzymes in anaerobic processes could continue to react. The combined process can realize the efficient treatment of toxic dye wastewater by reducing the toxicity of wastewater and efficiently degrading organic matter, which has important guiding significance for the treatment of refractory dye wastewater.
Collapse
Affiliation(s)
- Zhihao Chen
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, Shaanxi 710048, China
| | - Minquan Feng
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, Shaanxi 710048, China
| | - Yibo Wang
- School of Environment and Chemical Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China.
| | - Xiaohui Ling
- School of Environment and Chemical Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
| |
Collapse
|
5
|
Lemecho B, Andoshe DM, Gultom NS, Abdullah H, Kuo DH, Chen X, Desissa TD, Wondimageng DT, Wu YN, Zelekew OA. Biological Renewable Cellulose-Templated Zn 1-XCu XO/Ag 2O Nanocomposite Photocatalysts for the Degradation of Methylene Blue. ACS OMEGA 2024; 9:13714-13727. [PMID: 38559997 PMCID: PMC10975585 DOI: 10.1021/acsomega.3c08051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/25/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
Herein, Cellulose-templated Zn1-XCuXO/Ag2O nanocomposites were prepared using biological renewable cellulose extracted from water hyacinth (Eichhornia crassipes). Cellulose-templated Cu-doped ZnO catalysts with different amounts of Cu as the dopants (1, 2, 3, and 4%) were prepared and denoted CZ-1, CZ-2, CZ-3, and CZ-4, respectively, for simplicity. The prepared catalysts were tested for the degradation of methylene blue (MB), and 2% Cu-doped ZnO (CZ-2) showed the best catalytic performance (82%), while the pure ZnO, CZ-1, CZ-3, and CZ-4 catalysts exhibited MB dye degradation efficiencies of 54, 63, 65, and 60%, respectively. The best catalyst (CZ-2) was chosen to further improve the degradation efficiency. Different amounts of AgNO3 (10, 15, 30, and 45 mg) were used for the deposition of Ag2O on the surface of CZ-2 and denoted CZA-10, CZA-15, CZA-30, and CZA-45, respectively. Among the composite catalysts, CZA-15 showed remarkable degradation efficiency and degraded 94% of MB, while the CZA-10, CZA-30, and CZA-45 catalysts showed 90, 81, and 79% degradation efficiencies, respectively, under visible light within 100 min of irradiation. The enhanced catalytic performance could be due to the smaller particle size, the higher electron and hole separation and charge transfer efficiencies, and the lower agglomeration in the composite catalyst system. The results also demonstrated that the Cu-doped ZnO prepared with cellulose as a template, followed by the optimum amount of Ag2O deposition, could have promising applications in the degradation of organic pollutants.
Collapse
Affiliation(s)
- Biruktait
Ayele Lemecho
- Department
of Materials Science and Engineering, Adama
Science and Technology University, Adama 1888, Ethiopia
| | - Dinsefa Mensur Andoshe
- Department
of Materials Science and Engineering, Adama
Science and Technology University, Adama 1888, Ethiopia
| | - Noto Susanto Gultom
- Department
of Materials Science and Engineering, National
Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Hairus Abdullah
- Department
of Materials Science and Engineering, National
Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Dong-Hau Kuo
- Department
of Materials Science and Engineering, National
Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Xiaoyun Chen
- College
of Materials Engineering, Fujian Agriculture
and Forestry University, Fuzhou 350002, China
| | - Temesgen D. Desissa
- Department
of Materials Science and Engineering, Adama
Science and Technology University, Adama 1888, Ethiopia
| | - Demeke Tesfaye Wondimageng
- Department
of Materials Science and Engineering, Adama
Science and Technology University, Adama 1888, Ethiopia
| | - Yi-nan Wu
- College
of Environmental Science and Engineering, State Key Laboratory of
Pollution Control and Resource Reuse, Tongji
University, 1239 Siping Rd., Shanghai 200092, China
- Shanghai
Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Osman Ahmed Zelekew
- Department
of Materials Science and Engineering, Adama
Science and Technology University, Adama 1888, Ethiopia
| |
Collapse
|
6
|
Oliveira EM, Rodrigues A, Santos JS, Trivinho-Strixino F, Dalla Costa da Rocha R, Sikora MS. Effluent toxicity study using biomarkers for ciprofloxacin photoelectrocatalytic degradation by bismuth-doped titanium dioxide nanotubes. ENVIRONMENTAL TECHNOLOGY 2023:1-13. [PMID: 38158753 DOI: 10.1080/09593330.2023.2298664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024]
Abstract
Ciprofloxacin hydrochloride (CIP) is a broad-spectrum synthetic antibiotic often found in domestic sewage and industrial waste due to the inefficiency of conventional treatments. Given the potential risk of drug accumulation, this study presents coatings of titanium dioxide nanotubes (TiO2) doped with different bismuth (Bi) concentrations to degrade CIP through photocatalytic and photoelectrochemical processes. Characterization studies revealed that bismuth (Bi) doping affected the morphology of the materials, with concentrations of 0.01 and 0.05 mol L-1, resulting in collapsed materials with a smaller active surface area. Photocatalysis tests for all the materials exhibited a similar degree of efficiency to photolysis, approximately 33%. Ecotoxicity tests using the biomarkers Lactuca sativa L., Lemna minor, and Artemia salina indicated that, although they were similar to photolysis in terms of efficiency, the effluents generated when employing the doped catalysts showed lower levels of toxicity, with the best results achieved for the material doped with 0.005 mol L-1 of Bi, with a toxicity level approximately 40% lower. Photoelectrocatalysis proved to be the most efficient CIP degradation technique. The highest degradation rate was observed for materials doped with 0.005 mol L-1 of Bi, with an efficiency of 46%, which is 1.4 times more efficient than photolysis. These results demonstrate that materials doped with low amounts of Bi can be effectively used as photoanodes for drug degradation, as their performance is superior, and the final product generated exhibits low toxicity to living organisms.
