1
|
Liu J, Copland DA, Clare AJ, Gorski M, Richards BT, Scott L, Theodoropoulou S, Greferath U, Cox K, Shi G, Bell OH, Ou K, Powell JLB, Wu J, Robles LM, Li Y, Nicholson LB, Coffey PJ, Fletcher EL, Guymer R, Radeke MJ, Heid IM, Hageman GS, Chan YK, Dick AD. Replenishing IRAK-M expression in retinal pigment epithelium attenuates outer retinal degeneration. Sci Transl Med 2024; 16:eadi4125. [PMID: 38838135 DOI: 10.1126/scitranslmed.adi4125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/14/2024] [Indexed: 06/07/2024]
Abstract
Chronic inflammation is a constitutive component of many age-related diseases, including age-related macular degeneration (AMD). Here, we identified interleukin-1 receptor-associated kinase M (IRAK-M) as a key immunoregulator in retinal pigment epithelium (RPE) that declines during the aging process. Rare genetic variants of IRAK3, which encodes IRAK-M, were associated with an increased likelihood of developing AMD. In human samples and mouse models, IRAK-M abundance in the RPE declined with advancing age or exposure to oxidative stress and was further reduced in AMD. Irak3-knockout mice exhibited an increased incidence of outer retinal degeneration at earlier ages, which was further exacerbated by oxidative stressors. The absence of IRAK-M led to a disruption in RPE cell homeostasis, characterized by compromised mitochondrial function, cellular senescence, and aberrant cytokine production. IRAK-M overexpression protected RPE cells against oxidative or immune stressors. Subretinal delivery of adeno-associated virus (AAV)-expressing human IRAK3 rescued light-induced outer retinal degeneration in wild-type mice and attenuated age-related spontaneous retinal degeneration in Irak3-knockout mice. Our data show that replenishment of IRAK-M in the RPE may redress dysregulated pro-inflammatory processes in AMD, suggesting a potential treatment for retinal degeneration.
Collapse
Affiliation(s)
- Jian Liu
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
| | - David A Copland
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
| | - Alison J Clare
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
| | - Mathias Gorski
- Department of Genetic Epidemiology, University of Regensburg, Regensburg 93053, Germany
| | - Burt T Richards
- Sharon Eccles Steele Center for Translational Medicine, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Louis Scott
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
| | - Sofia Theodoropoulou
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
| | - Ursula Greferath
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Katherine Cox
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
| | - Gongyu Shi
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
| | - Oliver H Bell
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
| | - Kepeng Ou
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
| | - Jenna Le Brun Powell
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
| | - Jiahui Wu
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
| | - Luis Martinez Robles
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Yingxin Li
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
| | - Lindsay B Nicholson
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Peter J Coffey
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Erica L Fletcher
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Robyn Guymer
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Monte J Radeke
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| | - Iris M Heid
- Department of Genetic Epidemiology, University of Regensburg, Regensburg 93053, Germany
| | - Gregory S Hageman
- Sharon Eccles Steele Center for Translational Medicine, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Ying Kai Chan
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Andrew D Dick
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- National Institute for Health Research Biomedical Research Centre, Moorfields Eye Hospital, London EC1V 2PD, UK
| |
Collapse
|
2
|
Somers FM, Malek G. Estrogen related receptor alpha: Potential modulator of age-related macular degeneration. Curr Opin Pharmacol 2024; 75:102439. [PMID: 38447458 PMCID: PMC10947805 DOI: 10.1016/j.coph.2024.102439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 03/08/2024]
Abstract
To develop effective therapies for complex blinding diseases such as age-related macular degeneration (AMD), identification of mechanisms involved in its initiation and progression is needed. The estrogen-related receptor alpha (ESRRA) is an orphan nuclear receptor that regulates several AMD-associated pathogenic pathways. However, it has not been investigated in detail in the ocular posterior pole during aging or in AMD. This review delves into the literature highlighting the significance of ESRRA as a molecular target that may be important in the pathobiology of AMD, and discusses data available supporting the targeting of this receptor signaling pathway as a therapeutic option for AMD.
