1
|
Tlou M, Ndou B, Mabona N, Khwathisi A, Ateba C, Madala N, Serepa-Dlamini MH. Next generation sequencing-aided screening, isolation, molecular identification, and antimicrobial potential for bacterial endophytes from the medicinal plant, Elephantorrhiza elephantina. Front Microbiol 2024; 15:1383854. [PMID: 38855763 PMCID: PMC11160484 DOI: 10.3389/fmicb.2024.1383854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/06/2024] [Indexed: 06/11/2024] Open
Abstract
Elephantorrhiza elephantina, a wild plant in southern Africa, is utilized in traditional medicine for various ailments, leading to its endangerment and listing on the Red List of South African Plants. To date, there have been no reports on bacterial endophytes from this plant, their classes of secondary metabolites, and potential medicinal properties. This study presents (i) taxonomic characterization of bacterial endophytes in leaf and root tissues using 16S rRNA, (ii) bacterial isolation, morphological, and phylogenetic characterization, (iii) bacterial growth, metabolite extraction, and LC-MS-based metabolite fingerprinting, and (iv) antimicrobial testing of bacterial crude extracts. Next-generation sequencing yielded 693 and 2,459 DNA read counts for the rhizomes and leaves, respectively, detecting phyla including Proteobacteria, Bacteroidota, Gemmatimonadota, Actinobacteriota, Verrucomicrobiota, Dependentiae, Firmicutes, and Armatimonodata. At the genus level, Novosphingobium, Mesorhizobium, Methylobacterium, and Ralstonia were the most dominant in both leaves and rhizomes. From root tissues, four bacterial isolates were selected, and 16S rRNA-based phylogenetic characterization identified two closely related Pseudomonas sp. (strain BNWU4 and 5), Microbacterium oxydans BNWU2, and Stenotrophomonas maltophilia BNWU1. The ethyl acetate:chloroform (1:1 v/v) organic extract from each isolate exhibited antimicrobial activity against all selected bacterial pathogens. Strain BNWU5 displayed the highest activity, with minimum inhibitory concentrations ranging from 62.5 μg/mL to 250 μg/mL against diarrhoeagenic Escherichia coli, Escherichia coli O157:H7, Salmonella enterica, antibiotic-resistant Vibrio cholerae, Staphylococcus aureus, Bacillus cereus, and Enterococcus durans. LC-MS analysis of the crude extract revealed common antimicrobial metabolites produced by all isolates, including Phenoxomethylpenicilloyl (penicilloyl V), cis-11-Eicosenamide, 3-Hydroxy-3-phenacyloxindole, and 9-Octadecenamide.
Collapse
Affiliation(s)
- Matsobane Tlou
- Department of Biochemistry, School of Physical and Chemical Sciences, North-West University, Mmabatho, South Africa
| | - Benedict Ndou
- Department of Biochemistry, School of Physical and Chemical Sciences, North-West University, Mmabatho, South Africa
| | - Nokufa Mabona
- Department of Biochemistry, School of Physical and Chemical Sciences, North-West University, Mmabatho, South Africa
| | - Adivhaho Khwathisi
- Department of Biochemistry and Microbiology, University of Venda, Thohoyandou, South Africa
| | - Collins Ateba
- Department of Microbiology, Faculty of Natural and Agricultural Sciences, School of Biological Sciences, North-West University, Mmabatho, South Africa
| | - Ntakadzeni Madala
- Department of Biochemistry and Microbiology, University of Venda, Thohoyandou, South Africa
| | - Mahloro Hope Serepa-Dlamini
- Department of Biotechnology and Food Technology, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa
| |
Collapse
|
2
|
Singh VK, Kumar A. Secondary metabolites from endophytic fungi: Production, methods of analysis, and diverse pharmaceutical potential. Symbiosis 2023; 90:1-15. [PMID: 37360552 PMCID: PMC10249938 DOI: 10.1007/s13199-023-00925-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023]
Abstract
The synthesis of secondary metabolites is a constantly functioning metabolic pathway in all living systems. Secondary metabolites can be broken down into numerous classes, including alkaloids, coumarins, flavonoids, lignans, saponins, terpenes, quinones, xanthones, and others. However, animals lack the routes of synthesis of these compounds, while plants, fungi, and bacteria all synthesize them. The primary function of bioactive metabolites (BM) synthesized from endophytic fungi (EF) is to make the host plants resistant to pathogens. EF is a group of fungal communities that colonize host tissues' intracellular or intercellular spaces. EF serves as a storehouse of the above-mentioned bioactive metabolites, providing beneficial effects to their hosts. BM of EF could be promising candidates for anti-cancer, anti-malarial, anti-tuberculosis, antiviral, anti-inflammatory, etc. because EF is regarded as an unexploited and untapped source of novel BM for effective drug candidates. Due to the emergence of drug resistance, there is an urgent need to search for new bioactive compounds that combat resistance. This article summarizes the production of BM from EF, high throughput methods for analysis, and their pharmaceutical application. The emphasis is on the diversity of metabolic products from EF, yield, method of purification/characterization, and various functions/activities of EF. Discussed information led to the development of new drugs and food additives that were more effective in the treatment of disease. This review shed light on the pharmacological potential of the fungal bioactive metabolites and emphasizes to exploit them in the future for therapeutic purposes.