Collapse
Affiliation(s)
- E M Oliveira
- Department of Chemistry, Federal University of Technology - Paraná (UTFPR), Pato Branco, Brazil
- Midwestern Parana State University (UNICENTRO), Guarapuava, Brazil
| | - A Rodrigues
- Department of Physics, Chemistry, and Mathematics, Federal University of São Carlos (UFSCar), Sorocaba, Brazil
| | - J S Santos
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - F Trivinho-Strixino
- Department of Physics, Chemistry, and Mathematics, Federal University of São Carlos (UFSCar), Sorocaba, Brazil
| | - R Dalla Costa da Rocha
- Department of Chemistry, Federal University of Technology - Paraná (UTFPR), Pato Branco, Brazil
| | - M S Sikora
- Department of Chemistry, Federal University of Technology - Paraná (UTFPR), Pato Branco, Brazil
- Midwestern Parana State University (UNICENTRO), Guarapuava, Brazil
| |
Collapse
|
7
|
Moruzzi F, Zhang W, Purushothaman B, Gonzalez-Carrero S, Aitchison CM, Willner B, Ceugniet F, Lin Y, Kosco J, Chen H, Tian J, Alsufyani M, Gibson JS, Rattner E, Baghdadi Y, Eslava S, Neophytou M, Durrant JR, Steier L, McCulloch I. Solution-processable polymers of intrinsic microporosity for gas-phase carbon dioxide photoreduction. Nat Commun 2023; 14:3443. [PMID: 37301872 DOI: 10.1038/s41467-023-39161-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Four solution-processable, linear conjugated polymers of intrinsic porosity are synthesised and tested for gas phase carbon dioxide photoreduction. The polymers' photoreduction efficiency is investigated as a function of their porosity, optical properties, energy levels and photoluminescence. All polymers successfully form carbon monoxide as the main product, without the addition of metal co-catalysts. The best performing single component polymer yields a rate of 66 μmol h-1 m-2, which we attribute to the polymer exhibiting macroporosity and the longest exciton lifetimes. The addition of copper iodide, as a source of a copper co-catalyst in the polymers shows an increase in rate, with the best performing polymer achieving a rate of 175 μmol h-1 m-2. The polymers are active for over 100 h under operating conditions. This work shows the potential of processable polymers of intrinsic porosity for use in the gas phase photoreduction of carbon dioxide towards solar fuels.
Collapse
Affiliation(s)
- Floriana Moruzzi
- Department of Chemistry, Oxford University, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Weimin Zhang
- KAUST Solar Centre, King Abdullah University of Science and Technology (KAUST), 23955, Thuwal, Kingdom of Saudi Arabia
| | - Balaji Purushothaman
- KAUST Solar Centre, King Abdullah University of Science and Technology (KAUST), 23955, Thuwal, Kingdom of Saudi Arabia
| | - Soranyel Gonzalez-Carrero
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, 80 Wood Lane, London, W12 7TA, UK
| | - Catherine M Aitchison
- Department of Chemistry, Oxford University, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Benjamin Willner
- Department of Chemistry, Oxford University, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Fabien Ceugniet
- Department of Chemistry, Oxford University, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Yuanbao Lin
- Department of Chemistry, Oxford University, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Jan Kosco
- KAUST Solar Centre, King Abdullah University of Science and Technology (KAUST), 23955, Thuwal, Kingdom of Saudi Arabia
| | - Hu Chen
- School of Physical Sciences, Great Bay University, Dongguan, 523000, China
| | - Junfu Tian
- Department of Chemistry, Oxford University, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Maryam Alsufyani
- Department of Chemistry, Oxford University, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Joshua S Gibson
- Henry Royce Institute Oxford Centre for Energy Materials Research, Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
| | - Ed Rattner
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Yasmine Baghdadi
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Salvador Eslava
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Marios Neophytou
- KAUST Solar Centre, King Abdullah University of Science and Technology (KAUST), 23955, Thuwal, Kingdom of Saudi Arabia
| | - James R Durrant
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, 80 Wood Lane, London, W12 7TA, UK
| | - Ludmilla Steier
- Department of Chemistry, Oxford University, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Iain McCulloch
- Department of Chemistry, Oxford University, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
8
|
Harun-Ur-Rashid M, Pal K, Imran AB. Hybrid Nanocomposite Fabrication of Nanocatalyst with Enhanced and Stable Photocatalytic Activity. Top Catal 2023. [DOI: 10.1007/s11244-023-01809-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
9
|
Photocatalytic degradation of Indigo Carmine using aluminum-doped titanium dioxide/zinc ferrite nanocomposite under visible light. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2023. [DOI: 10.1007/s13738-022-02671-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
10
|
Review on Metal Chalcogenides and Metal Chalcogenide-Based Nanocomposites in Photocatalytic Applications. CHEMISTRY AFRICA 2023. [DOI: 10.1007/s42250-022-00577-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
11
|
de Moraes NP, de Siervo A, Silva TO, da Silva Rocha R, Reddy DA, Lianqing Y, de Vasconcelos Lanza MR, Rodrigues LA. Kraft lignin-based carbon xerogel/zinc oxide composite for 4-chlorophenol solar-light photocatalytic degradation: effect of pH, salinity, and simultaneous Cr(VI) reduction. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:8280-8296. [PMID: 36050554 DOI: 10.1007/s11356-022-22825-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Considering the ever-increasing need for efficient wastewater treatment, this study focused on the development of new kraft lignin-based carbon xerogel/zinc oxide (XCL/ZnO w) photocatalysts. The inclusion of the carbon xerogel is expected to cause an improvement in charge transfer throughout the photoactivation process, consequently enhancing its overall photocatalytic efficiency. Characterization shows that the materials developed are composed of both zinc oxide and carbon xerogel. The addition of the lignin-based carbon xerogel caused a significant morphological modification to the composite materials, resulting in a greater specific surface area. Regarding the photocatalytic efficiency, the optimized composite (XCL/ZnO 1.0) displayed superior efficiency to the pure zinc oxide, especially when calcined at 700 °C, with an increase of 20% in the overall photodegradation capacity for the 4-chlorophenol (4CP) molecule. The XCL/ZnO 1.0 also displayed better performance than its tannin counterpart, previously reported in the literature, obtaining a 60% increase in the apparent reaction rate constant. The XCL/ZnO 1.0 also displayed better performance for the simultaneous hexavalent chrome (Cr (VI)) reduction/4CP oxidation reaction. Salinity and system pH had a significant influence on the efficiency of the 4CP photodegradation, as higher values of salinity and lower pHs caused a decrease in the overall efficiency of the process. At last, chronoamperometry and open-circuit potential tests confirmed the superiority of the XCL/ZnO 1.0 over the pure ZnO, highlighting the beneficial impact of the carbon xerogel on the charge transport dynamics of the composite.