Collapse
Affiliation(s)
| | - Goldis Malek
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA; Department of Pathology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
3
|
Flores A, Fernández-Sánchez L, Kutsyr O, Lax P, Yáñez A, Gil ML, Gozalbo D, Maneu V. Non-haematopoietic Sca-1 + Cells in the Retina of Adult Mice Express Functional TLR2. Stem Cell Rev Rep 2024; 20:845-851. [PMID: 38183535 DOI: 10.1007/s12015-023-10674-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2023] [Indexed: 01/08/2024]
Abstract
The mammal retina does not have the capacity to regenerate throughout life, although some stem and progenitor cells persist in the adult retina and might retain multipotentiality, as previously described in many tissues. In this work we demonstrate the presence of a small lineage- Sca-1+ cell population in the adult mouse retina which expresses functional TLR2 receptors as in vitro challenge with the pure TLR2 agonist Pam3CSK4 increases cell number and upregulates TLR2. Therefore, this population could be of interest in neuroregeneration studies to elucidate its role in these processes.
Collapse
Affiliation(s)
- Ana Flores
- Departamento de Microbiología y Ecología, Universitat de València, Valencia, Spain
| | | | - Oksana Kutsyr
- Departamento de Óptica, Farmacología y Anatomía, Universidad de Alicante, Alicante, Spain
| | - Pedro Lax
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Alberto Yáñez
- Departamento de Microbiología y Ecología, Universitat de València, Valencia, Spain
| | - María Luisa Gil
- Departamento de Microbiología y Ecología, Universitat de València, Valencia, Spain
| | - Daniel Gozalbo
- Departamento de Microbiología y Ecología, Universitat de València, Valencia, Spain
| | - Victoria Maneu
- Departamento de Óptica, Farmacología y Anatomía, Universidad de Alicante, Alicante, Spain.
| |
Collapse
|
4
|
Liu J, Copland DA, Clare AJ, Gorski M, Richards BT, Scott L, Theodoropoulou S, Greferath U, Cox K, Bell OH, Ou K, Powell JLB, Wu J, Robles LM, Li Y, Nicholson LB, Coffey PJ, Fletcher EL, Guymer R, Radeke MJ, Heid IM, Hageman GS, Chan YK, Dick AD. Replenishing Age-Related Decline of IRAK-M Expression in Retinal Pigment Epithelium Attenuates Outer Retinal Degeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559733. [PMID: 37808640 PMCID: PMC10557650 DOI: 10.1101/2023.09.27.559733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Unchecked, chronic inflammation is a constitutive component of age-related diseases, including age-related macular degeneration (AMD). Here we identified interleukin-1 receptor-associated kinase (IRAK)-M as a key immunoregulator in retinal pigment epithelium (RPE) that declines with age. Rare genetic variants of IRAK-M increased the likelihood of AMD. IRAK-M expression in RPE declined with age or oxidative stress and was further reduced in AMD. IRAK-M-deficient mice exhibited increased incidence of outer retinal degeneration at earlier ages, which was further exacerbated by oxidative stressors. The absence of IRAK-M disrupted RPE cell homeostasis, including compromised mitochondrial function, cellular senescence, and aberrant cytokine production. IRAK-M overexpression protected RPE cells against oxidative or immune stressors. Subretinal delivery of AAV-expressing IRAK-M rescued light-induced outer retinal degeneration in wild-type mice and attenuated age-related spontaneous retinal degeneration in IRAK-M-deficient mice. Our data support that replenishment of IRAK-M expression may redress dysregulated pro-inflammatory processes in AMD, thereby treating degeneration.
Collapse
Affiliation(s)
- Jian Liu
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - David A. Copland
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Alison J. Clare
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Mathias Gorski
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Burt T. Richards
- Sharon Eccles Steele Center for Translational Medicine, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - Louis Scott
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Sofia Theodoropoulou
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Ursula Greferath
- Department of Anatomy and Physiology, University of Melbourne, Victoria, Australia
| | - Katherine Cox
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Oliver H. Bell
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Kepeng Ou
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Jenna Le Brun Powell
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Jiahui Wu
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Luis Martinez Robles
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Yingxin Li
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Lindsay B. Nicholson
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Peter J. Coffey
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - Erica L. Fletcher
- Department of Anatomy and Physiology, University of Melbourne, Victoria, Australia
| | - Robyn Guymer
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne, Melbourne, Australia
| | - Monte J. Radeke
- Neuroscience Research Institute, University of California, Santa Barbara, California, United States
| | - Iris M. Heid
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Gregory S. Hageman
- Sharon Eccles Steele Center for Translational Medicine, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - Ying Kai Chan
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, United States
| | - Andrew D. Dick
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- Institute of Ophthalmology, University College London, London, United Kingdom
- National Institute for Health Research Biomedical Research Centre, Moorfields Eye Hospital, London, United Kingdom
| |
Collapse
|
5
|
Geiduschek EK, McDowell CM. The Fibro-Inflammatory Response in the Glaucomatous Optic Nerve Head. Int J Mol Sci 2023; 24:13240. [PMID: 37686046 PMCID: PMC10487997 DOI: 10.3390/ijms241713240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Glaucoma is a progressive disease and the leading cause of irreversible blindness. The limited therapeutics available are only able to manage the common risk factor of glaucoma, elevated intraocular pressure (IOP), indicating a great need for understanding the cellular mechanisms behind optic nerve head (ONH) damage during disease progression. Here we review the known inflammatory and fibrotic changes occurring in the ONH. In addition, we describe a novel mechanism of toll-like receptor 4 (TLR4) and transforming growth factor beta-2 (TGFβ2) signaling crosstalk in the cells of the ONH that contribute to glaucomatous damage. Understanding molecular signaling within and between the cells of the ONH can help identify new drug targets and therapeutics.
