1
|
Briglia M, Allia F, Avola R, Signorini C, Cardile V, Romano GL, Giurdanella G, Malaguarnera R, Bellomo M, Graziano ACE. Diet and Nutrients in Rare Neurological Disorders: Biological, Biochemical, and Pathophysiological Evidence. Nutrients 2024; 16:3114. [PMID: 39339713 PMCID: PMC11435074 DOI: 10.3390/nu16183114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: Rare diseases are a wide and heterogeneous group of multisystem life-threatening or chronically debilitating clinical conditions with reduced life expectancy and a relevant mortality rate in childhood. Some of these disorders have typical neurological symptoms, presenting from birth to adulthood. Dietary patterns and nutritional compounds play key roles in the onset and progression of neurological disorders, and the impact of alimentary needs must be enlightened especially in rare neurological diseases. This work aims to collect the in vitro, in vivo, and clinical evidence on the effects of diet and of nutrient intake on some rare neurological disorders, including some genetic diseases, and rare brain tumors. Herein, those aspects are critically linked to the genetic, biological, biochemical, and pathophysiological hallmarks typical of each disorder. Methods: By searching the major web-based databases (PubMed, Web of Science Core Collection, DynaMed, and Clinicaltrials.gov), we try to sum up and improve our understanding of the emerging role of nutrition as both first-line therapy and risk factors in rare neurological diseases. Results: In line with the increasing number of consensus opinions suggesting that nutrients should receive the same attention as pharmacological treatments, the results of this work pointed out that a standard dietary recommendation in a specific rare disease is often limited by the heterogeneity of occurrent genetic mutations and by the variability of pathophysiological manifestation. Conclusions: In conclusion, we hope that the knowledge gaps identified here may inspire further research for a better evaluation of molecular mechanisms and long-term effects.
Collapse
Affiliation(s)
- Marilena Briglia
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Fabio Allia
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Rosanna Avola
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy;
| | - Venera Cardile
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Giovanni Luca Romano
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Giovanni Giurdanella
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Roberta Malaguarnera
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Maria Bellomo
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Adriana Carol Eleonora Graziano
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| |
Collapse
|
2
|
Evangelisti C, Ramadan S, Orlacchio A, Panza E. Experimental Cell Models for Investigating Neurodegenerative Diseases. Int J Mol Sci 2024; 25:9747. [PMID: 39273694 PMCID: PMC11396244 DOI: 10.3390/ijms25179747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Experimental models play a pivotal role in biomedical research, facilitating the understanding of disease mechanisms and the development of novel therapeutics. This is particularly true for neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and motor neuron disease, which present complex challenges for research and therapy development. In this work, we review the recent literature about experimental models and motor neuron disease. We identified three main categories of models that are highly studied by scientists. In fact, experimental models for investigating these diseases encompass a variety of approaches, including modeling the patient's cell culture, patient-derived induced pluripotent stem cells, and organoids. Each model offers unique advantages and limitations, providing researchers with a range of tools to address complex biological questions. Here, we discuss the characteristics, applications, and recent advancements in terms of each model system, highlighting their contributions to advancing biomedical knowledge and translational research.
Collapse
Affiliation(s)
- Cecilia Evangelisti
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Sherin Ramadan
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Antonio Orlacchio
- Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy
- Laboratory of Neurogenetics, European Center for Brain Research (CERC), IRCCS Santa Lucia Foundation, 00143 Rome, Italy
| | - Emanuele Panza
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| |
Collapse
|
3
|
Venkateswaran S, Michaud J, Ito Y, Geraghty M, Lewis EC, Ellezam B, Boycott KM, Dyment DA, Kernohan KD. IRF2BPL-Related Disorder, Causing Neurodevelopmental Disorder with Regression, Abnormal Movements, Loss of Speech and Seizures (NEDAMSS) Is Characterized by Pathology Consistent with DRPLA. Mov Disord 2024. [PMID: 39224955 DOI: 10.1002/mds.29938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/27/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Childhood neurodegenerative diseases often pose a challenge to clinicians to diagnose because of the degree of genetic heterogeneity and variable presentations. Here, we present a child with progressive neurodegeneration consisting of spasticity, dystonia, and ataxia in which postmortem pathological analysis led to the diagnosis of interferon regulatory factor 2 binding protein like (IRF2BPL)-related disorder. METHODS Detailed postmortem gross and histological examination was conducted, and findings consistent with dentatorubral-pallidoluysian atrophy (DRPLA) and included polyglutamine (polyQ) inclusions. Follow up testing for the CAG repeat expansion at ATN1 was non-diagnostic. RESULTS Subsequent exome sequencing reanalysis of the research exome identified a pathogenic de novo IRF2BPL variant. The IRF2BPL c.562C>T, p.(Arg188Ter) variant, distal to the polyQ repeat tract, results in variable mRNA levels depending on the cell type examined with decreased mRNA in the brain, as well as destabilization of the protein product and corresponding downstream molecular abnormalities in patient derived cells. CONCLUSION We provide the first detailed pathological description for IRF2BPL-related disorder, termed NEDAMSS (neurodevelopmental disorder with regression, abnormal movements, loss of speech and seizures; Mendelian Inheritance in Man, 618088) and evidence for the inclusion of this condition in the differential diagnosis of spastic-ataxic neurodegenerative conditions, reminiscent of DRPLA. Although the individuals with NEDAMSS do not carry an expansion, the polyQ repeat tract may play a role in the pathological inclusions that would represent a novel disease mechanism for polyQ repeats. © 2024 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Sunita Venkateswaran
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
- Children's Hospital, London Health Sciences Centre, Western University, London, Canada
| | - Jean Michaud
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Canada
| | - Yoko Ito
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
| | - Michael Geraghty
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
- Newborn Screening Ontario, Ottawa, Canada
| | | | - Benjamin Ellezam
- Division of Pathology, CHU Ste-Justine, University of Montréal, Montréal, Canada
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
| | - David A Dyment
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
| | - Kristin D Kernohan
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
- Newborn Screening Ontario, Ottawa, Canada
| |
Collapse
|
4
|
Ghaderi S, Fatehi F, Kalra S, Mohammadi S, Zemorshidi F, Ramezani M, Hesami O, Pezeshgi S, Batouli SAH. Volume loss in the left anterior-superior subunit of the hypothalamus in amyotrophic lateral sclerosis. CNS Neurosci Ther 2024; 30:e14801. [PMID: 38887187 PMCID: PMC11183167 DOI: 10.1111/cns.14801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/11/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND AND OBJECTIVE Amyotrophic lateral sclerosis (ALS) causes motor neuron loss and progressive paralysis. While traditionally viewed as motor neuron disease (MND), ALS also affects non-motor regions, such as the hypothalamus. This study aimed to quantify the hypothalamic subregion volumes in patients with ALS versus healthy controls (HCs) and examine their associations with demographic and clinical features. METHODS Forty-eight participants (24 ALS patients and 24 HCs) underwent structural MRI. A deep convolutional neural network was used for the automated segmentation of the hypothalamic subunits, including the anterior-superior (a-sHyp), anterior-inferior (a-iHyp), superior tuberal (supTub), inferior tuberal (infTub), and posterior (posHyp). The neural network was validated using FreeSurfer v7.4.1, with individual head size variations normalized using total intracranial volume (TIV) normalization. Statistical analyses were performed for comparisons using independent sample t-tests. Correlations were calculated using Pearson's and Spearman's tests (p < 0.05). The standard mean difference (SMD) was used to compare the mean differences between parametric variables. RESULTS The volume of the left a-sHyp hypothalamic subunit was significantly lower in ALS patients than in HCs (p = 0.023, SMD = -0.681). No significant correlation was found between the volume of the hypothalamic subunits, body mass index (BMI), and ALSFRS-R in patients with ALS. However, right a-sHyp (r = 0.420, p = 0.041) was correlated with disease duration, whereas right supTub (r = -0.471, p = 0.020) and left postHyp (r = -0.406, p = 0.049) were negatively correlated with age. There was no significant difference in the volume of hypothalamic subunits between males and females, and no significant difference was found between patients with revised ALS Functional Rating Scale (ALSFRS-R) scores ≤41 and >41 and those with a disease duration of 9 months or less. DISCUSSION AND CONCLUSION The main finding suggests atrophy of the left a-sHyp hypothalamic subunit in patients with ALS, which is supported by previous research as an extra-motor neuroimaging finding for ALS.