Collapse
Affiliation(s)
- Nicolas Perciani de Moraes
- Escola de Engenharia de Lorena-EEL/USP, Estrada Municipal Do Campinho S/N, CEP, Lorena, São Paulo, 12602-810, Brazil
| | - Abner de Siervo
- Applied Physics Department, Institute of Physics "Gleb Wataghin", State University of Campinas, Campinas, SP, 13083-859, Brazil
| | - Taynara Oliveira Silva
- Instituto de Química de São Carlos, Universidade de São Paulo, Av. Trab. São Carlense, 400 - Parque Arnold Schimidt, São Carlos, SP, 13566-590, Brazil
| | - Robson da Silva Rocha
- Escola de Engenharia de Lorena-EEL/USP, Estrada Municipal Do Campinho S/N, CEP, Lorena, São Paulo, 12602-810, Brazil
| | - D Amaranatha Reddy
- Department of Sciences, Indian Institute of Information Technology Design and Manufacturing, Kurnool, Andhra Pradesh, 518007, India
| | - Yu Lianqing
- School of Materials Science and Engineering, China University of Petroleum, QingDao, 266580, China
| | - Marcos Roberto de Vasconcelos Lanza
- Instituto de Química de São Carlos, Universidade de São Paulo, Av. Trab. São Carlense, 400 - Parque Arnold Schimidt, São Carlos, SP, 13566-590, Brazil
| | - Liana Alvares Rodrigues
- Escola de Engenharia de Lorena-EEL/USP, Estrada Municipal Do Campinho S/N, CEP, Lorena, São Paulo, 12602-810, Brazil.
| |
Collapse
|
12
|
BiFeO3-based Z scheme photocatalytic systems: Advances, mechanism, and applications. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Khan J, Sun Y, Han L. A Comprehensive Review on Graphitic Carbon Nitride for Carbon Dioxide Photoreduction. SMALL METHODS 2022; 6:e2201013. [PMID: 36336653 DOI: 10.1002/smtd.202201013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/10/2022] [Indexed: 06/16/2023]
Abstract
Inspired by natural photosynthesis, harnessing the wide range of natural solar energy and utilizing appropriate semiconductor-based catalysts to convert carbon dioxide into beneficial energy species, for example, CO, CH4 , HCOOH, and CH3 COH have been shown to be a sustainable and more environmentally friendly approach. Graphitic carbon nitride (g-C3 N4 ) has been regarded as a highly effective photocatalyst for the CO2 reduction reaction, owing to its cost-effectiveness, high thermal and chemical stability, visible light absorption capability, and low toxicity. However, weaker electrical conductivity, fast recombination rate, smaller visible light absorption window, and reduced surface area make this catalytic material unsuitable for commercial photocatalytic applications. Therefore, certain procedures, including elemental doping, structural modulation, functional group adjustment of g-C3 N4 , the addition of metal complex motif, and others, may be used to improve its photocatalytic activity towards effective CO2 reduction. This review has investigated the scientific community's perspectives on synthetic pathways and material optimization approaches used to increase the selectivity and efficiency of the g-C3 N4 -based hybrid structures, as well as their benefits and drawbacks on photocatalytic CO2 reduction. Finally, the review concludes a comparative discussion and presents a promising picture of the future scope of the improvements.
Collapse
Affiliation(s)
- Javid Khan
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Adv. Mater. and Technology for Clean Energy, Hunan University, Changsha, 410082, China
| | - Yanyan Sun
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Lei Han
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Adv. Mater. and Technology for Clean Energy, Hunan University, Changsha, 410082, China
| |
Collapse
|
14
|
Lilly R, Prabhakaran S, Giridharan K, Sambandam P, Stalin B, Subhashini SJ, Nagaprasad N, Jule LT, Ramaswamy K. Efficiency of Ferritin bio-nanomaterial in reducing the pollutants level of water in the underground corridors of metro rail using GIS. Sci Rep 2022; 12:20301. [PMID: 36434051 PMCID: PMC9700854 DOI: 10.1038/s41598-022-24626-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022] Open
Abstract
The underground developments are likely to deteriorate the water quality, which causes damage to the structure. The pollutant levels largely affect the aquifer properties and alter the characteristics of the water quality. Ferritin nanoparticle usage proves to be an effective technology for reducing the pollutant level of the salts, which are likely to affect the underground structure. The observation wells are selected around the underground Metro Rail Corridor, and the secondary observation wells are selected around the corridors. Ferritin is a common iron storage protein as a powder used in the selected wells identified in the path of underground metro rail corridors. Water sampling was done to assess the water quality in the laboratory. The water quality index plots for the two phases (1995-2008) and (2009-2014) using GIS explains the water quality scenario before and after the Ferritin treatment. The Ferritin treatment in water was very effective in reducing the pollutants level of Fluoride and sulphate salts which is likely to bring damage to the structure.