Collapse
Affiliation(s)
| | - Colleen M. McDowell
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
6
|
Di Zazzo A, De Piano M, Coassin M, Mori T, Balzamino BO, Micera A. Ocular surface toll like receptors in ageing. BMC Ophthalmol 2022; 22:185. [PMID: 35459112 PMCID: PMC9027701 DOI: 10.1186/s12886-022-02398-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/12/2022] [Indexed: 12/27/2022] Open
Abstract
Background To evaluate changes in Toll Like Receptors (TLRs) expression at the ocular surface of healthy volunteers within different age groups. Methods Fifty-one healthy volunteers were enrolled in a pilot observational study. Clinical function tests (OSDI questionnaire, Schirmer test type I and Break Up time) were assessed in all subjects. Temporal Conjunctival imprints were performed for molecular and immunohistochemical analysis to measure TLRs expression (TLR2, 4, 3, 5, 7, 8, 9 and MyD88). Results Immunofluorescence data showed an increased TLR2 and decreased TLR7 and TLR8 immunoreactivity in old conjunctival imprints. Up-regulation of TLR2 and down-regulation of TLR7, TLR8 and MyD88 transcripts expression corroborated the data. A direct correlation was showed between increasing ICAM-1 and increasing TLR2 changes with age. Within the age OSDI score increases, T-BUT values decrease, and goblet cells showed a decreasing trend. Conclusion Changes in TLRs expression are associated with ageing, suggesting physiological role of TLRs in modulating ocular surface immunity. TLRs age related changes may participate to the changes of ocular surface homeostatic mechanisms which lead to inflammAging.
Collapse
Affiliation(s)
- Antonio Di Zazzo
- Ophthalmology Operative Complex Unit, University Campus Bio-Medico, Rome, Italy
| | - Maria De Piano
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Sciences, IRCCS-Fondazione Bietti, Rome, Italy
| | - Marco Coassin
- Ophthalmology Operative Complex Unit, University Campus Bio-Medico, Rome, Italy
| | - Tommaso Mori
- Ophthalmology Operative Complex Unit, University Campus Bio-Medico, Rome, Italy
| | - Bijorn Omar Balzamino
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Sciences, IRCCS-Fondazione Bietti, Rome, Italy
| | - Alessandra Micera
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Sciences, IRCCS-Fondazione Bietti, Rome, Italy.
| |
Collapse
|
7
|
Titi-Lartey O, Mohammed I, Amoaku WM. Toll-Like Receptor Signalling Pathways and the Pathogenesis of Retinal Diseases. FRONTIERS IN OPHTHALMOLOGY 2022; 2:850394. [PMID: 38983565 PMCID: PMC11182157 DOI: 10.3389/fopht.2022.850394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/08/2022] [Indexed: 07/11/2024]
Abstract
There is growing evidence that the pathogenesis of retinal diseases such as diabetic retinopathy (DR) and age-related macular degeneration (AMD) have a significant chronic inflammatory component. A vital part of the inflammatory cascade is through the activation of pattern recognition receptors (PRR) such as toll-like receptors (TLR). Here, we reviewed the past and current literature to ascertain the cumulative knowledge regarding the effect of TLRs on the development and progression of retinal diseases. There is burgeoning research demonstrating the relationship between TLRs and risk of developing retinal diseases, utilising a range of relevant disease models and a few large clinical investigations. The literature confirms that TLRs are involved in the development and progression of retinal diseases such as DR, AMD, and ischaemic retinopathy. Genetic polymorphisms in TLRs appear to contribute to the risk of developing AMD and DR. However, there are some inconsistencies in the published reports which require further elucidation. The evidence regarding TLR associations in retinal dystrophies including retinitis pigmentosa is limited. Based on the current evidence relating to the role of TLRs, combining anti-VEGF therapies with TLR inhibition may provide a longer-lasting treatment in some retinal vascular diseases.
