1
|
Wang CH, Lin GC, Fu RH, Huang YC, Chen SY, Lin SZ, Harn HJ, Shyu WC, Huang YF, Jeng LB, Liu SP. Neural stem cells derived from α-synuclein-knockdown iPS cells alleviate Parkinson's disease. Cell Death Discov 2024; 10:407. [PMID: 39285205 PMCID: PMC11405526 DOI: 10.1038/s41420-024-02176-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024] Open
Abstract
Stem cells have the potential to replace damaged or defective cells and assist in the development of treatments for neurodegenerative diseases, including Parkinson's disease (PD) and Alzheimer's disease. iPS cells derived from patient-specific somatic cells are not only ethically acceptable, but they also avoid complications relating to immune rejection. Currently, researchers are developing stem cell-based therapies for PD using induced pluripotent stem (iPS) cells. iPS cells can differentiate into cells from any of the three germ layers, including neural stem cells (NSCs). Transplantation of neural stem cells (NSCs) is an emerging therapy for treating neurological disorders by restoring neuronal function. Nevertheless, there are still challenges associated with the quality and source of neural stem cells. This issue can be addressed by genetically edited iPS cells. In this study, shRNA was used to knock down the expression of mutant α-synuclein (SNCA) in iPS cells that were generated from SNCA A53T transgenic mice, and these iPS cells were differentiated to NSCs. After injecting these NSCs into SNCA A53T mice, the therapeutic effects of these cells were evaluated. We found that the transplantation of neural stem cells produced from SNCA A53T iPS cells with knocking down SNCA not only improved SNCA A53T mice coordination abilities, balance abilities, and locomotor activities but also significantly prolonged their lifespans. The results of this study suggest an innovative therapeutic approach that combines stem cell therapy and gene therapy for the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Chie-Hong Wang
- Cell Therapy Center, China Medical University Hospital, Taichung, 404, Taiwan
- Neuroscience and Brain Disease Center, College of Medicine, China Medical University, Taichung, 411, Taiwan
- Department of Neurology, China Medical University Hospital, Taichung, 404, Taiwan
| | - Guan-Cyun Lin
- Graduate Institute of Biomedical Science, China Medical University, Taichung, 411, Taiwan
| | - Ru-Huei Fu
- Ph.D. Program for Aging, College of Medicine, China Medical University, Taichung, 411, Taiwan
- Translational Medicine Research Center, China Medical University Hospital, Taichung, 404, Taiwan
| | - Yu-Chuen Huang
- Genetics Center, Department of Medical Research, China Medical University Hospital, Taichung, 404, Taiwan
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, 411, Taiwan
| | - Shih-Yin Chen
- Genetics Center, Department of Medical Research, China Medical University Hospital, Taichung, 404, Taiwan
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, 411, Taiwan
| | - Shinn-Zong Lin
- Buddhist Tzu Chi Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, 970, Taiwan
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Hualien, 970, Taiwan
| | - Horng-Jyh Harn
- Buddhist Tzu Chi Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, 970, Taiwan
- Department of Pathology, Hualien Tzu Chi Hospital and Tzu Chi University, Hualien, 970, Taiwan
| | - Woei-Cherng Shyu
- Neuroscience and Brain Disease Center, College of Medicine, China Medical University, Taichung, 411, Taiwan
- Department of Neurology, China Medical University Hospital, Taichung, 404, Taiwan
- Translational Medicine Research Center, China Medical University Hospital, Taichung, 404, Taiwan
| | - Yi-Fang Huang
- Department of General Dentistry, Linkou Chang Gung Memorial Hospital, Taoyuan City, 333, Taiwan
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, 110, Taiwan
- Graduate Institute of Dental and Craniofacial Science, College of Medicine, Chang Gung University, Taoyuan City, 333, Taiwan
| | - Long-Bin Jeng
- Cell Therapy Center, China Medical University Hospital, Taichung, 404, Taiwan
- Organ Transplantation Center, China Medical University Hospital, Taichung, 404, Taiwan
| | - Shih-Ping Liu
- Neuroscience and Brain Disease Center, College of Medicine, China Medical University, Taichung, 411, Taiwan.