Collapse
Affiliation(s)
- R. Lilly
- grid.444519.90000 0004 1755 8086Department of Naval Architecture and Offshore Engineering, Academy of Maritime Education and Training, Chennai, Tamil Nadu 603112 India
| | - S. Prabhakaran
- grid.444519.90000 0004 1755 8086Department of Marine Engineering, Academy of Maritime Education and Training, Chennai, Tamil Nadu 603112 India
| | - K. Giridharan
- grid.252262.30000 0001 0613 6919Department of Mechanical Engineering, Easwari Engineering College, Chennai, Tamil Nadu 600089 India
| | - Padmanabhan Sambandam
- grid.464713.30000 0004 1777 5670School of Mechanical and Construction, Vel Tech Rangarajan Dr.Sagunthala R&D Institute of Science and Technology, Chennai, Tamil Nadu 600062 India
| | - B. Stalin
- grid.252262.30000 0001 0613 6919Department of Mechanical Engineering, Anna University, Regional Campus Madurai, Madurai, Tamil Nadu 625 019 India
| | - S. J. Subhashini
- grid.444541.40000 0004 1764 948XDepartment of Computer Science and Engineering, School of Computing, Kalasalingam Academy of Research and Education (Deemed to be University), Virdhunagar, Tamil Nadu 626126 India
| | - N. Nagaprasad
- Department of Mechanical Engineering, ULTRA College of Engineering and Technology, Madurai, Tamil Nadu 625 104 India
| | - Leta Tesfaye Jule
- Centre for Excellence-Indigenous Knowledge, Innovative Technology Transfer and Entrepreneurship, Dambi Dollo University, Dembi Dolo, Ethiopia ,Department of Physics, College of Natural and Computational Science, Dambi Dollo University, Dembi Dolo, Ethiopia
| | - Krishnaraj Ramaswamy
- Centre for Excellence-Indigenous Knowledge, Innovative Technology Transfer and Entrepreneurship, Dambi Dollo University, Dembi Dolo, Ethiopia ,Department of Mechanical Engineering, Dambi Dollo University, Dembi Dolo, Ethiopia
| |
Collapse
|
15
|
Purabgola A, Mayilswamy N, Kandasubramanian B. Graphene-based TiO 2 composites for photocatalysis & environmental remediation: synthesis and progress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:32305-32325. [PMID: 35137316 DOI: 10.1007/s11356-022-18983-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Photoactive nanomaterials constitute an emerging field in nanotechnology, finding an extensive array of applications spanning diverse areas, including electronics and photovoltaic devices, solar fuel cells, wastewater treatment, etc. Titanium dioxide (TiO2), in its thin-film form, has been exhaustively surveyed as potential photocatalysts for environmental remediation owing to its innocuousness, stability, and photocatalytic characteristics when subjected to ultraviolet (UV) irradiation. However, TiO2 has some shortcomings associated with a large bandgap value of around 3.2 eV, making it less efficient in the visible spectral range. TiO2 is often consolidated with various carbon nanomaterials to overcome this limitation and enhance its efficiency. Graphene, a 2-dimensional allotrope of carbon with a bandgap tuned between 0 and 0.25 eV, exhibits unique properties, making it an attractive candidate to augment the photoactivity of semiconductor (SC) oxides. Encapsulating graphene oxide onto TiO2 nanospheres demonstrates intensified photocatalytic properties and exceptional recyclability for the degeneration of certain dyes, including Rhodamine B. This review encompasses various techniques to synthesize graphene-based TiO2 photoactive composites, emphasizing graphene capsulized hollow titania nanospheres, nanofibers, core/shell, and reduced graphene oxide-TiO2-based nanocomposites. It also consolidates the application of the aforestated nanocomposites for the disintegration of various synthetic dyes, proving efficacious for water decontamination and degradation of chemicals and pharmaceuticals. Furthermore, graphene-based TiO2 nanocomposites used as lithium (Li)-ion batteries manifesting substantial electrochemical performance and solar fuel cells for energy production are discussed here.
Collapse
Affiliation(s)
- Anushka Purabgola
- Centre for Converging Technologies, University of Rajasthan, Jaipur, 302004, Rajasthan, India
| | - Neelaambhigai Mayilswamy
- Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune, 411025, Maharashtra, India
| | - Balasubramanian Kandasubramanian
- Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune, 411025, Maharashtra, India.
| |
Collapse
|
16
|
Photocatalytic Degradation of Sulfamethoxazole, Nitenpyram and Tetracycline by Composites of Core Shell g-C 3N 4@ZnO, and ZnO Defects in Aqueous Phase. NANOMATERIALS 2021; 11:nano11102609. [PMID: 34685050 PMCID: PMC8540673 DOI: 10.3390/nano11102609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 11/17/2022]
Abstract
The synthesis of photocatalysts with high charge separation and transfer efficiency are of immense significance in the process of using photocatalysis technology for wastewater treatment. In this study core shell g-C3N4@ZnO, and ZnO defects photocatalysts presented an improved morphology in its characterization using techniques such as SEM, DRS, PL, MS, EIS, and XRD, and enhanced photodegradation of sulfamethoxazole, Nitenpyram and Tetracycline. Different composites were obtained as confirmed by the various characterization techniques studied, including core shell g-C3N4@ZnO, and ZnO defects photocatalyst. The synthesized photocatalysts showed high visible light absorption efficiency within a range of ~655 to 420 nm. Core shell g-C3N4@ZnO, and ZnO defects photocatalysts demonstrated high photocatalytic activity ascribed to high load separation and transition as shown in PL, Photocurrent reaction and EIS. It is understandable that core shell g-C3N4@ZnO, and ZnO defects photocatalysts have been confirmed to be one of the ultimate promising entrants for photocatalyst scheming.
Collapse
|
17
|
Safa S, Ghaneian MT, Ehrampoush MH. Enhanced photocatalytic activity of efficient magnetically recyclable core-shell nanocomposites on 2,2',4,4',5,5'-hexachlorobiphenyl (PCB 153) degradation under UV-LED irradiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:54679-54694. [PMID: 34013417 DOI: 10.1007/s11356-021-14202-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
The congener polychlorinated biphenyls (PCBs) are one of the of persistent organic pollutant compounds that increase lifestyle-related diseases, such as diabetes, obesity, and cancer. So, 2,2',4,4',5,5'-hexachlorobiphenyl (PCB153), which is one of the most common PCB contaminants in nature, was selected as a model compound to study the photocatalytic degradation of Fe3O4@SiO2@TiO2 core-shell structure. In this work, Fe3O4@SiO2@TiO2 nanocomposite was synthesized and characterized using transmission electron microscopy (TEM), UV-Vis diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), energy-dispersive X-ray (EDS), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and vibrating sample magnetometer (VSM) techniques. Then, the effect of parameters such as catalyst dosage, initial concentration of PCB 153, solution pH, amount of H2O2, and kind of co-solvent on photocatalytic degradation of PCB 153 by the synthesized nanocomposite was investigated. The high degradation efficiency of Fe3O4@SiO2@TiO2 nanocomposite, which was 96.5%, was obtained at 4 g/l of the catalysts, 4 ppm of PCB 153, pH 5, 20 mM H2O2, 2 h of reaction time, and acetone as a cosolvent. Also, the rate of mineralization for Fe3O4@SiO2@TiO2 nanocomposite with H2O2 and UV-LED irradiation was 75.3% which had a significant efficiency compared to control experiments. Moreover, the mentioned photocatalysts are possible to be reused through exposing to external magnetic field, with insignificant decrease in the catalytic activity even after 6 cycles. The photocatalytic degradation process has an effective and environmental friendly effect on the degradation of organic pollutants.