Collapse
Affiliation(s)
| | | | - Winfried M. Amoaku
- Academic Ophthalmology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
8
|
Mahaling B, Low SWY, Beck M, Kumar D, Ahmed S, Connor TB, Ahmad B, Chaurasia SS. Damage-Associated Molecular Patterns (DAMPs) in Retinal Disorders. Int J Mol Sci 2022; 23:ijms23052591. [PMID: 35269741 PMCID: PMC8910759 DOI: 10.3390/ijms23052591] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 12/13/2022] Open
Abstract
Damage-associated molecular patterns (DAMPs) are endogenous danger molecules released from the extracellular and intracellular space of damaged tissue or dead cells. Recent evidence indicates that DAMPs are associated with the sterile inflammation caused by aging, increased ocular pressure, high glucose, oxidative stress, ischemia, mechanical trauma, stress, or environmental conditions, in retinal diseases. DAMPs activate the innate immune system, suggesting their role to be protective, but may promote pathological inflammation and angiogenesis in response to the chronic insult or injury. DAMPs are recognized by specialized innate immune receptors, such as receptors for advanced glycation end products (RAGE), toll-like receptors (TLRs) and the NOD-like receptor family (NLRs), and purine receptor 7 (P2X7), in systemic diseases. However, studies describing the role of DAMPs in retinal disorders are meager. Here, we extensively reviewed the role of DAMPs in retinal disorders, including endophthalmitis, uveitis, glaucoma, ocular cancer, ischemic retinopathies, diabetic retinopathy, age-related macular degeneration, rhegmatogenous retinal detachment, proliferative vitreoretinopathy, and inherited retinal disorders. Finally, we discussed DAMPs as biomarkers, therapeutic targets, and therapeutic agents for retinal disorders.
Collapse
Affiliation(s)
- Binapani Mahaling
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.M.); (S.W.Y.L.); (M.B.); (D.K.); (S.A.); (T.B.C.); (B.A.)
| | - Shermaine W. Y. Low
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.M.); (S.W.Y.L.); (M.B.); (D.K.); (S.A.); (T.B.C.); (B.A.)
| | - Molly Beck
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.M.); (S.W.Y.L.); (M.B.); (D.K.); (S.A.); (T.B.C.); (B.A.)
| | - Devesh Kumar
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.M.); (S.W.Y.L.); (M.B.); (D.K.); (S.A.); (T.B.C.); (B.A.)
| | - Simrah Ahmed
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.M.); (S.W.Y.L.); (M.B.); (D.K.); (S.A.); (T.B.C.); (B.A.)
| | - Thomas B. Connor
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.M.); (S.W.Y.L.); (M.B.); (D.K.); (S.A.); (T.B.C.); (B.A.)
- Vitreoretinal Surgery, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Baseer Ahmad
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.M.); (S.W.Y.L.); (M.B.); (D.K.); (S.A.); (T.B.C.); (B.A.)
- Vitreoretinal Surgery, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Shyam S. Chaurasia
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.M.); (S.W.Y.L.); (M.B.); (D.K.); (S.A.); (T.B.C.); (B.A.)
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Correspondence: ; Tel.: +1-414-955-2050
| |
Collapse
|
9
|
Mugisho OO, Green CR. The NLRP3 inflammasome in age-related eye disease: Evidence-based connexin hemichannel therapeutics. Exp Eye Res 2021; 215:108911. [PMID: 34958779 DOI: 10.1016/j.exer.2021.108911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/25/2021] [Accepted: 12/21/2021] [Indexed: 12/21/2022]
Abstract
The inflammasome pathway is a fundamental component of the innate immune system, playing a key role especially in chronic age-related eye diseases (AREDs). The inflammasome is of particular interest because it is a common disease pathway that once instigated, can amplify and perpetuate itself leading to chronic inflammation. With aging, it becomes more difficult to shut down inflammation after an insult but the common pathway means that a shared solution may be feasible that could be effective across multiple disease indications. This review focusses on the NLRP3 inflammasome, the most studied and characterized inflammasome in the eye. It describes the two-step signalling required for NLRP3 inflammasome complex activation, and provides evidence for its role in AREDs. In the final section, the article gives an overview of potential NLRP3 inflammasome targeting therapies, before presenting evidence for connexin hemichannel regulators as upstream blockers of inflammasome activation. These have shown therapeutic efficacy in multiple ocular disease models.