Collapse
Affiliation(s)
- Vivek Kumar Singh
- Department of Biotechnology, National Institute of Technology, Raipur (CG), Raipur, 492010 Chhattisgarh India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur (CG), Raipur, 492010 Chhattisgarh India
| |
Collapse
|
3
|
Bustamante MI, Elfar K, Eskalen A. Evaluation of the Antifungal Activity of Endophytic and Rhizospheric Bacteria against Grapevine Trunk Pathogens. Microorganisms 2022; 10:microorganisms10102035. [PMID: 36296311 PMCID: PMC9611468 DOI: 10.3390/microorganisms10102035] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 11/08/2022] Open
Abstract
Grapevine trunk diseases (GTDs) are caused by multiple unrelated fungal pathogens, and their management remains difficult worldwide. Biocontrol is an attractive and sustainable strategy given the current need for a cleaner viticulture. In this study, twenty commercial vineyards were sampled across California to isolate endophytic and rhizospheric bacteria from different grapevine cultivars with the presence and absence of GTD symptoms. A collection of 1344 bacterial isolates were challenged in vitro against Neofusicoccum parvum and Diplodia seriata, from which a subset of 172 isolates exerted inhibition levels of mycelial growth over 40%. Bacterial isolates were identified as Bacillus velezensis (n = 154), Pseudomonas spp. (n = 12), Serratia plymuthica (n = 2) and others that were later excluded (n = 4). Representative isolates of B. velezensis, P. chlororaphis, and S. plymuthica were challenged against six other fungal pathogens responsible for GTDs. Mycelial inhibition levels were consistent across bacterial species, being slightly higher against slow-growing fungi than against Botryosphaeriaceae. Moreover, agar-diffusible metabolites of B. velezensis strongly inhibited the growth of N. parvum and Eutypa lata, at 1, 15, and 30% v/v. The agar-diffusible metabolites of P. chlororaphis and S. plymuthica, however, caused lower inhibition levels against both pathogens, but their volatile organic compounds showed antifungal activity against both pathogens. These results suggest that B. velezensis, P. chlororaphis and S. plymuthica constitute potential biocontrol agents (BCAs) against GTDs and their application in field conditions should be further evaluated.
Collapse
|
4
|
Salvi P, Mahawar H, Agarrwal R, Kajal, Gautam V, Deshmukh R. Advancement in the molecular perspective of plant-endophytic interaction to mitigate drought stress in plants. Front Microbiol 2022; 13:981355. [PMID: 36118190 PMCID: PMC9478035 DOI: 10.3389/fmicb.2022.981355] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/15/2022] [Indexed: 12/03/2022] Open
Abstract
Change in global climate has started to show its effect in the form of extremes of temperatures and water scarcity which is bound to impact adversely the global food security in near future. In the current review we discuss the impact of drought on plants and highlight the ability of endophytes, microbes that inhabit the plants asymptomatically, to confer stress tolerance to their host. For this we first describe the symbiotic association between plant and the endophytes and then focus on the molecular and physiological strategies/mechanisms adopted by these endophytes to confer stress tolerance. These include root alteration, osmotic adjustment, ROS scavenging, detoxification, production of phytohormones, and promoting plant growth under adverse conditions. The review further elaborates on how omics-based techniques have advanced our understanding of molecular basis of endophyte mediated drought tolerance of host plant. Detailed analysis of whole genome sequences of endophytes followed by comparative genomics facilitates in identification of genes involved in endophyte-host interaction while functional genomics further unveils the microbial targets that can be exploited for enhancing the stress tolerance of the host. Thus, an amalgamation of endophytes with other sustainable agricultural practices seems to be an appeasing approach to produce climate-resilient crops.