Collapse
Affiliation(s)
- Sorur Safa
- Department of Environmental Health Engineering, International Campus of Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Mohammad Taghi Ghaneian
- Environmental Sciences and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Hassan Ehrampoush
- Environmental Sciences and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
18
|
Son BT, Long NV, Nhat Hang NT. Fly ash-, foundry sand-, clay-, and pumice-based metal oxide nanocomposites as green photocatalysts. RSC Adv 2021; 11:30805-30826. [PMID: 35498918 PMCID: PMC9041310 DOI: 10.1039/d1ra05647f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
Metal oxides possess exceptional physicochemical properties which make them ideal materials for critical photocatalytic applications. However, of major interest, their photocatalytic applications are hampered by several drawbacks, consisting of prompt charge recombination of charge carriers, low surface area, inactive under visible light, and inefficient as well as expensive post-treatment recovery. The immobilization of metal oxide semiconductors on materials possessing high binding strength eliminates the impractical and costly recovery of spent catalysts in large-scale operations. Notably, the synthesis of green material (ash, clay, foundry sand, and pumice)-based metal oxides could provide a synergistic effect of the superior adsorption capacity of supporting materials and the photocatalytic activity of metal oxides. This phenomenon significantly improves the overall degradation efficiency of emerging pollutants. Inspired by the novel concept of "treating waste with waste", this contribution highlights recent advances in the utilization of natural material (clay mineral and pumice)- and waste material (ash and foundry sand)-based metal oxide nanocomposites for photodegradation of various pollutants. First, principles, mechanism, challenges towards using metal oxide as photocatalysts, and immobilization techniques are systematically summarized. Then, sources, classifications, properties, and chemical composition of green materials are briefly described. Recent advances in the utilization of green materials-based metal oxide composites for the photodegradation of various pollutants are highlighted. Finally, in the further development of green materials-derived photocatalysts, we underlined the current gaps that are worthy of deeper research in the future.
Collapse
Affiliation(s)
- Bui Thanh Son
- Nanotechnology, Thu Dau Mot University Binh Duong Province Vietnam
| | - Nguyen Viet Long
- Nanotechnology, Thu Dau Mot University Binh Duong Province Vietnam
| | | |
Collapse
|
19
|
Gadore V, Ahmaruzzaman M. Fly ash-based nanocomposites: a potential material for effective photocatalytic degradation/elimination of emerging organic pollutants from aqueous stream. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:46910-46933. [PMID: 34263399 DOI: 10.1007/s11356-021-15251-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Fly ash is readily available and cheaply generated as 47a by-product of the combustion of organic matter. A tremendous amount of fly ash is generated worldwide, and its disposal has imposed 47a severe environmental concern. Its good adsorption capacities attracted several researchers to study the use of fly ash as 47a support for photocatalysts for the degradation of contaminants from wastewater. Undoubtedly the photocatalysts supported on fly ash have represented excellent degradation efficiencies due to the synergistic effect of adsorption and photocatalytic capacity. The utilization of fly ash as 47a precursor has solved the problem of disposal and added value to the waste by-product. Various preparation techniques for fly ash-based nanocomposites such as the sol-gel method, hydrothermal method, solvothermal method, precipitation and co-precipitation, modified metalorganic decomposition, electrospinning, incipient impregnation, and wet chemical synthesis, along with 47a brief study of their characterization using scanning electron microscopy, X-ray diffraction technique and Fourier transform infrared (FTIR) spectroscopy, and the mechanism of photodegradation of dyes have been discussed in this paper. The literature shows that SiO2, TiO2, and Al2O3 present in fly ash play an essential role in the photodegradation of dyes. Factors affecting the degradation of dyes, their kinetic studies, and methods to enhance photodegradation efficiency have also been discussed.
Collapse
Affiliation(s)
- Vishal Gadore
- Department of Chemistry, National Institute of Technology, Silchar, Assam, 788010, India
| | - Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology, Silchar, Assam, 788010, India.
| |
Collapse
|
20
|
Jain K, Patel AS, Pardhi VP, Flora SJS. Nanotechnology in Wastewater Management: A New Paradigm Towards Wastewater Treatment. Molecules 2021; 26:1797. [PMID: 33806788 PMCID: PMC8005047 DOI: 10.3390/molecules26061797] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 12/16/2022] Open
Abstract
Clean and safe water is a fundamental human need for multi-faceted development of society and a thriving economy. Brisk rises in populations, expanding industrialization, urbanization and extensive agriculture practices have resulted in the generation of wastewater which have not only made the water dirty or polluted, but also deadly. Millions of people die every year due to diseases communicated through consumption of water contaminated by deleterious pathogens. Although various methods for wastewater treatment have been explored in the last few decades but their use is restrained by many limitations including use of chemicals, formation of disinfection by-products (DBPs), time consumption and expensiveness. Nanotechnology, manipulation of matter at a molecular or an atomic level to craft new structures, devices and systems having superior electronic, optical, magnetic, conductive and mechanical properties, is emerging as a promising technology, which has demonstrated remarkable feats in various fields including wastewater treatment. Nanomaterials encompass a high surface to volume ratio, a high sensitivity and reactivity, a high adsorption capacity, and ease of functionalization which makes them suitable for application in wastewater treatment. In this article we have reviewed the techniques being developed for wastewater treatment using nanotechnology based on adsorption and biosorption, nanofiltration, photocatalysis, disinfection and sensing technology. Furthermore, this review also highlights the fate of the nanomaterials in wastewater treatment as well as risks associated with their use.
Collapse
Affiliation(s)
- Keerti Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)—Raebareli, Lucknow 226002, India; (A.S.P.); (V.P.P.)
| | - Anand S. Patel
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)—Raebareli, Lucknow 226002, India; (A.S.P.); (V.P.P.)
| | - Vishwas P. Pardhi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)—Raebareli, Lucknow 226002, India; (A.S.P.); (V.P.P.)
| | - Swaran Jeet Singh Flora
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)—Raebareli, Lucknow 226002, India
| |
Collapse
|
21
|
Abstract
The growing world energy consumption, with reliance on conventional energy sources and the associated environmental pollution, are considered the most serious threats faced by mankind. Heterogeneous photocatalysis has become one of the most frequently investigated technologies, due to its dual functionality, i.e., environmental remediation and converting solar energy into chemical energy, especially molecular hydrogen. H2 burns cleanly and has the highest gravimetric gross calorific value among all fuels. However, the use of a suitable electron donor, in what so-called “photocatalytic reforming”, is required to achieve acceptable efficiency. This oxidation half-reaction can be exploited to oxidize the dissolved organic pollutants, thus, simultaneously improving the water quality. Such pollutants would replace other potentially costly electron donors, achieving the dual-functionality purpose. Since the aromatic compounds are widely spread in the environment, they are considered attractive targets to apply this technology. In this review, different aspects are highlighted, including the employing of different polymorphs of pristine titanium dioxide as photocatalysts in the photocatalytic processes, also improving the photocatalytic activity of TiO2 by loading different types of metal co-catalysts, especially platinum nanoparticles, and comparing the effect of various loading methods of such metal co-catalysts. Finally, the photocatalytic reforming of aromatic compounds employing TiO2-based semiconductors is presented.