Collapse
Affiliation(s)
- Sadegh Ghaderi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in MedicineTehran University of Medical SciencesTehranIran
- Neuromuscular Research Center, Department of Neurology, Shariati HospitalTehran University of Medical SciencesTehranIran
| | - Farzad Fatehi
- Neuromuscular Research Center, Department of Neurology, Shariati HospitalTehran University of Medical SciencesTehranIran
- Neurology DepartmentUniversity Hospitals of Leicester NHS TrustLeicesterUK
| | - Sanjay Kalra
- Neuroscience and Mental Health InstituteUniversity of AlbertaEdmontonAlbertaCanada
- Division of Neurology, Department of MedicineUniversity of AlbertaEdmontonAlbertaCanada
| | - Sana Mohammadi
- Neuromuscular Research Center, Department of Neurology, Shariati HospitalTehran University of Medical SciencesTehranIran
| | - Fariba Zemorshidi
- Neuromuscular Research Center, Department of Neurology, Shariati HospitalTehran University of Medical SciencesTehranIran
- Department of NeurologyMashhad University of Medical SciencesMashhadIran
| | - Mahtab Ramezani
- Neuromuscular Research Center, Department of Neurology, Shariati HospitalTehran University of Medical SciencesTehranIran
| | - Omid Hesami
- Neuromuscular Research Center, Department of Neurology, Shariati HospitalTehran University of Medical SciencesTehranIran
- Department of NeurologyShahid Beheshti University of Medical SciencesTehranIran
| | - Saharnaz Pezeshgi
- Neuromuscular Research Center, Department of Neurology, Shariati HospitalTehran University of Medical SciencesTehranIran
| | - Seyed Amir Hossein Batouli
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in MedicineTehran University of Medical SciencesTehranIran
| |
Collapse
|
5
|
Giri A, Mehan S, Khan Z, Das Gupta G, Narula AS, Kalfin R. Modulation of neural circuits by melatonin in neurodegenerative and neuropsychiatric disorders. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3867-3895. [PMID: 38225412 DOI: 10.1007/s00210-023-02939-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/30/2023] [Indexed: 01/17/2024]
Abstract
Neurodegenerative and neuropsychiatric disorders are two broad categories of neurological disorders characterized by progressive impairments in movement and cognitive functions within the central and peripheral nervous systems, and have emerged as a significant cause of mortality. Oxidative stress, neuroinflammation, and neurotransmitter imbalances are recognized as prominent pathogenic factors contributing to cognitive deficits and neurobehavioral anomalies. Consequently, preventing neurodegenerative and neuropsychiatric diseases has surfaced as a pivotal challenge in contemporary public health. This review explores the investigation of neurodegenerative and neuropsychiatric disorders using both synthetic and natural bioactive compounds. A central focus lies on melatonin, a neuroregulatory hormone secreted by the pineal gland in response to light-dark cycles. Melatonin, an amphiphilic molecule, assumes multifaceted roles, including scavenging free radicals, modulating energy metabolism, and synchronizing circadian rhythms. Noteworthy for its robust antioxidant and antiapoptotic properties, melatonin exhibits diverse neuroprotective effects. The inherent attributes of melatonin position it as a potential key player in the pathophysiology of neurological disorders. Preclinical and clinical studies have demonstrated melatonin's efficacy in alleviating neuropathological symptoms across neurodegenerative and neuropsychiatric conditions (depression, schizophrenia, bipolar disorder, and autism spectrum disorder). The documented neuroprotective prowess of melatonin introduces novel therapeutic avenues for addressing neurodegenerative and psychiatric disorders. This comprehensive review encompasses many of melatonin's applications in treating diverse brain disorders. Despite the strides made, realizing melatonin's full neuroprotective potential necessitates further rigorous clinical investigations. By unravelling the extended neuroprotective benefits of melatonin, future studies promise to deepen our understanding and augment the therapeutic implications against neurological deficits.
Collapse
Affiliation(s)
- Aditi Giri
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy Moga, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy Moga, Punjab, India.
- IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India.
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy Moga, Punjab, India
- IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | | | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC, 27516, USA
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, Sofia, 1113, Bulgaria
- Department of Healthcare, South-West University "NeofitRilski", Ivan Mihailov St. 66, Blagoevgrad, 2700, Bulgaria
| |
Collapse
|
6
|
Felício D, Santos M. Spinocerebellar ataxia type 11 (SCA11): TTBK2 variants, functions and associated disease mechanisms. CEREBELLUM (LONDON, ENGLAND) 2024; 23:678-687. [PMID: 36892783 PMCID: PMC10951003 DOI: 10.1007/s12311-023-01540-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/02/2023] [Indexed: 03/10/2023]
Abstract
Spinocerebellar ataxia type 11 (SCA11) is a rare type of autosomal dominant cerebellar ataxia, mainly characterized by progressive cerebellar ataxia, abnormal eye signs and dysarthria. SCA11 is caused by variants in TTBK2, which encodes tau tubulin kinase 2 (TTBK2) protein. Only a few families with SCA11 were described to date, all harbouring small deletions or insertions that result in frameshifts and truncated TTBK2 proteins. In addition, TTBK2 missense variants were also reported but they were either benign or still needed functional validation to ascertain their pathogenic potential in SCA11. The mechanisms behind cerebellar neurodegeneration mediated by TTBK2 pathogenic alleles are not clearly established. There is only one neuropathological report and a few functional studies in cell or animal models published to date. Moreover, it is still unclear whether the disease is caused by TTBK2 haploinsufficiency of by a dominant negative effect of TTBK2 truncated forms on the normal allele. Some studies point to a lack of kinase activity and mislocalization of mutated TTBK2, while others reported a disruption of normal TTBK2 function caused by SCA11 alleles, particularly during ciliogenesis. Although TTBK2 has a proven function in cilia formation, the phenotype caused by heterozygous TTBK2 truncating variants are not clearly typical of ciliopathies. Thus, other cellular mechanisms may explain the phenotype seen in SCA11. Neurotoxicity caused by impaired TTBK2 kinase activity against known neuronal targets, such as tau, TDP-43, neurotransmitter receptors or transporters, may contribute to neurodegeneration in SCA11.
Collapse
Affiliation(s)
- Daniela Felício
- UnIGENe, IBMC-Institute for Molecular and Cell Biology, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
- ICBAS, Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313, Porto, Portugal
| | - Mariana Santos
- UnIGENe, IBMC-Institute for Molecular and Cell Biology, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal.
| |
Collapse
|
7
|
Gushi S, Balis V. Mitochondrial Inherited Disorders and their Correlation with Neurodegenerative Diseases. Endocr Metab Immune Disord Drug Targets 2024; 24:381-393. [PMID: 37937560 DOI: 10.2174/0118715303250271231018103202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/13/2023] [Accepted: 09/15/2023] [Indexed: 11/09/2023]
Abstract
Mitochondria are essential organelles for the survival of a cell because they produce energy. The cells that need more mitochondria are neurons because they perform a variety of tasks that are necessary to support brain homeostasis. The build-up of abnormal proteins in neurons, as well as their interactions with mitochondrial proteins, or MAM proteins, cause serious health issues. As a result, mitochondrial functions, such as mitophagy, are impaired, resulting in the disorders described in this review. They are also due to mtDNA mutations, which alter the heritability of diseases. The topic of disease prevention, as well as the diagnosis, requires further explanation and exploration. Finally, there are treatments that are quite promising, but more detailed research is needed.