- Ph.D. Program for Aging, College of Medicine, China Medical University, Taichung, 411, Taiwan.
- Translational Medicine Research Center, China Medical University Hospital, Taichung, 404, Taiwan.
| |
Collapse
|
2
|
Li Y, Li P, Tao Q, Abuqeis IJA, Xiyang Y. Role and limitation of cell therapy in treating neurological diseases. IBRAIN 2024; 10:93-105. [PMID: 38682022 PMCID: PMC11045202 DOI: 10.1002/ibra.12152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 05/01/2024]
Abstract
The central role of the brain in governing systemic functions within human physiology underscores its paramount significance as the focal point of physiological regulation. The brain, a highly sophisticated organ, orchestrates a diverse array of physiological processes encompassing motor control, sensory perception, cognition, emotion, and the regulation of vital functions, such as heartbeat, respiration, and hormonal equilibrium. A notable attribute of neurological diseases manifests as the depletion of neurons and the occurrence of tissue necrosis subsequent to injury. The transplantation of neural stem cells (NSCs) into the brain exhibits the potential for the replacement of lost neurons and the reconstruction of neural circuits. Furthermore, the transplantation of other types of cells in alternative locations can secrete nutritional factors that indirectly contribute to the restoration of nervous system equilibrium and the mitigation of neural inflammation. This review summarized a comprehensive investigation into the role of NSCs, hematopoietic stem cells, mesenchymal stem cells, and support cells like astrocytes and microglia in alleviating neurological deficits after cell infusion. Moreover, a thorough assessment was undertaken to discuss extant constraints in cellular transplantation therapies, concurrently delineating indispensable model-based methodologies, specifically on organoids, which were essential for guiding prospective research initiatives in this specialized field.
Collapse
Affiliation(s)
- Yu‐Qi Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingChina
| | - Peng‐Fei Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingChina
| | - Qian Tao
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingChina
| | | | - Yan‐Bin Xiyang
- School of Basic MedicineKunming Medical UniversityKunmingChina
- Department of Pharmacology and Toxicology, College of PharmacologyUniversity of ArizonaTucsonArizonaUSA
| |
Collapse
|
3
|
Hosseini SM, Borys B, Karimi-Abdolrezaee S. Neural stem cell therapies for spinal cord injury repair: an update on recent preclinical and clinical advances. Brain 2024; 147:766-793. [PMID: 37975820 DOI: 10.1093/brain/awad392] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/22/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023] Open
Abstract
Traumatic spinal cord injury (SCI) is a leading cause of lifelong disabilities. Permanent sensory, motor and autonomic impairments after SCI are substantially attributed to degeneration of spinal cord neurons and axons, and disintegration of neural network. To date, minimal regenerative treatments are available for SCI with an unmet need for new therapies to reconstruct the damaged spinal cord neuron-glia network and restore connectivity with the supraspinal pathways. Multipotent neural precursor cells (NPCs) have a unique capacity to generate neurons, oligodendrocytes and astrocytes. Due to this capacity, NPCs have been an attractive cell source for cellular therapies for SCI. Transplantation of NPCs has been extensively tested in preclinical models of SCI in the past two decades. These studies have identified opportunities and challenges associated with NPC therapies. While NPCs have the potential to promote neuroregeneration through various mechanisms, their low long-term survival and integration within the host injured spinal cord limit the functional benefits of NPC-based therapies for SCI. To address this challenge, combinatorial strategies have been developed to optimize the outcomes of NPC therapies by enriching SCI microenvironment through biomaterials, genetic and pharmacological therapies. In this review, we will provide an in-depth discussion on recent advances in preclinical NPC-based therapies for SCI. We will discuss modes of actions and mechanism by which engrafted NPCs contribute to the repair process and functional recovery. We will also provide an update on current clinical trials and new technologies that have facilitated preparation of medical-grade human NPCs suitable for transplantation in clinical studies.