Collapse
|
5
|
Delfino V, Calonico C, Nostro AL, Castronovo LM, Duca SD, Chioccioli S, Coppini E, Fibbi D, Vassallo A, Fani R. Antibacterial activity of bacteria isolated from Phragmites australis against multidrug-resistant human pathogens. Future Microbiol 2021; 16:291-303. [PMID: 33709774 DOI: 10.2217/fmb-2020-0244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: Rising number of multidrug-resistant human pathogens demands novel antibiotics: to this aim, unexplored natural sources are investigated to find new compounds. In this context, bacteria associated to medicinal plants, including Phragmites australis, might represent an important source of antimicrobial compounds. Materials & methods: In the present work, 21 bacterial endophytes isolated from P. australis roots were tested, by cross-streaking, for their inhibitory activity against 36 multidrug-resistant pathogens isolated from food, clinical patients and hospitals. Results & conclusion: Seven endophytes, belonging to Pseudomonas and Stenotrophomonas, were able to inhibit the growth of most of the target strains. In conclusion, this preliminary work could pave the way for the discovery of new antibiotics against superbugs.
Collapse
Affiliation(s)
- Vania Delfino
- Department of Health Sciences, University of Florence, Viale Pieraccini 6, Florence, 50139, Italy
| | - Carmela Calonico
- Department of Health Sciences, University of Florence, Viale Pieraccini 6, Florence, 50139, Italy
| | - Antonella Lo Nostro
- Department of Health Sciences, University of Florence, Viale Pieraccini 6, Florence, 50139, Italy
| | - Lara Mitia Castronovo
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, 50019, Italy
| | - Sara Del Duca
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, 50019, Italy
| | - Sofia Chioccioli
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, 50019, Italy
| | - Ester Coppini
- G.I.D.A. SpA, Via Baciacavallo 36, Prato, 59100, Italy
| | | | - Alberto Vassallo
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, 50019, Italy
| | - Renato Fani
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, 50019, Italy
| |
Collapse
|
6
|
Abo Nouh FA, Gezaf SA, Abdel-Azeem AM. Recent Advances in Fungal Antimicrobial Molecules. Fungal Biol 2021. [DOI: 10.1007/978-3-030-85603-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Fungal Endophytes from Orchidaceae: Diversity and Applications. Fungal Biol 2021. [DOI: 10.1007/978-3-030-68260-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Bioprospecting for Biomolecules from Different Fungal Communities: An Introduction. Fungal Biol 2021. [DOI: 10.1007/978-3-030-85603-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Sebola TE, Uche-Okereafor NC, Mekuto L, Makatini MM, Green E, Mavumengwana V. Antibacterial and Anticancer Activity and Untargeted Secondary Metabolite Profiling of Crude Bacterial Endophyte Extracts from Crinum macowanii Baker Leaves. Int J Microbiol 2020; 2020:8839490. [PMID: 33488726 PMCID: PMC7803143 DOI: 10.1155/2020/8839490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/29/2020] [Accepted: 11/26/2020] [Indexed: 01/08/2023] Open
Abstract
This study isolated and identified endophytic bacteria from the leaves of Crinum macowanii and investigated the potential of the bacterial endophyte extracts as antibacterial and anticancer agents and their subsequent secondary metabolites. Ethyl acetate extracts from the endophytes and the leaves (methanol: dichloromethane (1 : 1)) were used for antibacterial activity against selected pathogenic bacterial strains by using the broth microdilution method. The anticancer activity against the U87MG glioblastoma and A549 lung carcinoma cells was determined by the MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxy-phenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay. Bacterial endophytes that were successfully isolated from C. macowanii leaves include Raoultella ornithinolytica, Acinetobacter guillouiae, Pseudomonas sp., Pseudomonas palleroniana, Pseudomonas putida, Bacillus safensis, Enterobacter asburiae, Pseudomonas cichorii, and Arthrobacter pascens. Pseudomonas cichorii exhibited broad antibacterial activity against both Gram-negative and Gram-positive pathogenic bacteria while Arthrobacter pascens displayed the least MIC of 0.0625 mg/mL. Bacillus safensis crude extracts were the only sample that showed notable cell reduction of 50% against A549 lung carcinoma cells at a concentration of 100 μg/mL. Metabolite profiling of Bacillus safensis, Pseudomonas cichorii, and Arthrobacter pascens crude extracts revealed the presence of known antibacterial and/or anticancer agents such as lycorine (1), angustine (2), crinamidine (3), vasicinol (4), and powelline. It can be concluded that the crude bacterial endophyte extracts obtained from C. macowanii leaves can biosynthesize bioactive compounds and can be bioprospected for medical application into antibacterial and anticancer agents.