Collapse
Affiliation(s)
- Sofjana Gushi
- Department of Health Science and Biomedical Science, Metropolitan College - Thessaloniki Campus, Thessaloniki, Greece
| | - Vasileios Balis
- Department of Health Science and Biomedical Science, Metropolitan College - Thessaloniki Campus, Thessaloniki, Greece
| |
Collapse
|
8
|
Pennings M, Meijer RPP, Gerrits M, Janssen J, Pfundt R, de Leeuw N, Gilissen C, Gardeitchik T, Schouten M, Voermans N, van de Warrenburg B, Kamsteeg EJ. Copy number variants from 4800 exomes contribute to ~7% of genetic diagnoses in movement disorders, muscle disorders and neuropathies. Eur J Hum Genet 2023; 31:654-662. [PMID: 36781956 PMCID: PMC10250492 DOI: 10.1038/s41431-023-01312-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 01/11/2023] [Accepted: 02/01/2023] [Indexed: 02/15/2023] Open
Abstract
Various groups of neurological disorders, including movement disorders and neuromuscular diseases, are clinically and genetically heterogeneous. Diagnostic panel-based exome sequencing is a routine test for these disorders. Despite the success rates of exome sequencing, it results in the detection of causative sequence variants in 'only' 25-30% of cases. Copy number variants (CNVs), i.e. deletion or duplications, explain 10-20% of individuals with multisystemic phenotypes, such as co-existing intellectual disability, but may also have a role in disorders affecting a single system (organ), like neurological disorders with normal intelligence. In this study, CNVs were extracted from clinical exome sequencing reports of 4800 probands primarily with a movement disorder, myopathy or neuropathy. In 88 (~2%) probands, phenotype-matching CNVs were detected, representing ~7% of genetically confirmed cases. CNVs varied from involvement of over 100 genes to single exons and explained X-linked, autosomal dominant, or - recessive disorders, the latter due to either a homozygous CNV or a compound heterozygous CNV with a sequence variant on the other allele. CNVs were detected affecting genes where deletions or duplications are established as a common mechanism, like PRKN (in Parkinson's disease), DMD (in Duchenne muscular dystrophy) and PMP22 (in neuropathies), but also genes in which no intragenic CNVs have been reported to date. Analysis of CNVs as part of panel-based exome sequencing for genetically heterogeneous neurological diseases provides an additional diagnostic yield of ~2% without extra laboratory costs. Therefore it is recommended to perform CNV analysis for movement disorders, muscle disease, neuropathies, or any other single-system disorder.
Collapse
Affiliation(s)
- Maartje Pennings
- Department of Human Genetics, Radboud university medical center, Nijmegen, the Netherlands
| | - Rowdy P P Meijer
- Department of Human Genetics, Radboud university medical center, Nijmegen, the Netherlands
| | - Monique Gerrits
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Jannie Janssen
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud university medical center, Nijmegen, the Netherlands
| | - Nicole de Leeuw
- Department of Human Genetics, Radboud university medical center, Nijmegen, the Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Radboud university medical center, Nijmegen, the Netherlands
| | - Thatjana Gardeitchik
- Department of Human Genetics, Radboud university medical center, Nijmegen, the Netherlands
| | - Meyke Schouten
- Department of Human Genetics, Radboud university medical center, Nijmegen, the Netherlands
| | - Nicol Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical Center, Nijmegen, the Netherlands
| | - Bart van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical Center, Nijmegen, the Netherlands
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud university medical center, Nijmegen, the Netherlands.
| |
Collapse
|
9
|
Sintila SA, Boziki M, Bakirtzis C, Stardeli T, Smyrni N, Nikolaidis I, Parissis D, Afrantou T, Karapanayiotides T, Koutroulou I, Giantzi V, Theotokis P, Kesidou E, Xiromerisiou G, Dardiotis E, Ioannidis P, Grigoriadis N. The Experience of a Tertiary Reference Hospital in the Study of Rare Neurological Diseases. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59020266. [PMID: 36837468 PMCID: PMC9959728 DOI: 10.3390/medicina59020266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023]
Abstract
Background and Objectives: Rare diseases (RDs) are life-threatening or chronically impairing conditions that affect about 6% of the world's population. RDs are often called 'orphan' diseases, since people suffering from them attract little support from national health systems. Aim: The aim of this study is to describe the clinical characteristics of, and the available laboratory examinations for, patients who were hospitalized in a tertiary referral center and finally received a diagnosis associated with a Rare Neurological Disease (RND). Materials and Methods: Patients that were hospitalized in our clinic from 1 January 2014 to 31 March 2022 and were finally diagnosed with an RND were consecutively included. The RND classification was performed according to the ORPHAcode system. Results: A total of 342 out of 11.850 (2.9%) adult patients admitted to our department during this period received a diagnosis associated with an RND. The most common diagnosis (N = 80, 23%) involved an RND presenting with dementia, followed by a motor neuron disease spectrum disorder (N = 64, 18.7%). Family history indicative of an RND was present in only 21 patients (6.1%). Fifty-five (16%) people had previously been misdiagnosed with another neurological condition. The mean time delay between disease onset and diagnosis was 4.24 ± 0.41 years. Conclusions: Our data indicate that a broad spectrum of RNDs may reach a tertiary Neurological Center after a significant delay. Moreover, our data underline the need for a network of reference centers, both at a national and international level, expected to support research on the diagnosis and treatment of RND.
Collapse
Affiliation(s)
- Styliani-Aggeliki Sintila
- 2nd Department of Neurology, AHEPA University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Marina Boziki
- 2nd Department of Neurology, AHEPA University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Christos Bakirtzis
- 2nd Department of Neurology, AHEPA University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Thomai Stardeli
- 2nd Department of Neurology, AHEPA University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Nikoletta Smyrni
- 2nd Department of Neurology, AHEPA University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Ioannis Nikolaidis
- 2nd Department of Neurology, AHEPA University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Dimitrios Parissis
- 2nd Department of Neurology, AHEPA University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Theodora Afrantou
- 2nd Department of Neurology, AHEPA University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Theodore Karapanayiotides
- 2nd Department of Neurology, AHEPA University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Ioanna Koutroulou
- 2nd Department of Neurology, AHEPA University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Virginia Giantzi
- 2nd Department of Neurology, AHEPA University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Paschalis Theotokis
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, AHEPA University Hospital, 54636 Thessaloniki, Greece
| | - Evangelia Kesidou
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, AHEPA University Hospital, 54636 Thessaloniki, Greece
| | - Georgia Xiromerisiou
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece
| | - Efthimios Dardiotis
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece
| | - Panagiotis Ioannidis
- 2nd Department of Neurology, AHEPA University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
- Correspondence: (P.I.); (N.G.)
| | - Nikolaos Grigoriadis
- 2nd Department of Neurology, AHEPA University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
- Correspondence: (P.I.); (N.G.)