Collapse
Affiliation(s)
- Seyed Mojtaba Hosseini
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba Winnipeg, Manitoba R3E 0J9, Canada
- Manitoba Multiple Sclerosis Research Center, Winnipeg, Manitoba R3E 0J9, Canada
| | - Ben Borys
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba Winnipeg, Manitoba R3E 0J9, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba Winnipeg, Manitoba R3E 0J9, Canada
- Manitoba Multiple Sclerosis Research Center, Winnipeg, Manitoba R3E 0J9, Canada
- Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
| |
Collapse
|
4
|
Santa Cruz-Pavlovich FJ, Bolaños-Chang AJ, Del Rio-Murillo XI, Aranda-Preciado GA, Razura-Ruiz EM, Santos A, Navarro-Partida J. Beyond Vision: An Overview of Regenerative Medicine and Its Current Applications in Ophthalmological Care. Cells 2024; 13:179. [PMID: 38247870 PMCID: PMC10814238 DOI: 10.3390/cells13020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Regenerative medicine (RM) has emerged as a promising and revolutionary solution to address a range of unmet needs in healthcare, including ophthalmology. Moreover, RM takes advantage of the body's innate ability to repair and replace pathologically affected tissues. On the other hand, despite its immense promise, RM faces challenges such as ethical concerns, host-related immune responses, and the need for additional scientific validation, among others. The primary aim of this review is to present a high-level overview of current strategies in the domain of RM (cell therapy, exosomes, scaffolds, in vivo reprogramming, organoids, and interspecies chimerism), centering around the field of ophthalmology. A search conducted on clinicaltrials.gov unveiled a total of at least 209 interventional trials related to RM within the ophthalmological field. Among these trials, there were numerous early-phase studies, including phase I, I/II, II, II/III, and III trials. Many of these studies demonstrate potential in addressing previously challenging and degenerative eye conditions, spanning from posterior segment pathologies like Age-related Macular Degeneration and Retinitis Pigmentosa to anterior structure diseases such as Dry Eye Disease and Limbal Stem Cell Deficiency. Notably, these therapeutic approaches offer tailored solutions specific to the underlying causes of each pathology, thus allowing for the hopeful possibility of bringing forth a treatment for ocular diseases that previously seemed incurable and significantly enhancing patients' quality of life. As advancements in research and technology continue to unfold, future objectives should focus on ensuring the safety and prolonged viability of transplanted cells, devising efficient delivery techniques, etc.
Collapse
Affiliation(s)
- Francisco J. Santa Cruz-Pavlovich
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| | - Andres J. Bolaños-Chang
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| | - Ximena I. Del Rio-Murillo
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| | | | - Esmeralda M. Razura-Ruiz
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| | - Arturo Santos
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| | - Jose Navarro-Partida
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| |
Collapse
|
5
|
Radoszkiewicz K, Hribljan V, Isakovic J, Mitrecic D, Sarnowska A. Critical points for optimizing long-term culture and neural differentiation capacity of rodent and human neural stem cells to facilitate translation into clinical settings. Exp Neurol 2023; 363:114353. [PMID: 36841464 DOI: 10.1016/j.expneurol.2023.114353] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/03/2023] [Accepted: 02/18/2023] [Indexed: 02/27/2023]
Abstract
Despite several decades of research on the nature and functional properties of neural stem cells, which brought great advances in regenerative medicine, there is still a plethora of ambiguous protocols and interpretations linked to their applications. Here, we present a whole spectrum of protocol elements that should be standardized in order to obtain viable cell cultures and facilitate their translation into clinical settings. Additionally, this review also presents outstanding limitations and possible problems to be encountered when dealing with protocol optimization. Most importantly, we also outline the critical points that should be considered before starting any experiments utilizing neural stem cells or interpreting their results.