Collapse
Affiliation(s)
- Odunayo O Mugisho
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand.
| | - Colin R Green
- Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, New Zealand
| |
Collapse
|
10
|
Retinal Pigment Epithelium Expressed Toll-like Receptors and Their Potential Role in Age-Related Macular Degeneration. Int J Mol Sci 2021; 22:ijms22168387. [PMID: 34445096 PMCID: PMC8395065 DOI: 10.3390/ijms22168387] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 01/17/2023] Open
Abstract
(1) Background: Inflammation is a major pathomechanism in the development and progression of age-related macular degeneration (AMD). The retinal pigment epithelium (RPE) may contribute to retinal inflammation via activation of its Toll-like receptors (TLR). TLR are pattern recognition receptors that detect the pathogen- or danger-associated molecular pattern. The involvement of TLR activation in AMD is so far not understood. (2) Methods: We performed a systematic literature research, consulting the National Library of Medicine (PubMed). (3) Results: We identified 106 studies, of which 54 were included in this review. Based on these studies, the current status of TLR in AMD, the effects of TLR in RPE activation and of the interaction of TLR activated RPE with monocytic cells are given, and the potential of TLR activation in RPE as part of the AMD development is discussed. (4) Conclusion: The activation of TLR2, -3, and -4 induces a profound pro-inflammatory response in the RPE that may contribute to (long-term) inflammation by induction of pro-inflammatory cytokines, reducing RPE function and causing RPE cell degeneration, thereby potentially constantly providing new TLR ligands, which could perpetuate and, in the long run, exacerbate the inflammatory response, which may contribute to AMD development. Furthermore, the combined activation of RPE and microglia may exacerbate neurotoxic effects.
Collapse
|
11
|
Wang S, Guan Y, Li T. The Potential Therapeutic Role of the HMGB1-TLR Pathway in Epilepsy. Curr Drug Targets 2021; 22:171-182. [PMID: 32729417 DOI: 10.2174/1389450121999200729150443] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 02/08/2023]
Abstract
Epilepsy is one of the most common serious neurological disorders, affecting over 70 million people worldwide. For the treatment of epilepsy, antiepileptic drugs (AEDs) and surgeries are widely used. However, drug resistance and adverse effects indicate the need to develop targeted AEDs based on further exploration of the epileptogenic mechanism. Currently, many efforts have been made to elucidate the neuroinflammation theory in epileptogenesis, which may show potential in the treatment of epilepsy. In this respect, an important target protein, high mobility group box 1 (HMGB1), has received increased attention and has been developed rapidly. HMGB1 is expressed in various eukaryotic cells and localized in the cell nucleus. When HMGB1 is released by injuries or diseases, it participates in inflammation. Recent studies suggest that HMGB1 via Toll-like receptor (TLR) pathways can trigger inflammatory responses and play an important role in epilepsy. In addition, studies of HMGB1 have shown its potential in the treatment of epilepsy. Herein, the authors analyzed the experimental and clinical evidence of the HMGB1-TLR pathway in epilepsy to summarize the theory of epileptogenesis and provide insights into antiepileptic therapy in this novel field.