| |
Collapse
|
10
|
Xing L, Wu C, Wang J, Wei S, Yuan K, Qin D. Editorial: Using novel technologies and models to identify biomarkers and explore therapeutic strategies for neurological disorders. Front Behav Neurosci 2023; 17:1151667. [PMID: 37035626 PMCID: PMC10076828 DOI: 10.3389/fnbeh.2023.1151667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/10/2023] [Indexed: 04/11/2023] Open
Affiliation(s)
- Liwei Xing
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Chengbiao Wu
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| | - Jiaojian Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Sheng Wei
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kai Yuan
- The Second Clinical Medical School, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Kai Yuan
| | - Dongdong Qin
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- *Correspondence: Dongdong Qin
| |
Collapse
|
11
|
Lee KY. Common immunopathogenesis of central nervous system diseases: the protein-homeostasis-system hypothesis. Cell Biosci 2022; 12:184. [PMCID: PMC9668226 DOI: 10.1186/s13578-022-00920-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/30/2022] [Indexed: 11/17/2022] Open
Abstract
AbstractThere are hundreds of central nervous system (CNS) diseases, but there are few diseases for which the etiology or pathogenesis is understood as well as those of other organ-specific diseases. Cells in the CNS are selectively protected from external and internal insults by the blood–brain barrier. Thus, the neuroimmune system, including microglia and immune proteins, might control external or internal insults that the adaptive immune system cannot control or mitigate. The pathologic findings differ by disease and show a state of inflammation that reflects the relationship between etiological or inflammation-inducing substances and corresponding immune reactions. Current immunological concepts about infectious diseases and infection-associated immune-mediated diseases, including those in the CNS, can only partly explain the pathophysiology of disease because they are based on the idea that host cell injury is caused by pathogens. Because every disease involves etiological or triggering substances for disease-onset, the protein-homeostasis-system (PHS) hypothesis proposes that the immune systems in the host control those substances according to the size and biochemical properties of the substances. In this article, I propose a common immunopathogenesis of CNS diseases, including prion diseases, Alzheimer’s disease, and genetic diseases, through the PHS hypothesis.
Collapse
|
12
|
Kakoti BB, Bezbaruah R, Ahmed N. Therapeutic drug repositioning with special emphasis on neurodegenerative diseases: Threats and issues. Front Pharmacol 2022; 13:1007315. [PMID: 36263141 PMCID: PMC9574100 DOI: 10.3389/fphar.2022.1007315] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/12/2022] [Indexed: 11/21/2022] Open
Abstract
Drug repositioning or repurposing is the process of discovering leading-edge indications for authorized or declined/abandoned molecules for use in different diseases. This approach revitalizes the traditional drug discovery method by revealing new therapeutic applications for existing drugs. There are numerous studies available that highlight the triumph of several drugs as repurposed therapeutics. For example, sildenafil to aspirin, thalidomide to adalimumab, and so on. Millions of people worldwide are affected by neurodegenerative diseases. According to a 2021 report, the Alzheimer's disease Association estimates that 6.2 million Americans are detected with Alzheimer's disease. By 2030, approximately 1.2 million people in the United States possibly acquire Parkinson's disease. Drugs that act on a single molecular target benefit people suffering from neurodegenerative diseases. Current pharmacological approaches, on the other hand, are constrained in their capacity to unquestionably alter the course of the disease and provide patients with inadequate and momentary benefits. Drug repositioning-based approaches appear to be very pertinent, expense- and time-reducing strategies for the enhancement of medicinal opportunities for such diseases in the current era. Kinase inhibitors, for example, which were developed for various oncology indications, demonstrated significant neuroprotective effects in neurodegenerative diseases. This review expounds on the classical and recent examples of drug repositioning at various stages of drug development, with a special focus on neurodegenerative disorders and the aspects of threats and issues viz. the regulatory, scientific, and economic aspects.
Collapse
Affiliation(s)
- Bibhuti Bhusan Kakoti
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, India
| | | | | |
Collapse
|
13
|
Khan A, Tian S, Tariq M, Khan S, Safeer M, Ullah N, Akbar N, Javed I, Asif M, Ahmad I, Ullah S, Satti HS, Khan R, Naeem M, Ali M, Rendu J, Fauré J, Dieterich K, Latypova X, Baig SM, Malik NA, Zhang F, Khan TN, Liu C. NGS-driven molecular diagnosis of heterogeneous hereditary neurological disorders reveals novel and known variants in disease-causing genes. Mol Genet Genomics 2022; 297:1601-1613. [PMID: 36002593 DOI: 10.1007/s00438-022-01945-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/11/2022] [Indexed: 11/28/2022]
Abstract
Hereditary neurological disorders (HNDs) are a clinically and genetically heterogeneous group of disorders. These disorders arise from the impaired function of the central or peripheral nervous system due to aberrant electrical impulses. More than 600 various neurological disorders, exhibiting a wide spectrum of overlapping clinical presentations depending on the organ(s) involved, have been documented. Owing to this clinical heterogeneity, diagnosing these disorders has been a challenge for both clinicians and geneticists and a large number of patients are either misdiagnosed or remain entirely undiagnosed. Contribution of genetics to neurological disorders has been recognized since long; however, the complete picture of the underlying molecular bases are under-explored. The aim of this study was to accurately diagnose 11 unrelated Pakistani families with various HNDs deploying NGS as a first step approach. Using exome sequencing and gene panel sequencing, we successfully identified disease-causing genomic variants these families. We report four novel variants, one each in, ECEL1, NALCN, TBR1 and PIGP in four of the pedigrees. In the rest of the seven families, we found five previously reported pathogenic variants in POGZ, FA2H, PLA2G6 and CYP27A1. Of these, three families segregate a homozygous 18 bp in-frame deletion of FA2H, indicating a likely founder mutation segregating in Pakistani population. Genotyping for this mutation can help low-cost population wide screening in the corresponding regions of the country. Our findings not only expand the existing repertoire of mutational spectrum underlying neurological disorders but will also help in genetic testing of individuals with HNDs in other populations.
Collapse
Affiliation(s)
- Ayaz Khan
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Shixiong Tian
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200438, China
| | - Muhammad Tariq
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Sheraz Khan
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Muhammad Safeer
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra, Pakistan
| | - Naimat Ullah
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Nazia Akbar
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra, Pakistan
| | - Iram Javed
- Department of Paediatric Neurology, Children Hospital and Institute of Child Health, Faisalabad, Pakistan
| | - Mahnoor Asif
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Ilyas Ahmad
- Institute for Cardiogenetics, University of Lübeck, DZHK (German Research Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, University Heart Center Lübeck, Lübeck, Germany
| | - Shahid Ullah
- Department of General Surgery, Hayatabad Medical Complex, Peshawar, 2500, Pakistan
| | - Humayoon Shafique Satti
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, 46000, Pakistan
| | - Raees Khan
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, 46000, Pakistan.,NUMS Institute of Advance Studies and Research, National University of Medical Sciences, Rawalpindi, 46000, Pakistan
| | - Muhammad Naeem
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, 46000, Pakistan
| | - Mahwish Ali
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, 46000, Pakistan.,NUMS Institute of Advance Studies and Research, National University of Medical Sciences, Rawalpindi, 46000, Pakistan
| | - John Rendu
- Inserm, U1216, CHU Grenoble Alpes, Grenoble Institute of Neurosciences, University of Grenoble Alpes, 38000, Grenoble, France
| | - Julien Fauré
- Inserm, U1216, CHU Grenoble Alpes, Grenoble Institute of Neurosciences, University of Grenoble Alpes, 38000, Grenoble, France
| | - Klaus Dieterich
- Inserm, U1209, CHU Grenoble Alpes, Institute of Advanced Biosciences, University of Grenoble Alpes, 38000, Grenoble, France
| | - Xenia Latypova
- Inserm, U1216, CHU Grenoble Alpes, Grenoble Institute of Neurosciences, University of Grenoble Alpes, 38000, Grenoble, France
| | - Shahid Mahmood Baig
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan.,Pakistan Science Foundation, Constitution Avenue, Islamabad, Pakistan
| | - Naveed Altaf Malik
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Institute of Reproduction and Development, Fudan University, Shanghai, 200438, China
| | - Tahir Naeem Khan
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, 46000, Pakistan. .,NUMS Institute of Advance Studies and Research, National University of Medical Sciences, Rawalpindi, 46000, Pakistan. .,Advanced Center for Translational and Genetic Medicine, Stanley Manne Children's Research Institute, Lurie Children's Hospital, Departments of Pediatrics and Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, United States.