Collapse
Affiliation(s)
- Klaudia Radoszkiewicz
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5 Street, 02-106 Warsaw, Poland
| | - Valentina Hribljan
- Laboratory for Stem Cells, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 12, Zagreb, Croatia
| | - Jasmina Isakovic
- Omnion Research International Ltd, Heinzelova 4, 10000 Zagreb, Croatia
| | - Dinko Mitrecic
- Laboratory for Stem Cells, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 12, Zagreb, Croatia
| | - Anna Sarnowska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5 Street, 02-106 Warsaw, Poland.
| |
Collapse
|
6
|
Radoszkiewicz K, Jezierska-Woźniak K, Waśniewski T, Sarnowska A. Understanding Intra- and Inter-Species Variability in Neural Stem Cells' Biology Is Key to Their Successful Cryopreservation, Culture, and Propagation. Cells 2023; 12:cells12030488. [PMID: 36766833 PMCID: PMC9914787 DOI: 10.3390/cells12030488] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Although clinical trials on human neural stem cells (hNSCs) have already been implemented in the treatment of neurological diseases and they have demonstrated their therapeutic effects, many questions remain in the field of preclinical research regarding the biology of these cells, their therapeutic properties, and their neurorestorative potential. Unfortunately, scientific reports are inconsistent and much of the NSCs research has been conducted on rodents rather than human cells for ethical reasons or due to insufficient cell material. Therefore, a question arises as to whether or which conclusions drawn on the isolation, cell survival, proliferation, or cell fate observed in vitro in rodent NSCs can be introduced into clinical applications. This paper presents the effects of different spatial, nutritional, and dissociation conditions on NSCs' functional properties, which are highly species-dependent. Our study confirmed that the discrepancies in the available literature on NSCs survival, proliferation, and fate did not only depend on intra-species factors and applied environmental conditions, but they were also affected by significant inter-species variability. Human and rodent NSCs share one feature, i.e., the necessity to be cultured immediately after isolation, which significantly maintains their survival. Additionally, in the absence of experiments on human cells, rat NSCs biology (neurosphere formation potential and neural differentiation stage) seems closer to that of humans rather than mice in response to environmental factors.
Collapse
Affiliation(s)
- Klaudia Radoszkiewicz
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Katarzyna Jezierska-Woźniak
- Department of Neurosurgery, Laboratory for Regenerative Medicine, Stem Cells Bank, University of Warmia and Mazury in Olsztyn, 10-720 Olsztyn, Poland
| | - Tomasz Waśniewski
- Department of Obstetrics and Gynaecology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-561 Olsztyn, Poland
| | - Anna Sarnowska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Correspondence: ; Tel.: +48-22-608-6598
| |
Collapse
|
7
|
Yang X, Wang S. Down-Regulation of p38 Mitogen-Activated Protein Kinases/Nuclear Factor Kappa Light Chain Enhancer of Activated B Cells (p38 MAPK/NF- κB) Signaling Pathway Promotes Bone Marrow Mesenchymal Stem Cells Differentiation into Neural Stem Cells in Healing Neurodegeneration. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study intends to promote bone marrow mesenchymal stem cells (BMSCs) differentiation into neural stem cells by down-regulating p38 MAPK/NF-κB to heal neurodegeneration. 26 patients with neurodegenerative diseases were enrolled from the Department of Neurology along
with recruitment of 26 other healthy controls followed by analysis of p38 MAPK/NF-κB signaling pathway expression by ELISA. BMSCs were cultured and characterized by flow cytometry. Western blot and qRTPCR measured the p38 MAPK/NF-κB expression in the absence or presence
of p38 MAPK/NF-κB inhibitors. p38 MAPK/NF-κB expression in 26 neurodegenerative patients was significantly higher than that of 26 healthy controls. The qRT-PCR and western blot results showed that the neural stem cell-specific proteins expression was increased as
days went; after addition of p38 MAPK/NF-κB inhibitor, the expression of related specific genes were significantly decreased. In conclusion, inhibition of the expression of p38 MAPK/NF-κB signaling pathway can heal neurodegeneration by promoting the differentiation
of BMSCs into neural stem cells.