Collapse
Affiliation(s)
- Tendani E. Sebola
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa
| | - Nkemdinma C. Uche-Okereafor
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa
| | - Lukhanyo Mekuto
- Department of Chemical Engineering, Faculty of Engineering and the Built Environment, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa
| | - Maya Mellisa Makatini
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, South Africa
| | - Ezekiel Green
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa
| | - Vuyo Mavumengwana
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Campus, Cape Town, South Africa
| |
Collapse
|
10
|
Babalola OO, Fadiji AE, Enagbonma BJ, Alori ET, Ayilara MS, Ayangbenro AS. The Nexus Between Plant and Plant Microbiome: Revelation of the Networking Strategies. Front Microbiol 2020; 11:548037. [PMID: 33013781 PMCID: PMC7499240 DOI: 10.3389/fmicb.2020.548037] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/12/2020] [Indexed: 12/16/2022] Open
Abstract
The diversity of plant-associated microbes is enormous and complex. These microbiomes are structured and form complex interconnected microbial networks that are important in plant health and ecosystem functioning. Understanding the composition of the microbiome and their core function is important in unraveling their networking strategies and their potential influence on plant performance. The network is altered by the host plant species, which in turn influence the microbial interaction dynamics and co-evolution. We discuss the plant microbiome and the complex interplay among microbes and between their host plants. We provide an overview of how plant performance is influenced by the microbiome diversity and function.
Collapse
Affiliation(s)
- Olubukola Oluranti Babalola
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Ayomide E Fadiji
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Ben J Enagbonma
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Elizabeth T Alori
- Department of Crop and Soil Sciences, Landmark University, Omu-Aran, Nigeria
| | - Modupe S Ayilara
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Ayansina S Ayangbenro
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| |
Collapse
|
11
|
Kang B, Maeshige T, Okamoto A, Kataoka Y, Yamamoto S, Rikiishi K, Tani A, Sawada H, Suzuki K. The Presence of the Hairy-Root-Disease-Inducing (Ri) Plasmid in Wheat Endophytic Rhizobia Explains a Pathogen Reservoir Function of Healthy Resistant Plants. Appl Environ Microbiol 2020; 86:e00671-20. [PMID: 32631868 PMCID: PMC7440801 DOI: 10.1128/aem.00671-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/23/2020] [Indexed: 11/20/2022] Open
Abstract
A large number of strains in the Rhizobium radiobacter species complex (biovar 1 Agrobacterium) have been known as causative pathogens for crown gall and hairy root diseases. Strains within this complex were also found as endophytes in many plant species with no symptoms. The aim of this study was to reveal the endophyte variation of this complex and how these endophytic strains differ from pathogenic strains. In this study, we devised a simple but effective screening method by exploiting the high resolution power of mass spectrometry. We screened endophyte isolates from young wheat and barley plants, which are resistant to the diseases, and identified seven isolates from wheat as members of the R. radiobacter species complex. Through further analyses, we assigned five strains to the genomovar (genomic group) G1 and two strains to G7 in R. radiobacter Notably, these two genomovar groups harbor many known pathogenic strains. In fact, the two G7 endophyte strains showed pathogenicity on tobacco, as well as the virulence prerequisites, including a 200-kbp Ri plasmid. All five G1 strains possessed a 500-kbp plasmid, which is present in well-known crown gall pathogens. These data strongly suggest that healthy wheat plants are reservoirs for pathogenic strains of R. radiobacterIMPORTANCE Crown gall and hairy root diseases exhibit very wide host-plant ranges that cover gymnosperm and dicot plants. The Rhizobium radiobacter species complex harbors causative agents of the two diseases. Recently, endophyte isolates from many plant species have been assigned to this species complex. We isolated seven endophyte strains belonging to the species complex from wheat plants and revealed their genomovar affiliations and plasmid profile. The significance of this study is the finding of the genomovar correlation between the endophytes and the known pathogens, the presence of a virulence ability in two of the seven endophyte strains, and the high ratio of the pathogenic strains in the endophyte strains. This study therefore provides convincing evidence that could unravel the mechanism that maintains pathogenic agents of this species and sporadically delivers them to susceptible plants.