| | - Chunyu Liu
- Obstetrics and Gynecology Hospital, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Institute of Reproduction and Development, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
14
|
Picone P. Nanobiotechnology: A New Frontier for Brain Disorders. Int J Mol Sci 2022; 23:ijms23179603. [PMID: 36076998 PMCID: PMC9455621 DOI: 10.3390/ijms23179603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Brain disorders, such as neurodegenerative diseases (NDs) and tumors (more than 600 pathologies), are a serious health problem, resulting in brain dysfunctions that limit normal activities, with a significant economic impact [...]
Collapse
Affiliation(s)
- Pasquale Picone
- Istituto per la Ricerca e l’Innovazione Biomedica, CNR, Via U. La Malfa 153, 90146 Palermo, Italy;
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| |
Collapse
|
15
|
Rumsey JW, Lorance C, Jackson M, Sasserath T, McAleer CW, Long CJ, Goswami A, Russo MA, Raja SM, Gable KL, Emmett D, Hobson-Webb LD, Chopra M, Howard JF, Guptill JT, Storek MJ, Alonso-Alonso M, Atassi N, Panicker S, Parry G, Hammond T, Hickman JJ. Classical Complement Pathway Inhibition in a "Human-On-A-Chip" Model of Autoimmune Demyelinating Neuropathies. ADVANCED THERAPEUTICS 2022; 5:2200030. [PMID: 36211621 PMCID: PMC9540753 DOI: 10.1002/adtp.202200030] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Indexed: 07/21/2023]
Abstract
Chronic autoimmune demyelinating neuropathies are a group of rare neuromuscular disorders with complex, poorly characterized etiology. Here we describe a phenotypic, human-on-a-chip (HoaC) electrical conduction model of two rare autoimmune demyelinating neuropathies, chronic inflammatory demyelinating polyneuropathy (CIDP) and multifocal motor neuropathy (MMN), and explore the efficacy of TNT005, a monoclonal antibody inhibitor of the classical complement pathway. Patient sera was shown to contain anti-GM1 IgM and IgG antibodies capable of binding to human primary Schwann cells and induced pluripotent stem cell derived motoneurons. Patient autoantibody binding was sufficient to activate the classical complement pathway resulting in detection of C3b and C5b-9 deposits. A HoaC model, using a microelectrode array with directed axonal outgrowth over the electrodes treated with patient sera, exhibited reductions in motoneuron action potential frequency and conduction velocity. TNT005 rescued the serum-induced complement deposition and functional deficits while treatment with an isotype control antibody had no rescue effect. These data indicate that complement activation by CIDP and MMN patient serum is sufficient to mimic neurophysiological features of each disease and that complement inhibition with TNT005 was sufficient to rescue these pathological effects and provide efficacy data included in an investigational new drug application, demonstrating the model's translational potential.
Collapse
Affiliation(s)
- John W Rumsey
- Hesperos, Inc., 12501 Research Parkway, Suite 100, Orlando, FL 32826
| | - Case Lorance
- Hesperos, Inc., 12501 Research Parkway, Suite 100, Orlando, FL 32826
| | - Max Jackson
- Hesperos, Inc., 12501 Research Parkway, Suite 100, Orlando, FL 32826
| | - Trevor Sasserath
- Hesperos, Inc., 12501 Research Parkway, Suite 100, Orlando, FL 32826
| | | | | | - Arindom Goswami
- NanoScience Technology Center, University of Central Florida, Orlando, Florida, USA
| | - Melissa A Russo
- Division of Neuromuscular Disease, Department of Neurology, Duke University Medical Center, Box 3403, Durham, NC, USA
| | - Shruti M Raja
- Division of Neuromuscular Disease, Department of Neurology, Duke University Medical Center, Box 3403, Durham, NC, USA
| | - Karissa L Gable
- Division of Neuromuscular Disease, Department of Neurology, Duke University Medical Center, Box 3403, Durham, NC, USA
| | - Doug Emmett
- Division of Neuromuscular Disease, Department of Neurology, Duke University Medical Center, Box 3403, Durham, NC, USA
| | - Lisa D Hobson-Webb
- Division of Neuromuscular Disease, Department of Neurology, Duke University Medical Center, Box 3403, Durham, NC, USA
| | - Manisha Chopra
- Department of Neurology, The University of North Carolina - Chapel Hill, School of Medicine, Chapel Hill, NC, USA
| | - James F Howard
- Department of Neurology, The University of North Carolina - Chapel Hill, School of Medicine, Chapel Hill, NC, USA
| | - Jeffrey T Guptill
- Division of Neuromuscular Disease, Department of Neurology, Duke University Medical Center, Box 3403, Durham, NC, USA
| | - Michael J Storek
- Sanofi, Immunology and Inflammation, 225 2 Ave, Waltham, MA, 02451 USA
| | | | - Nazem Atassi
- Sanofi, Neurology Early Development, 50 Binney Street, Cambridge, MA, 02142 USA
| | - Sandip Panicker
- Bioverativ, a Sanofi company, 225 2 Ave, Waltham, MA, 02451 USA
| | - Graham Parry
- Bioverativ, a Sanofi company, 225 2 Ave, Waltham, MA, 02451 USA
| | - Timothy Hammond
- Sanofi, Neurological Diseases, 49 New York Ave, Framingham, MA, 01701 USA
| | - James J Hickman
- Hesperos, Inc., 12501 Research Parkway, Suite 100, Orlando, FL 32826
- NanoScience Technology Center, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
16
|
Schuermans N, Hemelsoet D, Terryn W, Steyaert S, Van Coster R, Coucke PJ, Steyaert W, Callewaert B, Bogaert E, Verloo P, Vanlander AV, Debackere E, Ghijsels J, LeBlanc P, Verdin H, Naesens L, Haerynck F, Callens S, Dermaut B, Poppe B. Shortcutting the diagnostic odyssey: the multidisciplinary Program for Undiagnosed Rare Diseases in adults (UD-PrOZA). Orphanet J Rare Dis 2022; 17:210. [PMID: 35606766 PMCID: PMC9128245 DOI: 10.1186/s13023-022-02365-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/13/2022] [Indexed: 11/23/2022] Open
Abstract
Background In order to facilitate the diagnostic process for adult patients suffering from a rare disease, the Undiagnosed Disease Program (UD-PrOZA) was founded in 2015 at the Ghent University Hospital in Belgium. In this study we report the five-year results of our multidisciplinary approach in rare disease diagnostics. Methods Patients referred by a healthcare provider, in which an underlying rare disease is likely, qualify for a UD-PrOZA evaluation. UD-PrOZA uses a multidisciplinary clinical approach combined with state-of-the-art genomic technologies in close collaboration with research facilities to diagnose patients. Results Between 2015 and 2020, 692 patients (94% adults) were referred of which 329 (48%) were accepted for evaluation. In 18% (60 of 329) of the cases a definite diagnosis was made. 88% (53 of 60) of the established diagnoses had a genetic origin. 65% (39 of 60) of the genetic diagnoses were made through whole exome sequencing (WES). The mean time interval between symptom-onset and diagnosis was 19 years. Key observations included novel genotype–phenotype correlations, new variants in known disease genes and the identification of three new disease genes. In 13% (7 of 53), identifying the molecular cause was associated with therapeutic recommendations and in 88% (53 of 60), gene specific genetic counseling was made possible. Actionable secondary findings were reported in 7% (12 of 177) of the patients in which WES was performed. Conclusion UD-PrOZA offers an innovative interdisciplinary platform to diagnose rare diseases in adults with previously unexplained medical problems and to facilitate translational research. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02365-y.