Collapse
Affiliation(s)
- Xin Yang
- Department of Pediatrics, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250000, China
| | - Shandan Wang
- Department of Pediatrics, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250000, China
| |
Collapse
|
8
|
Liu B, Li M, Zhang L, Chen Z, Lu P. Motor neuron replacement therapy for amyotrophic lateral sclerosis. Neural Regen Res 2022; 17:1633-1639. [PMID: 35017408 PMCID: PMC8820706 DOI: 10.4103/1673-5374.332123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Amyotrophic lateral sclerosis is a motor neuron degenerative disease that is also known as Lou Gehrig's disease in the United States, Charcot's disease in France, and motor neuron disease in the UK. The loss of motor neurons causes muscle wasting, paralysis, and eventually death, which is commonly related to respiratory failure, within 3-5 years after onset of the disease. Although there are a limited number of drugs approved for amyotrophic lateral sclerosis, they have had little success at treating the associated symptoms, and they cannot reverse the course of motor neuron degeneration. Thus, there is still a lack of effective treatment for this debilitating neurodegenerative disorder. Stem cell therapy for amyotrophic lateral sclerosis is a very attractive strategy for both basic and clinical researchers, particularly as transplanted stem cells and stem cell-derived neural progenitor/precursor cells can protect endogenous motor neurons and directly replace the lost or dying motor neurons. Stem cell therapies may also be able to re-establish the motor control of voluntary muscles. Here, we review the recent progress in the use of neural stem cells and neural progenitor cells for the treatment of amyotrophic lateral sclerosis. We focus on MN progenitor cells derived from fetal central nervous system tissue, embryonic stem cells, and induced pluripotent stem cells. In our recent studies, we found that transplanted human induced pluripotent stem cell-derived motor neuron progenitors survive well, differentiate into motor neurons, and extend axons into the host white matter, not only in the rostrocaudal direction, but also along motor axon tracts towards the ventral roots in the immunodeficient rat spinal cord. Furthermore, the significant motor axonal extension after neural progenitor cell transplantation in amyotrophic lateral sclerosis models demonstrates that motor neuron replacement therapy could be a promising therapeutic strategy for amyotrophic lateral sclerosis, particularly as a variety of stem cell derivatives, including induced pluripotent stem cells, are being considered for clinical trials for various diseases.
Collapse
Affiliation(s)
- Bochao Liu
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education; Center of Neural Injury and Repair; Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, China
| | - Mo Li
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education; Center of Neural Injury and Repair; Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, China
| | - Lingyan Zhang
- iXCells Biotechnologies USA, Inc., San Diego, CA, USA; Amogene Biotech, Xiamen, Fujian Province, China
| | - Zhiguo Chen
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education; Center of Neural Injury and Repair; Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, China
| | - Paul Lu
- Veterans Administration San Diego Healthcare System, San Diego; Department of Neurosciences, University of California - San Diego, La Jolla, CA, USA
| |
Collapse
|
9
|
Chen B, An J, Guo YS, Tang J, Zhao JJ, Zhang R, Yang H. Tetramethylpyrazine induces the release of BDNF from BM-MSCs through activation of the PI3K/AKT/CREB pathway. Cell Biol Int 2021; 45:2429-2442. [PMID: 34374467 DOI: 10.1002/cbin.11687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 08/01/2021] [Accepted: 08/07/2021] [Indexed: 12/27/2022]
Abstract
Compelling evidences suggest that transplantation of bone marrow-derived mesenchymal stem cells (BM-MSCs) can be therapeutically effective for central nervous system (CNS) injuries and neurodegenerative diseases. The therapeutic effect of BM-MSCs mainly attributes to their differentiation into neuron-like cells which replace injured and degenerative neurons. Importantly, the neurotrophic factors released from BM-MSCs can also rescue injured and degenerative neurons, which plays a biologically pivotal role in enhancing neuroregeneration and neurological functional recovery. Tetramethylpyrazine (TMP), the main bioactive ingredient extracted from the traditional Chinese medicinal herb Chuanxiong, has been reported to promote the neuronal differentiation of BM-MSCs. This study aimed to investigate whether TMP regulates the release of neurotrophic factors from BM-MSCs. We examined the effect of TMP on brain-derived neurotrophic factor (BDNF) released from BM-MSCs and elucidated the underlying molecular mechanism. Our results demonstrated that TMP at concentrations of lower than 200 μM increased the release of BDNF in a dose-dependent manner. Furthermore, the effect of TMP on increasing the release of BDNF from BM-MSCs was blocked by inhibiting the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/protein kinase B (AKT)/cAMP-response element binding protein (CREB) pathway. Therefore, we concluded that TMP could induce the release of BDNF from BM-MSCs through activation of the PI3K/AKT/CREB pathway, leading to the formation of neuroprotective and proneurogenic microenvironment. These findings suggest that TMP possesses novel therapeutic potential to promote neuroprotection and neurogenesis through improving the neurotrophic ability of BM-MSCs, which provides a promising nutritional prevention and treatment strategy for CNS injuries and neurodegenerative diseases via the transplantation of TMP-treated BM-MSCs.