Collapse
|
22
|
Mohamed Isa ED, Che Jusoh NW, Hazan R, Shameli K. Photocatalytic degradation of methyl orange using pullulan-mediated porous zinc oxide microflowers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:5774-5785. [PMID: 32975756 DOI: 10.1007/s11356-020-10939-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/21/2020] [Indexed: 05/27/2023]
Abstract
One of mankind's biggest concerns is water pollution. Textile industry emerged as one of the main contributors with dyes as the main pollutant. Presence of dyes in water is very dangerous due to their toxicity; thus, it is important to remove them from water. In these recent years, heterogeneous advance oxidation process surfaced as a possible dyes' removal technique. This process utilizes semiconductor as photocatalyst to degrade the dyes in presence of light and zinc oxide (ZnO) appears to be a promising photocatalyst for this process. In this study, pullulan, a biopolymer, was used to produce porous ZnO microflowers (ZnO-MFs) through green synthesis via precipitation method. The effects of pullulan's amount on the properties of ZnO-MFs were investigated. The ZnO-MF particle size decreased with the increased of pullulan amount. Interestingly, formation of pores occurred in presence of pullulan. The synthesized ZnO-MFs have the surface area ranging from 6.22 to 25.65 m2 g-1 and pore volume up to 0.1123 cm3 g-1. The ZnO-MF with the highest surface area was chosen for photocatalytic degradation of methyl orange (MO). The highest degradation occurred in 300 min with 150 mg catalyst dosage, 10 ppm initial dye concentration, and pH 7 experimental conditions. However, through comparison of photodegradation of MO with all synthesized ZnO-MFs, 25PZ exhibited the highest degradation rate. This shows that photocatalytic activity is not dependent on surface area alone. Based on these results, ZnO-MF has the potential to be applied in wastewater treatment. However, further improvement is needed to increase its photocatalytic activity.
Collapse
Affiliation(s)
- Eleen Dayana Mohamed Isa
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Nurfatehah Wahyuny Che Jusoh
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
- Advanced Materials Research Group, Center of Hydrogen Energy, Universiti Teknologi Malaysia, 54100, Kuala Lumpur, Malaysia
| | | | - Kamyar Shameli
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia.
| |
Collapse
|
23
|
Yang X, Chen Z, Zhao W, Liu C, Qian X, Zhang M, Wei G, Khan E, Hau Ng Y, Sik Ok Y. Recent advances in photodegradation of antibiotic residues in water. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2021; 405:126806. [PMID: 32904764 PMCID: PMC7457966 DOI: 10.1016/j.cej.2020.126806] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/11/2020] [Accepted: 08/24/2020] [Indexed: 05/21/2023]
Abstract
Antibiotics are widely present in the environment due to their extensive and long-term use in modern medicine. The presence and dispersal of these compounds in the environment lead to the dissemination of antibiotic residues, thereby seriously threatening human and ecosystem health. Thus, the effective management of antibiotic residues in water and the practical applications of the management methods are long-term matters of contention among academics. Particularly, photocatalysis has attracted extensive interest as it enables the treatment of antibiotic residues in an eco-friendly manner. Considerable progress has been achieved in the implementation of photocatalytic treatment of antibiotic residues in the past few years. Therefore, this review provides a comprehensive overview of the recent developments on this important topic. This review primarily focuses on the application of photocatalysis as a promising solution for the efficient decomposition of antibiotic residues in water. Particular emphasis was laid on improvement and modification strategies, such as augmented light harvesting, improved charge separation, and strengthened interface interaction, all of which enable the design of powerful photocatalysts to enhance the photocatalytic removal of antibiotics.
Collapse
Affiliation(s)
- Xiuru Yang
- College of Materials and Chemistry, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education Zone Hangzhou, 310018, China
| | - Zhi Chen
- College of Materials and Chemistry, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education Zone Hangzhou, 310018, China
| | - Wan Zhao
- College of Materials and Chemistry, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education Zone Hangzhou, 310018, China
| | - Chunxi Liu
- College of Materials and Chemistry, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education Zone Hangzhou, 310018, China
| | - Xiaoxiao Qian
- College of Materials and Chemistry, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education Zone Hangzhou, 310018, China
| | - Ming Zhang
- Department of Environmental Engineering, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education Zone Hangzhou, 310018, China
| | - Guoying Wei
- College of Materials and Chemistry, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education Zone Hangzhou, 310018, China
| | - Eakalak Khan
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, NV 89154, USA
| | - Yun Hau Ng
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region, China
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, South Korea
| |
Collapse
|
24
|
Idris NJ, Bakar SA, Mohamed A, Muqoyyanah M, Othman MHD, Mamat MH, Ahmad MK, Birowosuto MD, Soga T. Photocatalytic performance improvement by utilizing GO_MWCNTs hybrid solution on sand/ZnO/TiO 2-based photocatalysts to degrade methylene blue dye. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:6966-6979. [PMID: 33025441 DOI: 10.1007/s11356-020-10904-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
In this work, sand/zinc oxide (ZnO)/titanium dioxide (TiO2)-based photocatalysts were hybridized with graphene oxide (GO) and GO_multi-walled carbon nanotubes (MWCNTs) hybrid solution. The novel hybrid was then used in photocatalysis to degrade dye contamination. The nanocomposite photocatalyst was initially fabricated by growing ZnO nanorods (NRs) via sol-gel immersion followed by synthesizing TiO2 NRs for different times (5 and 20 h) using a hydrothermal method on sand as a substrate. Prior to the hybridization, the initial GO was synthesized using electrochemical exfoliation and further mixed with 1 wt% MWCNTs to form GO_MWCNTs hybrid solution. The synthesized GO and GO_MWCNTs hybrid solution were then incorporated onto sand/ZnO/TiO2 nanocomposite-based photocatalysts through immersion. Various sand/ZnO/TiO2-based photocatalysts were then tested for methylene blue (MB) dye degradation within 3 days. On the basis of UV-Vis measurement, the highest MB degradation was achieved by using sand/ZnO NRs/TiO2 NRs (5 h)/GO_MWCNTs (92.60%). The high surface area and high electrical conductivity of GO_MWCNTs prolonged the lifetime of electron/hole separation and thus enhanced the photocatalytic performance.