Collapse
Affiliation(s)
- Nika Schuermans
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium. .,Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.
| | | | - Wim Terryn
- Department of Nephrology, Jan Yperman Hospital, Ieper, Belgium
| | - Sanne Steyaert
- Department of General Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | - Rudy Van Coster
- Department of Pediatrics, Division of Pediatric Neurology and Metabolic Diseases, Ghent University Hospital, Ghent, Belgium
| | - Paul J Coucke
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.,Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Wouter Steyaert
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bert Callewaert
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.,Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Elke Bogaert
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.,Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Patrick Verloo
- Department of Pediatrics, Division of Pediatric Neurology and Metabolic Diseases, Ghent University Hospital, Ghent, Belgium
| | - Arnaud V Vanlander
- Department of Pediatrics, Division of Pediatric Neurology and Metabolic Diseases, Ghent University Hospital, Ghent, Belgium
| | - Elke Debackere
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.,Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Jody Ghijsels
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.,Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Pontus LeBlanc
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.,Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Hannah Verdin
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.,Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Leslie Naesens
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium.,Primary Immunodeficiency Research Lab, Center for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital, Ghent, Belgium
| | - Filomeen Haerynck
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
| | - Steven Callens
- Department of General Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | - Bart Dermaut
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.,Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Bruce Poppe
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.,Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | | |
Collapse
|
17
|
Shah S, Dooms MM, Amaral-Garcia S, Igoillo-Esteve M. Current Drug Repurposing Strategies for Rare Neurodegenerative Disorders. Front Pharmacol 2022; 12:768023. [PMID: 34992533 PMCID: PMC8724568 DOI: 10.3389/fphar.2021.768023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
Rare diseases are life-threatening or chronically debilitating low-prevalent disorders caused by pathogenic mutations or particular environmental insults. Due to their high complexity and low frequency, important gaps still exist in their prevention, diagnosis, and treatment. Since new drug discovery is a very costly and time-consuming process, leading pharmaceutical companies show relatively low interest in orphan drug research and development due to the high cost of investments compared to the low market return of the product. Drug repurposing–based approaches appear then as cost- and time-saving strategies for the development of therapeutic opportunities for rare diseases. In this article, we discuss the scientific, regulatory, and economic aspects of the development of repurposed drugs for the treatment of rare neurodegenerative disorders with a particular focus on Huntington’s disease, Friedreich’s ataxia, Wolfram syndrome, and amyotrophic lateral sclerosis. The role of academia, pharmaceutical companies, patient associations, and foundations in the identification of candidate compounds and their preclinical and clinical evaluation will also be discussed.
Collapse
Affiliation(s)
- Sweta Shah
- Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | |
Collapse
|
18
|
Picone P, Palumbo FS, Federico S, Pitarresi G, Adamo G, Bongiovanni A, Chaves A, Cancemi P, Muccilli V, Giglio V, Vetri V, Anselmo S, Sancataldo G, Di Liberto V, Nuzzo D. Nano-structured myelin: new nanovesicles for targeted delivery to white matter and microglia, from brain-to-brain. Mater Today Bio 2021; 12:100146. [PMID: 34761196 PMCID: PMC8567303 DOI: 10.1016/j.mtbio.2021.100146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 01/04/2023] Open
Abstract
Neurodegenerative diseases affect millions of people worldwide and the presence of various physiological barriers limits the accessibility to the brain and reduces the efficacy of various therapies. Moreover, new carriers having targeting properties to specific brain regions and cells are needed in order to improve therapies for the brain disorder treatment. In this study, for the first time, Myelin nanoVesicles (hereafter defined MyVes) from brain-extracted myelin were produced. The MyVes have an average diameter of 100–150 nm, negative zeta potential, spheroidal morphology, and contain lipids and the key proteins of the myelin sheath. Furthermore, they exhibit good cytocompatibility. The MyVes were able to target the white matter and interact mainly with the microglia cells. The preliminary results here presented allow us to suppose the employment of MyVes as potential carrier to target the white matter and microglia in order to counteract white matter microglia-related diseases. Bio-fabrication of brain tissue derived nanovesicles: myelin nanovesicles. Myelin nanovesicles contain the main proteins of the myelin sheath (myelin basic protein and myelin proteolipid protein). Myelin nanovesicles can lade a drug/molecule and cross a blood–brain barrier model. Myelin nanovesicles target white matter and microglia cells.
Collapse
Affiliation(s)
- Pasquale Picone
- Istituto per la Ricerca e l’Innovazione Biomedica, CNR, via U. La Malfa 153, 90146, Palermo, Italy
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Viale delle Scienze, 90128, Palermo, Italy
- Corresponding author.
| | - Fabio Salvatore Palumbo
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Viale delle Scienze, 90128, Palermo, Italy
| | - Salvatore Federico
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Viale delle Scienze, 90128, Palermo, Italy
| | - Giovanna Pitarresi
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Viale delle Scienze, 90128, Palermo, Italy
| | - Giorgia Adamo
- Istituto per la Ricerca e l’Innovazione Biomedica, CNR, via U. La Malfa 153, 90146, Palermo, Italy
| | - Antonella Bongiovanni
- Istituto per la Ricerca e l’Innovazione Biomedica, CNR, via U. La Malfa 153, 90146, Palermo, Italy
| | - Antonio Chaves
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Festa del Perdono 7, 20122, Milano, Italy
| | - Patrizia Cancemi
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Viale delle Scienze, 90128, Palermo, Italy
| | - Vera Muccilli
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria, 6, I-95125, Catania, Italy
| | - Valentina Giglio
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria, 6, I-95125, Catania, Italy
| | - Valeria Vetri
- Dipartimento di Fisica e Chimica-Emilio Segrè, Università degli studi di Palermo, Viale delle Scienze edificio 18, 90128, Palermo, Italy
| | - Sara Anselmo
- Dipartimento di Fisica e Chimica-Emilio Segrè, Università degli studi di Palermo, Viale delle Scienze edificio 18, 90128, Palermo, Italy
| | - Giuseppe Sancataldo
- Dipartimento di Fisica e Chimica-Emilio Segrè, Università degli studi di Palermo, Viale delle Scienze edificio 18, 90128, Palermo, Italy
| | - Valentina Di Liberto
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Corso Tukory 129, 90134, Palermo, Italy
| | - Domenico Nuzzo
- Istituto per la Ricerca e l’Innovazione Biomedica, CNR, via U. La Malfa 153, 90146, Palermo, Italy
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Viale delle Scienze, 90128, Palermo, Italy
- Corresponding author.
| |
Collapse
|
19
|
Cathepsin D-Managing the Delicate Balance. Pharmaceutics 2021; 13:pharmaceutics13060837. [PMID: 34198733 PMCID: PMC8229105 DOI: 10.3390/pharmaceutics13060837] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/11/2022] Open
Abstract
Lysosomal proteases play a crucial role in maintaining cell homeostasis. Human cathepsin D manages protein turnover degrading misfolded and aggregated proteins and favors apoptosis in the case of proteostasis disruption. However, when cathepsin D regulation is affected, it can contribute to numerous disorders. The down-regulation of human cathepsin D is associated with neurodegenerative disorders, such as neuronal ceroid lipofuscinosis. On the other hand, its excessive levels outside lysosomes and the cell membrane lead to tumor growth, migration, invasion and angiogenesis. Therefore, targeting cathepsin D could provide significant diagnostic benefits and new avenues of therapy. Herein, we provide a brief overview of cathepsin D structure, regulation, function, and its role in the progression of many diseases and the therapeutic potentialities of natural and synthetic inhibitors and activators of this protease.