Collapse
Affiliation(s)
- Byoungwoo Kang
- Basic Biology Program, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Taichi Maeshige
- Department of Biological Science, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| | - Aya Okamoto
- Department of Biological Science, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| | - Yui Kataoka
- Department of Biological Science, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| | - Shinji Yamamoto
- Department of Biological Science, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| | - Kazuhide Rikiishi
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan
| | - Akio Tani
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan
| | - Hiroyuki Sawada
- Genetic Resources Center, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Katsunori Suzuki
- Basic Biology Program, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Department of Biological Science, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
12
|
Abstract
Plant fungal endophytes are diverse microbial sources that reside inside plants. Grapes (Vitis vinifera) are rich in polyphenols that have beneficial health effects, and recent research has shown that fungal endophytes in grapes may contribute to the production of these polyphenols and may serve as biocontrol agents. In this study, we determined the fungal microbial endophyte diversity in North American table grapes found at a Winnipeg, Manitoba, market. The amplicon internal transcribed spacer (ITS) metagenomics approach was used to profile the fungal communities of the fruit endophyte microbiome of three table grape types. The data supported endophyte diversity in different table grapes, including possible bioactive, saprophytic, and pathogenic fungi. Culturable endophytes were isolated and identified by morphology and ITS amplicon sequencing. The majority of the isolated culturable strains included Alternaria spp. and Cladosporium spp. The results provided evidence of the existence of diverse fungal endophytes isolated and identified from the fruit of the table grapes. These fungal endophytes may have potential in agricultural, industrial, and pharmaceutical applications.
Collapse
Affiliation(s)
- Champa Wijekoon
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, Morden, MB T1J 4B1, Canada.,Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, MB R2H 2A6, Canada
| | - Zoe Quill
- Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, MB R2H 2A6, Canada
| |
Collapse
|
13
|
Fadiji AE, Babalola OO. Exploring the potentialities of beneficial endophytes for improved plant growth. Saudi J Biol Sci 2020; 27:3622-3633. [PMID: 33304173 PMCID: PMC7714962 DOI: 10.1016/j.sjbs.2020.08.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 11/23/2022] Open
Abstract
Pathogen affects plant growth, host health and productivity. Endophytes, presumed to live inside the plant tissues, might be helpful in sustaining the future of agriculture. Although recent studies have proven that endophytes can be pathogenic, commensal, non-pathogenic, and/or beneficial, this review will focus on the beneficial category only. Beneficial endophytes produce a number of compounds which are useful for protecting plants from environmental conditions, enhancing plant growth and sustainability, while living conveniently inside the hosts. The population of endophytes is majorly controlled by location, and climatic conditions where the host plant grows. Often the most frequently isolated endophytes from the tissues of the plant are fungi, but sometimes greater numbers of bacteria are isolated. Beneficial endophytes stand a chance to replace the synthetic chemicals currently being used for plant growth promotion if carefully explored by researchers and embraced by policymakers. However, the roles of endophytes in plant growth improvement and their behavior in the host plant have not been fully understood. This review presents the current development of research into beneficial endophytes and their effect in improving plant growth.
Collapse
Affiliation(s)
- Ayomide Emmanuel Fadiji
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, Private Mail Bag X2046, North-West University, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, Private Mail Bag X2046, North-West University, South Africa
| |
Collapse
|
14
|
Isolation, Identification and Characterisation of Endophytic Bacteria in Biophytum sensitivum (L.) DC. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.1.67] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
15
|
Nouh FAA, Abo Nahas HH, Abdel-Azeem AM. Agriculturally Important Fungi: Plant–Microbe Association for Mutual Benefits. Fungal Biol 2020. [DOI: 10.1007/978-3-030-45971-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Endophytic Fungi: Biodiversity, Ecological Significance, and Potential Industrial Applications. RECENT ADVANCEMENT IN WHITE BIOTECHNOLOGY THROUGH FUNGI 2019. [DOI: 10.1007/978-3-030-10480-1_1] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Saha P, Talukdar AD, Choudhury MD, Nath D. Bioprospecting for Fungal-Endophyte-Derived Natural Products for Drug Discovery. ADVANCES IN ENDOPHYTIC FUNGAL RESEARCH 2019. [DOI: 10.1007/978-3-030-03589-1_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|