Collapse
Affiliation(s)
- Bo Chen
- Translational Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Jing An
- Translational Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yun-Shan Guo
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Juan Tang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, China
| | - Jing-Jing Zhao
- Translational Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Rui Zhang
- Translational Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Hao Yang
- Translational Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
10
|
Advances and Perspectives in Dental Pulp Stem Cell Based Neuroregeneration Therapies. Int J Mol Sci 2021; 22:ijms22073546. [PMID: 33805573 PMCID: PMC8036729 DOI: 10.3390/ijms22073546] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
Human dental pulp stem cells (hDPSCs) are some of the most promising stem cell types for regenerative therapies given their ability to grow in the absence of serum and their realistic possibility to be used in autologous grafts. In this review, we describe the particular advantages of hDPSCs for neuroregenerative cell therapies. We thoroughly discuss the knowledge about their embryonic origin and characteristics of their postnatal niche, as well as the current status of cell culture protocols to maximize their multilineage differentiation potential, highlighting some common issues when assessing neuronal differentiation fates of hDPSCs. We also review the recent progress on neuroprotective and immunomodulatory capacity of hDPSCs and their secreted extracellular vesicles, as well as their combination with scaffold materials to improve their functional integration on the injured central nervous system (CNS) and peripheral nervous system (PNS). Finally, we offer some perspectives on the current and possible future applications of hDPSCs in neuroregenerative cell therapies.
Collapse
|
11
|
Xu Z, Su S, Zhou S, Yang W, Deng X, Sun Y, Li L, Li Y. How to reprogram human fibroblasts to neurons. Cell Biosci 2020; 10:116. [PMID: 33062254 PMCID: PMC7549215 DOI: 10.1186/s13578-020-00476-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022] Open
Abstract
Destruction and death of neurons can lead to neurodegenerative diseases. One possible way to treat neurodegenerative diseases and damage of the nervous system is replacing damaged and dead neurons by cell transplantation. If new neurons can replace the lost neurons, patients may be able to regain the lost functions of memory, motor, and so on. Therefore, acquiring neurons conveniently and efficiently is vital to treat neurological diseases. In recent years, studies on reprogramming human fibroblasts into neurons have emerged one after another, and this paper summarizes all these studies. Scientists find small molecules and transcription factors playing a crucial role in reprogramming and inducing neuron production. At the same time, both the physiological microenvironment in vivo and the physical and chemical factors in vitro play an essential role in the induction of neurons. Therefore, this paper summarized and analyzed these relevant factors. In addition, due to the unique advantages of physical factors in the process of reprogramming human fibroblasts into neurons, such as safe and minimally invasive, it has a more promising application prospect. Therefore, this paper also summarizes some successful physical mechanisms of utilizing fibroblasts to acquire neurons, which will provide new ideas for somatic cell reprogramming.