Collapse
Affiliation(s)
- Nur Jannah Idris
- Nanotechnology Research Centre, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900, Tanjung Malim, Perak, Malaysia
- Department of Physics, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900, Tanjung Malim, Perak, Malaysia
| | - Suriani Abu Bakar
- Nanotechnology Research Centre, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900, Tanjung Malim, Perak, Malaysia.
- Department of Physics, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900, Tanjung Malim, Perak, Malaysia.
| | - Azmi Mohamed
- Nanotechnology Research Centre, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900, Tanjung Malim, Perak, Malaysia
- Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900, Tanjung Malim, Perak, Malaysia
| | - Muqoyyanah Muqoyyanah
- Nanotechnology Research Centre, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900, Tanjung Malim, Perak, Malaysia
- Department of Physics, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900, Tanjung Malim, Perak, Malaysia
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Mohamad Hafiz Mamat
- NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450, Shah Alam, Selangor, Malaysia
| | - Mohd Khairul Ahmad
- Microelectronic and Nanotechnology-Shamsuddin Research Centre (MiNT-SRC), Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, Parit Raja, Malaysia
| | - Muhammad Danang Birowosuto
- CNRS International NTU Thales Research Alliance (CINTRA), Research Techno Plaza, 50 Nanyang Drive, Border X Block, Singapore, 637553, Singapore
| | - Tetsuo Soga
- Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, 466-8555, Japan
| |
Collapse
|
25
|
Abstract
Titania is considered to be one of the most versatile material in its nanoform. Scientific community looks towards it to address various pressing global problems. One such problem is aquatic pollution arising from organic chemicals such as dyes, pesticides, antibiotics etc. due to industrial, domestic and agricultural activities. Titania proves to be very effective to address this problem owing to its superior photocatalytic properties. In this review, we will review the recent advances in titania-based nanocomposites. The recent advances discussed in this review include synthesis of titania, modification of titania, exploration of various supports such as silica, carbon, graphene etc., that is documented to enhance its environmental remediation properties.
Collapse
Affiliation(s)
- Soad Z Alsheheri
- Department of chemistry, King Abdulaziz University, Jeddah, SA, Saudi Arabia
| |
Collapse
|
26
|
Zakria HS, Othman MHD, Kamaludin R, Sheikh Abdul Kadir SH, Kurniawan TA, Jilani A. Immobilization techniques of a photocatalyst into and onto a polymer membrane for photocatalytic activity. RSC Adv 2021; 11:6985-7014. [PMID: 35685270 PMCID: PMC9131363 DOI: 10.1039/d0ra10964a] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 01/26/2021] [Indexed: 12/14/2022] Open
Abstract
This article reviews the various techniques of immobilizing a photocatalyst into and onto the polymer membrane for pollutant removal and as a problem solver in handling suspended photocatalyst issues from the previous literature. A particular focus is given to the preparation of mixed matrix membranes and deposition techniques for photocatalytic degradation in applications for wastewater treatment. Advantages and disadvantages in this application are evaluated. Various operating conditions during the process are presented. About 90 recently published studies (2008–2020) are reviewed. From the literature, it was found that TiO2 is the most favoured photocatalyst that is frequently used in photocatalytic water treatment. Dry–wet co-spinning and sputtering techniques emerged as the promising technique for immobilizing a uniformly distributed photocatalyst within the polymeric membrane, and exhibited excellence pollutant removal. In general, the technical applicability is the key factor in selecting the best photocatalyst immobilizing technique for water treatment. Finally, the scope of various techniques that have been reviewed may provide potential for future photocatalytic study. This article reviews the various techniques of immobilizing a photocatalyst into and onto the polymer membrane for pollutant removal and as a problem solver in handling suspended photocatalyst issues from the previous literature.![]()
Collapse
Affiliation(s)
- Hazirah Syahirah Zakria
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), 81310 Skudai, Johor, Malaysia
| | - Mohd Hafiz Dzarfan Othman
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), 81310 Skudai, Johor, Malaysia
| | - Roziana Kamaludin
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), 81310 Skudai, Johor, Malaysia
| | - Siti Hamimah Sheikh Abdul Kadir
- Institute of Pathology, Laboratory and Forensics (I-PPerForM), Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, 47000 Sungai Buloh, Selangor, Malaysia
| | - Tonni Agustiono Kurniawan
- Key Laboratory of the Coastal and Wetland Ecosystems, Ministry of Education, College of Environment and Ecology, Xiamen University, Xiamen 361102, P. R. China
| | - Asim Jilani
- Center of Nanotechnology, King Abdul-Aziz University, 21589 Jeddah, Saudi Arabia
| |
Collapse
|
27
|
One-dimensional cadmium(II) coordination polymers: Structural diversity, luminescence and photocatalytic properties. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.112961] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
28
|
Yang Y, Ali N, Khan A, Khan S, Khan S, Khan H, Xiaoqi S, Ahmad W, Uddin S, Ali N, Bilal M. Chitosan-capped ternary metal selenide nanocatalysts for efficient degradation of Congo red dye in sunlight irradiation. Int J Biol Macromol 2020; 167:169-181. [PMID: 33249161 DOI: 10.1016/j.ijbiomac.2020.11.167] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 11/28/2022]
Abstract
Wastewater emerging from the industries containing organic pollutants is a severe threat to humans' health and aquatic life. Therefore, the degradation of highly poisonous organic dye pollutants is necessary to ensure public health and environmental protection. To tackle this problem, visible-light-driven ternary metal selenide nanocomposites were synthesized successfully by the solvothermal method and supported by chitosan microspheres (FeNiSe-CHM). The prepared nanoparticles were capped in chitosan microspheres to avoid leaching and facilitate easy recovery of the catalyst. FTIR spectrum confirmed the synthesis of nanocomposite and nanocomposite-chitosan microspheres (FeNiSe-CHM). Based on the SEM images, the nanomaterial and FeNiSe-CHM has an average particle size of 64 nm and 874 μm, respectively. The presence of iron, nickel and selenium elements in the EDX spectrum revealed the synthesis of FeNiSe-NPs. XRD analysis determined the crystallite structure of nanocomposites as 14.2 nm. The photocatalyst has a crystalline structure and narrow bandgap of 2.09 eV. Moreover, the as-synthesized FeNiSe-CHM were employed for the photodegradation of carcinogenic and mutagenic Congo red dye. The catalyst microspheres showed efficient photocatalytic degradation efficiency of up to 99% for Congo red dye under the optimized conditions of 140 min, pH 6.0, dye concentration 60 ppm and catalyst dose of 0.2 g in the presence of sunlight irradiation following the second-order kinetics. After five consecutive cycles, it showed a slight loss in the degradation efficiency. In conclusion, the results demonstrate a high potential of chitosan-based ternary metal selenide nanocomposites for abatement of dye pollutants from the industrial wastewater.