Collapse
Affiliation(s)
- Shu Wang
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Yuguang Guan
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Tianfu Li
- Department of Neurology, SanBo Brain Hospital, Capital Medical University, Beijing 100093, China
| |
Collapse
|
12
|
Klettner A, Brinkmann A, Winkelmann K, Käckenmeister T, Hildebrandt J, Roider J. Effect of long-term inflammation on viability and function of RPE cells. Exp Eye Res 2020; 200:108214. [PMID: 32898511 DOI: 10.1016/j.exer.2020.108214] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 08/12/2020] [Accepted: 09/01/2020] [Indexed: 12/20/2022]
Abstract
PURPOSE Degenerative ocular disorders like age-related macular degeneration (AMD) are associated with long-term pro-inflammatory signals on retinal pigment epithelial (RPE) cells. In this study, we investigated the effect of long term treatment of RPE cells with agonists of toll-like receptor (TLR) -3 (Polyinosinic:polycytidylic acid, Poly I:C), TLR-4 (lipopolysaccharide, LPS) and the pro-inflammatory cytokine TNFα. METHODS All tests were conducted with primary porcine RPE. Cells were stimulated with Poly I:C (1, 10, 100 μg/ml), LPS (0.1, 1, 10 μg/ml) or TNFα (12.5, 25 or 50 ng/ml) for 1 day, 7 days or 4 weeks. Cell viability tests (MTT) were additionally tested in ARPE-19 cells. Cytokine secretion (IL-6, IL-1β, IL-8, TNFα, TGF-β) was tested in ELISA, phagocytosis in a microscopic assay, and expression of RPE65 in Western blot. Barrier function was tested in transwell-cultured cells by measuring transepithelial resistance for up to 3 days. RESULTS LPS and TNFα significantly reduce cell viability after 1 day and 7 days, Poly I:C after 7 days and 4 weeks. LPS, Poly I:C and TNFα significantly induce the secretion of IL-6 and IL-8 at all tested time points. IL-1β is increased by LPS and Poly I:C after 1 day, but not by TNFα. TNFα secretion is increased by Poly I:C and LPS after 1 day but not at later time points. TGF-β secretion is not influenced by any stimulus. Concerning RPE function, LPS decreased phagocytosis after 7 days, while Poly I:C and TNFα showed no effect. RPE65 expression was strongly reduced by TNFα and LPS after 4 weeks. Wound healing capacity was reduced by Poly I:C but induced by LPS after 7 d and 4 w. Barrier function was not affected by Poly I:C or LPS, while TNFα reduced barrier function after 1 h, 4 h and 3 days. CONCLUSION Long term pro-inflammatory stimuli reduce RPE viability, barrier properties and cellular function and induce pro-inflammatory cytokines and therefore may contribute directly to atrophic changes in AMD.
Collapse
Affiliation(s)
- Alexa Klettner
- University of Kiel, University Medical Center, Department of Ophthalmology, Arnold-Heller-Str. 3, Haus B2, 24105, Kiel, Germany.
| | - Anna Brinkmann
- University of Kiel, University Medical Center, Department of Ophthalmology, Arnold-Heller-Str. 3, Haus B2, 24105, Kiel, Germany
| | - Katrin Winkelmann
- University of Kiel, University Medical Center, Department of Ophthalmology, Arnold-Heller-Str. 3, Haus B2, 24105, Kiel, Germany
| | - Tom Käckenmeister
- University of Kiel, University Medical Center, Department of Ophthalmology, Arnold-Heller-Str. 3, Haus B2, 24105, Kiel, Germany
| | - Julia Hildebrandt
- University of Kiel, University Medical Center, Department of Ophthalmology, Arnold-Heller-Str. 3, Haus B2, 24105, Kiel, Germany
| | - Johann Roider
- University of Kiel, University Medical Center, Department of Ophthalmology, Arnold-Heller-Str. 3, Haus B2, 24105, Kiel, Germany
| |
Collapse
|
13
|
Duncan RS, Rohowetz L, Vogt A, Koulen P. Repeat exposure to polyinosinic:polycytidylic acid induces TLR3 expression via JAK-STAT signaling and synergistically potentiates NFκB-RelA signaling in ARPE-19 cells. Cell Signal 2019; 66:109494. [PMID: 31809875 DOI: 10.1016/j.cellsig.2019.109494] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/11/2019] [Accepted: 12/02/2019] [Indexed: 01/05/2023]
Abstract
Dry age-related macular degeneration (AMD), accounting for approximately 90% of AMD cases, is characterized by photoreceptor death, retinal pigment epithelium (RPE) dysfunction and, ultimately, geographic atrophy - the localized death of RPE leading to loss of the center of the visual field. The pathological etiology of AMD is multifactorial, but innate immune signaling and inflammation are involved in early stages of the disease. Although numerous single-nucleotide polymorphisms in innate immune genes are associated with dry AMD, no single gene appears to cause dry AMD. Here, we hypothesized that activation of TLR3 potentiates expression of TLR3 itself and the NFκB-p65 (RelA) subunit as part of pro-inflammatory RPE signaling. Furthermore, we hypothesized that TLR3 activation can 