Collapse
|
20
|
Yirun A, Ozkemahli G, Balci A, Erkekoglu P, Zeybek ND, Yersal N, Kocer-Gumusel B. Neuroendocrine disruption by bisphenol A and/or di(2-ethylhexyl) phthalate after prenatal, early postnatal and lactational exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:26961-26974. [PMID: 33496947 DOI: 10.1007/s11356-021-12408-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Bisphenol A (BPA) and di(2-ethylhexyl)phthalate (DEHP) are abundant endocrine disrupting chemicals (EDCs). In recent years, studies showed that EDCs may lead to neurodevelopmental diseases. The effects of prenatal exposure to these chemicals may have serious consequences. Moreover, exposure to EDCs as a mixture may have different effects than individual exposures. The present study aimed to determine the toxicity of BPA and/or DEHP on central nervous system (CNS) and neuroendocrine system in prenatal and lactational period in Sprague-Dawley rats. Pregnant rats were randomly divided into four groups: control (received vehicle); BPA group (received BPA at 50 mg/kg/day); DEHP group (received DEHP at 30 mg/kg/day); and combined exposure group (received both BPA at 50 mg/kg/day and DEHP at 30 mg/kg/day) during pregnancy and lactation by oral gavage. At the end of lactation, male offspring (n = 6) were randomly grouped. The alterations in the brain histopathology, neurotransmitter levels and enzyme activities in the cerebrum region, oxidative stress markers, and apoptotic effects in the hippocampus region were determined at adulthood. The results showed that exposure to EDCs at early stages of life caused significant changes in lipid peroxidation, total GSH and neurotransmitter levels, and activities of neurotransmitter-related enzymes. Moreover, BPA and/or DEHP led to apoptosis and histopathologic alterations in the hippocampus. Therefore, we can suggest that changes in oxidant/antioxidant status, as well as in neurotransmitters and related enzymes, can be considered as the underlying neurotoxicity mechanisms of BPA and DEHP. However, more mechanistic studies are needed.
Collapse
Affiliation(s)
- Anil Yirun
- Faculty of Pharmacy, Department of Toxicology, Hacettepe University, Ankara, Turkey
- Faculty of Pharmacy, Department of Toxicology, Çukurova University, Adana, Turkey
| | - Gizem Ozkemahli
- Faculty of Pharmacy, Department of Toxicology, Hacettepe University, Ankara, Turkey
- Faculty of Pharmacy, Department of Toxicology, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Aylin Balci
- Faculty of Pharmacy, Department of Toxicology, Hacettepe University, Ankara, Turkey
| | - Pinar Erkekoglu
- Faculty of Pharmacy, Department of Toxicology, Hacettepe University, Ankara, Turkey
| | - Naciye Dilara Zeybek
- Faculty of Medicine, Department of Histology and Embryology, Hacettepe University, Ankara, Turkey
| | - Nilgun Yersal
- Faculty of Medicine, Department of Histology and Embryology, Hacettepe University, Ankara, Turkey
| | - Belma Kocer-Gumusel
- Faculty of Pharmacy, Department of Toxicology, Lokman Hekim University, Ankara, Turkey.
| |
Collapse
|
21
|
Chiu ATG, Li J, Chang RSK, Chung CCY, Wong WHS, Ip P, Chan SHS. Prevalence and healthcare utilization of rare neurological diseases in Hong Kong: 2014-2018. Eur J Neurol 2021; 28:2305-2312. [PMID: 33793024 DOI: 10.1111/ene.14852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/22/2021] [Indexed: 01/28/2023]
Abstract
BACKGROUND There has been increasing attention focused on the epidemiology of rare diseases (RDs) in recent years. Rare neurological diseases (RNDs) constitute a significant proportion of RDs; however, relevant research is still lacking. METHODS A list of ICD-10 codes corresponding to RNDs was compiled using adaptations from the Orphanet Classification of Rare Diseases, and classified into rare epilepsy, movement-related, neurocutaneous, neuroimmune, neurometabolic and neurodegenerative, neuromuscular and other RNDs. Using the Clinical Data Analysis and Reporting System, which holds public hospital healthcare records of Hong Kong anonymously, we calculated the prevalence and healthcare utilization of RND patients between 2014 and 2018. The list of RNDs was also used to review relevant pharmacological trials within the International Clinical Trials Registry Platform between 2009 and 2018. RESULTS The prevalence of RNDs in Hong Kong is 3.6 in 1,000 individuals. Patients with RNDs had frequent emergency department, outpatient and inpatient healthcare utilization. The average annual cost per patient is estimated at HKD 182,075 (€ 19,688). Different categories of RNDs showed different patterns of healthcare utilization. Moreover, there were only 677 RND-related pharmacological trials during the study period, and no trial was found for 78% of RNDs. CONCLUSIONS This is one of the first population studies on the prevalence and healthcare utilization patterns of RNDs, with comprehensive reviews of RND-related pharmacological research. It shows high healthcare utilization rates among patients with RNDs, as well as a wide research gap in many RNDs. We call for better attention and tailored healthcare for these patients.
Collapse
Affiliation(s)
- Annie Ting Gee Chiu
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong SAR, China
| | - Jingjing Li
- Department of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
| | - Richard Shek Kwan Chang
- Department of Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
| | - Claudia Ching Yan Chung
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong SAR, China
| | - Wilfred Hing Sang Wong
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong SAR, China
| | - Patrick Ip
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong SAR, China
| | - Sophelia Hoi Shan Chan
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
22
|
Boziki M, Sintila SA, Ioannidis P, Grigoriadis N. Biomarkers in Rare Demyelinating Disease of the Central Nervous System. Int J Mol Sci 2020; 21:ijms21218409. [PMID: 33182495 PMCID: PMC7665127 DOI: 10.3390/ijms21218409] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 12/29/2022] Open
Abstract
Rare neurological diseases are a heterogeneous group corresponding approximately to 50% of all rare diseases. Neurologists are among the main specialists involved in their diagnostic investigation. At the moment, a consensus guideline on which neurologists may base clinical suspicion is not available. Moreover, neurologists need guidance with respect to screening investigations that may be performed. In this respect, biomarker research has emerged as a particularly active field due to its potential applications in clinical practice. With respect to autoimmune demyelinating diseases of the Central Nervous System (CNS), although these diseases occur in the frame of organ-specific autoimmunity, pathology of the disease itself is orchestrated among several anatomical and functional compartments. The differential diagnosis is broad and includes, but is not limited to, rare neurological diseases. Multiple Sclerosis (MS) needs to be differentially diagnosed from rare MS variants, Acute Disseminated Encephalomyelitis (ADEM), the range of Neuromyelitis Optica Spectrum Disorders (NMOSDs), Myelin Oligodendrocyte Glycoprotein (MOG) antibody disease and other systemic inflammatory diseases. Diagnostic biomarkers may facilitate timely diagnosis and proper disease management, preventing disease exacerbation due to misdiagnosis and false treatment. In this review, we will describe advances in biomarker research with respect to rare neuroinflammatory disease of the CNS.