Collapse
Affiliation(s)
- Yong Yang
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Centre for Deep Utilization Technology of Rock-salt Resource, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an 223003, China.
| | - Nisar Ali
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Centre for Deep Utilization Technology of Rock-salt Resource, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa 25120, Pakistan
| | - Saraf Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa 25120, Pakistan
| | - Sana Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa 25120, Pakistan
| | - Hammad Khan
- Department of Chemical Engineering, Faculty of Materials and Chemical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, Swabi, KP, Pakistan
| | - Shi Xiaoqi
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Centre for Deep Utilization Technology of Rock-salt Resource, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Waqar Ahmad
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa 25120, Pakistan
| | - Salah Uddin
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa 25120, Pakistan
| | - Nauman Ali
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa 25120, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China.
| |
Collapse
|
29
|
Shoukat S, Haq S, Rehman W, Waseem M, Hafeez M, Din SU, Zain-ul-Abdin, Ahmad P, Rehman MU, Shah A, Khan B. Remediation of Chromium (VI) and Rhodamine 6G via Mixed Phase Nickel-Zinc Nanocomposite: Synthesis and Characterization. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01776-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Ali N, Uddin S, Khan A, Khan S, Khan S, Ali N, Khan H, Khan H, Bilal M. Regenerable chitosan-bismuth cobalt selenide hybrid microspheres for mitigation of organic pollutants in an aqueous environment. Int J Biol Macromol 2020; 161:1305-1317. [DOI: 10.1016/j.ijbiomac.2020.07.132] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/30/2020] [Accepted: 07/12/2020] [Indexed: 10/23/2022]
|
31
|
Sundara Selvam PS, Ganesan D, Rajangam V, Raji A, Kandan V. Green Synthesis of SnO2 Nanoparticles for Catalytic Degradation of Rhodamine B. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY, TRANSACTIONS A: SCIENCE 2020. [DOI: 10.1007/s40995-020-00885-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
32
|
Singh A, Goswami A, Nain S. Enhanced antibacterial activity and photo-remediation of toxic dyes using Ag/SWCNT/PPy based nanocomposite with core–shell structure. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01394-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
33
|
Affiliation(s)
- Rimzhim Gupta
- Department of Chemical EngineeringIndian Institute of Science Bangalore, Karnataka 560012 India
| | - Jayant Modak
- Department of Chemical EngineeringIndian Institute of Science Bangalore, Karnataka 560012 India
| |
Collapse
|
34
|
Designing Novel Photocatalysts for Disinfection of Multidrug-Resistant Waterborne Bacteria. NANOTECHNOLOGY FOR ENERGY AND ENVIRONMENTAL ENGINEERING 2020. [DOI: 10.1007/978-3-030-33774-2_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
35
|
Koe WS, Lee JW, Chong WC, Pang YL, Sim LC. An overview of photocatalytic degradation: photocatalysts, mechanisms, and development of photocatalytic membrane. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:2522-2565. [PMID: 31865580 DOI: 10.1007/s11356-019-07193-5] [Citation(s) in RCA: 225] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 11/27/2019] [Indexed: 05/12/2023]
Abstract
Photocatalysis is an ecofriendly technique that emerged as a promising alternative for the degradation of many organic pollutants. The weaknesses of the present photocatalytic system which limit their industrial applications include low-usage of visible light, fast charge recombination, and low migration ability of the photo-generated electrons and holes. Therefore, various elements such as noble metals and transition metals as well as non-metals and metalloids (i.e., graphene, carbon nanotube, and carbon quantum dots) are doped into the photocatalyst as co-catalysts to enhance the photodegradation performance. The incorporation of the co-catalyst which alters the photocatalytic mechanism was discussed in detail. The application of photocatalysts in treating persistent organic pollutants such as pesticide, pharmaceutical compounds, oil and grease and textile in real wastewater was also discussed. Besides, a few photocatalytic reactors in pilot scale had been designed for the effort of commercializing the system. In addition, hybrid photocatalytic system integrating with membrane filtration together with their membrane fabrication methods had also been reviewed. This review outlined various types of heterogeneous photocatalysts, mechanism, synthesis methods of biomass supported photocatalyst, photocatalytic degradation of organic substances in real wastewater, and photocatalytic reactor designs and their operating parameters as well as the latest development of photocatalyst incorporated membrane.
Collapse
Affiliation(s)
- Weng Shin Koe
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, 43000, Kajang, Selangor, Malaysia
| | - Jing Wen Lee
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, 43000, Kajang, Selangor, Malaysia
| | - Woon Chan Chong
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, 43000, Kajang, Selangor, Malaysia.
| | - Yean Ling Pang
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, 43000, Kajang, Selangor, Malaysia
| | - Lan Ching Sim
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, 43000, Kajang, Selangor, Malaysia
| |
Collapse
|
36
|
Kumar S, Kumar A, Kumar A, Krishnan V. Nanoscale zinc oxide based heterojunctions as visible light active photocatalysts for hydrogen energy and environmental remediation. CATALYSIS REVIEWS-SCIENCE AND ENGINEERING 2019. [DOI: 10.1080/01614940.2019.1684649] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Suneel Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| | - Ajay Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| | - Ashish Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| | - Venkata Krishnan
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| |
Collapse
|
37
|
Peng Y, Albero J, García H. Surface Silylation of Hybrid Benzidinium Lead Perovskite and its Influence on the Photocatalytic Activity. ChemCatChem 2019. [DOI: 10.1002/cctc.201901681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yong Peng
- Instituto Universitario de Tecnología Química CSIC-UPVUniversitat Politècnica de València Avda. de los Naranjos s/n Valencia 46022 Spain
| | - Josep Albero
- Instituto Universitario de Tecnología Química CSIC-UPVUniversitat Politècnica de València Avda. de los Naranjos s/n Valencia 46022 Spain
| | - Hermenegildo García
- Instituto Universitario de Tecnología Química CSIC-UPVUniversitat Politècnica de València Avda. de los Naranjos s/n Valencia 46022 Spain
| |
Collapse
|