'prime' cells to future RelA stimulation, leading to enhanced, persistent RelA expression and signaling following a second TLR3 activation. We used the human RPE-derived cell line ARPE-19 as a model system for RPE signaling and measured NFκB expression and activity in response to TLR3 stimulation with its ligand, polyinosinic:polycytidylic acid (pI:C). Activation of TLR3 with pI:C led to increased TLR3 and RelA expression that was sustained for at least 24 h. Cells exposed for a second time to pI:C after an initial pI:C exposure displayed elevated RelA expression and RelA nuclear translocation above the level generated by individual primary or secondary exposures alone. Such an elevated response could also not be generated by a single application of higher concentrations of the agonist pI:C. Additionally, we determined the mechanism for TLR3 mediated TLR3 and RelA expression by using inhibitors of canonical TLR3-TBK1-IKKε and JAK-STAT signaling pathways. These data suggest that initial exposure of ARPE-19 cells to pI:C upregulates TLR3 and RelA signaling, leading to potentiated and persistent RelA signaling potentially generated by a positive feedback loop that may cause exacerbated inflammation in AMD. Furthermore, inhibition of JAK-STAT signaling may be a possible therapeutic treatment to prevent induction of TLR3 expression subsequent to pI:C exposure. Our results identify possible therapeutic targets to reduce the TLR3 positive feedback loop and subsequent overproduction of pro-inflammatory cytokines in RPE cells.
Collapse
Affiliation(s)
- R Scott Duncan
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri - Kansas City, 2411 Holmes St., Kansas City, MO 64108, United States of America.
| | - Landon Rohowetz
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri - Kansas City, 2411 Holmes St., Kansas City, MO 64108, United States of America
| | - Alex Vogt
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri - Kansas City, 2411 Holmes St., Kansas City, MO 64108, United States of America
| | - Peter Koulen
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri - Kansas City, 2411 Holmes St., Kansas City, MO 64108, United States of America; Department of Biomedical Sciences, School of Medicine, University of Missouri - Kansas City, 2411 Holmes St., Kansas City, MO 64108, United States of America
| |
Collapse
|
14
|
Ding D, Zhu M, Liu X, Jiang L, Xu J, Chen L, Liang J, Li L, Zhou T, Wang Y, Shi H, Yuan Y, Song E. Inhibition of TRAF6 alleviates choroidal neovascularization in vivo. Biochem Biophys Res Commun 2018; 503:2742-2748. [PMID: 30103950 DOI: 10.1016/j.bbrc.2018.08.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 08/04/2018] [Indexed: 12/14/2022]
Abstract
Choroidal neovascularization (CNV) is a type of wet age-related macular degeneration (AMD) which is a major cause of blindness in elder patients. Tumor necrosis factor receptor-associated factor 6 (TRAF6) promotes tumor angiogenesis via upregulating the expression of hypoxia-inducible factor 1α (HIF-1α) and vascular endothelial growth factor (VEGF). Additionally, TRAF6 facilitates the inflammatory response in macrophages and microglia. Here, using mouse laser-induced CNV model and TRAF6 siRNA, the study shows that TRAF6 is a critical player in CNV. The expression of TRAF6, HIF-1α, and VEGF increased in the model. TFAF6 siRNA intravitreal (IVT) injection inhibited CNV formation, as well as expression of HIF-1α and VEGF, activation of macrophages and microglia. Together, our data suggest that TFAF6 inhibition reduces CNV formation via down-regulating expression of HIF-1α and VEGF and activation of macrophages and microglia, demonstrating the unique advantages of TRAF6 inhibition in the alleviation of AMD.
Collapse
Affiliation(s)
- Dongmei Ding
- Department of Ophthalmology, Laizhou City People's Hospital, Yantai, Shandong, China
| | - Manhui Zhu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaojuan Liu
- Department of Pathogen Biology, Medical College, Nantong University, Nantong, Jiangsu, China
| | - Li Jiang
- Department of Ophthalmology, Laizhou City People's Hospital, Yantai, Shandong, China
| | - Jiaowen Xu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Lili Chen
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Juan Liang
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Lele Li
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Taohu Zhou
- Medical College, Nantong University, Nantong, Jiangsu, China
| | - Ying Wang
- Department of Ophthalmology, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Hao Shi
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - You Yuan
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - E Song
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|