Collapse
|
23
|
Griñán-Ferré C, Marsal-García L, Bellver-Sanchis A, Kondengaden SM, Turga RC, Vázquez S, Pallàs M. Pharmacological inhibition of G9a/GLP restores cognition and reduces oxidative stress, neuroinflammation and β-Amyloid plaques in an early-onset Alzheimer's disease mouse model. Aging (Albany NY) 2019; 11:11591-11608. [PMID: 31804189 PMCID: PMC6932909 DOI: 10.18632/aging.102558] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/20/2019] [Indexed: 05/08/2023]
Abstract
The implication of epigenetic mechanisms in Alzheimer's disease (AD) has been demonstrated in several studies. UNC0642, a specific and potent inhibitor of methyltransferase activity G9a/GLP (G9a-like) complex, was evaluated in the 5XFAD mouse model. UNC0642 treatment rescued 5XFAD cognition impairment, reduced DNA-methylation (5-mC), increased hydroxymethylation (5-hmC), and decreased the di-methylation of lysine 9 of histone H3 (H3K9me2) levels in the hippocampus. Increases in the Nuclear Factor erythroid-2-Related Factor 2 (NRF2), Heme oxygenase decycling 1 (Hmox1) gene expression, and diminution in Reactive Oxygen Species (ROS) were also reported. Moreover, neuroinflammatory markers, such as Interleukin 6 (Il-6), Tumor necrosis factor-alpha (Tnf-α) gene expression, and Glial fibrillary acidic protein (GFAP) immunofluorescence were reduced by UNC0642 treatment. An increase in Nerve growth factor (Ngf), Nerve growth factor inducible (Vgf) gene expression, Brain-derived neurotrophic factor (BDNF), and Synaptophysin (SYN) were found after UNC0642 treatment. Importantly, a reduction in β-amyloid plaques was also observed. In conclusion, our work demonstrates that the inhibition of the G9a/GLP complex by UNC0642 delivered significant neuroprotective effects in 5XFAD mice, point out G9a/GLP as a new target for AD.
Collapse
Affiliation(s)
- Christian Griñán-Ferré
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona (NeuroUB), Barcelona 08028, Spain
| | - Laura Marsal-García
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona (NeuroUB), Barcelona 08028, Spain
| | - Aina Bellver-Sanchis
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona (NeuroUB), Barcelona 08028, Spain
| | | | - Ravi Chakra Turga
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Santiago Vázquez
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Department de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona, Barcelona E-08028, Spain
| | - Mercè Pallàs
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona (NeuroUB), Barcelona 08028, Spain
| |
Collapse
|
24
|
Mofazzal Jahromi MA, Abdoli A, Rahmanian M, Bardania H, Bayandori M, Moosavi Basri SM, Kalbasi A, Aref AR, Karimi M, Hamblin MR. Microfluidic Brain-on-a-Chip: Perspectives for Mimicking Neural System Disorders. Mol Neurobiol 2019; 56:8489-8512. [PMID: 31264092 PMCID: PMC6842047 DOI: 10.1007/s12035-019-01653-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/15/2019] [Indexed: 01/09/2023]
Abstract
Neurodegenerative diseases (NDDs) include more than 600 types of nervous system disorders in humans that impact tens of millions of people worldwide. Estimates by the World Health Organization (WHO) suggest NDDs will increase by nearly 50% by 2030. Hence, development of advanced models for research on NDDs is needed to explore new therapeutic strategies and explore the pathogenesis of these disorders. Different approaches have been deployed in order to investigate nervous system disorders, including two-and three-dimensional (2D and 3D) cell cultures and animal models. However, these models have limitations, such as lacking cellular tension, fluid shear stress, and compression analysis; thus, studying the biochemical effects of therapeutic molecules on the biophysiological interactions of cells, tissues, and organs is problematic. The microfluidic "organ-on-a-chip" is an inexpensive and rapid analytical technology to create an effective tool for manipulation, monitoring, and assessment of cells, and investigating drug discovery, which enables the culture of various cells in a small amount of fluid (10-9 to 10-18 L). Thus, these chips have the ability to overcome the mentioned restrictions of 2D and 3D cell cultures, as well as animal models. Stem cells (SCs), particularly neural stem cells (NSCs), induced pluripotent stem cells (iPSCs), and embryonic stem cells (ESCs) have the capability to give rise to various neural system cells. Hence, microfluidic organ-on-a-chip and SCs can be used as potential research tools to study the treatment of central nervous system (CNS) and peripheral nervous system (PNS) disorders. Accordingly, in the present review, we discuss the latest progress in microfluidic brain-on-a-chip as a powerful and advanced technology that can be used in basic studies to investigate normal and abnormal functions of the nervous system.
Collapse
Affiliation(s)
- Mirza Ali Mofazzal Jahromi
- Department of Advanced Medical Sciences & Technologies, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
- Research Center for Noncommunicable Diseases, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Amir Abdoli
- Research Center for Noncommunicable Diseases, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
- Department of Parasitology and Mycology, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
- Zoonoses Research Center, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Mohammad Rahmanian
- Research Center for Noncommunicable Diseases, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
- Department of Anesthesiology, Critical Care, and Pain Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Hassan Bardania
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mehrdad Bayandori
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Alireza Kalbasi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Amir Reza Aref
- Department of Cancer Biology, Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Department of Genetics, Harvard Medical School, Boston, MA, 02215, USA
| | - Mahdi Karimi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Dermatology, Harvard Medical School, Boston, MA, USA.
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA.
| |
Collapse
|
25
|
Chen J, Huang W, Cheng CH, Zhou L, Jiang GB, Hu YY. Association Between Aldehyde dehydrogenase-2 Polymorphisms and Risk of Alzheimer's Disease and Parkinson's Disease: A Meta-Analysis Based on 5,315 Individuals. Front Neurol 2019; 10:290. [PMID: 30984100 PMCID: PMC6448532 DOI: 10.3389/fneur.2019.00290] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 03/06/2019] [Indexed: 11/21/2022] Open
Abstract
Objective: A number of studies have reported that aldehyde dehydrogenase-2 (ALDH2) polymorphisms maybe associated with the risk of Alzheimer's disease (AD) and Parkinson's disease (PD). However, the results of such studies are inconsistent. We therefore conducted a meta-analysis to clarify the association between ALDH2 polymorphisms and the risk of AD and PD. Methods: Five online databases were searched and the relevant studies were reviewed from inception through May 10, 2018. Odds ratios (ORs) and corresponding 95% confidence intervals (CIs) were calculated in each genetic model of the general population and various subgroups. Furthermore, we simultaneously performed heterogeneity, cumulative, sensitivity, and publication bias analyses. Results: Overall, nine case-control studies involving 5,315 subjects were included in this meta-analysis. Potential associations were found between the ALDH2 rs671 G>A polymorphism and the risk of AD (A vs. G: OR = 1.46, 95%CI = 1.01–2.11, P = 0.05, I2 = 84.2%; AA vs. GG: OR = 2.22, 95%CI = 1.03–4.77, P = 0.04, I2 = 79.2%; AA vs. GG+GA: OR = 1.94, 95%CI = 1.03–3.64, P =0.04, I2 = 71.1%). In addition, some similar results were observed in other subgroups. Moreover, no significant association between ALDH2 polymorphisms and PD risk. Conclusions: In conclusion, our meta-analysis indicated that the ALDH2 rs671 G>A polymorphism plays an important role in AD development.
Collapse
Affiliation(s)
- Jun Chen
- Department of Neurology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Wei Huang
- Department of Neurology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Chao-Hui Cheng
- Department of Neurology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Lan Zhou
- Department of Neurology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Guang-Bin Jiang
- Department of Radiology, Suizhou Central Hospital, Suizhou, China
| | - Yuan-Yuan Hu
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|