Collapse
Affiliation(s)
- Ziran Xu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021 People's Republic of China
| | - Shengnan Su
- The Second Hospital of Jilin University, Jilin, Changchun, 130041 China
| | - Siyan Zhou
- Department of Stomatology, The First Hospital of Jilin University, Changchun, 130021 People's Republic of China
| | - Wentao Yang
- Norman Bethune College of Medicine, Jilin University, Changchun, 130021 People's Republic of China
| | - Xin Deng
- Norman Bethune College of Medicine, Jilin University, Changchun, 130021 People's Republic of China
| | - Yingying Sun
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021 People's Republic of China.,Department of Stomatology, The First Hospital of Jilin University, Changchun, 130021 People's Republic of China
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021 People's Republic of China
| | - Yulin Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021 People's Republic of China
| |
Collapse
|
12
|
Li M, Cong R, Yang L, Yang L, Zhang Y, Fu Q. A novel lncRNA LNC_000052 leads to the dysfunction of osteoporotic BMSCs via the miR-96-5p-PIK3R1 axis. Cell Death Dis 2020; 11:795. [PMID: 32968049 PMCID: PMC7511361 DOI: 10.1038/s41419-020-03006-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022]
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) in postmenopausal osteoporosis models exhibit loss of viability and multipotency. Identification of the differentially expressed RNAs in osteoporotic BMSCs could reveal the mechanisms underlying BMSC dysfunction under physiological conditions, which might improve stem cell therapy and tissue regeneration. In this study, we performed high-throughput RNA sequencing and showed that the novel long non-coding RNA (lncRNA) LNC_000052 and its co-expressed mRNA PIK3R1 were upregulated in osteoporotic BMSCs. Knockdown of LNC_000052 could promote BMSC proliferation, migration, osteogenesis, and inhibit apoptosis via the PI3K/Akt signaling pathway. We found that both LNC_000052 and PIK3R1 shared a miRNA target, miR-96-5p, which was downregulated in osteoporotic BMSCs. Their binding sites were confirmed by dual-luciferase assays. Downregulation of miR-96-5p could restrain the effects of LNC_000052 knockdown while upregulation of miR-96-5p together with LNC_000052 knockdown could improve the therapeutic effects of BMSCs. In summary, the LNC_000052-miR-96-5p-PIK3R1 axis led to dysfunction of osteoporotic BMSCs and might be a novel therapeutic target for stem cell therapy and tissue regeneration.
Collapse
Affiliation(s)
- Mingyang Li
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Rong Cong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Liyu Yang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lei Yang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yiqi Zhang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qin Fu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
13
|
Ottoboni L, von Wunster B, Martino G. Therapeutic Plasticity of Neural Stem Cells. Front Neurol 2020; 11:148. [PMID: 32265815 PMCID: PMC7100551 DOI: 10.3389/fneur.2020.00148] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 02/14/2020] [Indexed: 12/21/2022] Open
Abstract
Neural stem cells (NSCs) have garnered significant scientific and commercial interest in the last 15 years. Given their plasticity, defined as the ability to develop into different phenotypes inside and outside of the nervous system, with a capacity of almost unlimited self-renewal, of releasing trophic and immunomodulatory factors, and of exploiting temporal and spatial dynamics, NSCs have been proposed for (i) neurotoxicity testing; (ii) cellular therapies to treat CNS diseases; (iii) neural tissue engineering and repair; (iv) drug target validation and testing; (v) personalized medicine. Moreover, given the growing interest in developing cell-based therapies to target neurodegenerative diseases, recent progress in developing NSCs from human-induced pluripotent stem cells has produced an analog of endogenous NSCs. Herein, we will review the current understanding on emerging conceptual and technological topics in the neural stem cell field, such as deep characterization of the human compartment, single-cell spatial-temporal dynamics, reprogramming from somatic cells, and NSC manipulation and monitoring. Together, these aspects contribute to further disentangling NSC plasticity to better exploit the potential of those cells, which, in the future, might offer new strategies for brain therapies.
Collapse
Affiliation(s)
- Linda Ottoboni
- Neurology and Neuroimmunology Unit, Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | | | - Gianvito Martino
- Neurology and Neuroimmunology Unit, Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy.,Università Vita-Salute San Raffaele, School of Medicine, Milan, Italy
| |
Collapse
|
14
|
Li G, Chen K, You D, Xia M, Li W, Fan S, Chai R, Zhang Y, Li H, Sun S. Laminin-Coated Electrospun Regenerated Silk Fibroin Mats Promote Neural Progenitor Cell Proliferation, Differentiation, and Survival in vitro. Front Bioeng Biotechnol 2019; 7:190. [PMID: 31448271 PMCID: PMC6691020 DOI: 10.3389/fbioe.2019.00190] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/23/2019] [Indexed: 12/16/2022] Open
Abstract
Neural progenitor cell (NPC) transplantation is a promising technique for central nervous system (CNS) reconstruction and regeneration. Biomaterial scaffolds, frameworks, and platforms can support NPC proliferation and differentiation in vitro as well as serve as a temporary extracellular matrix after transplantation. However, further applications of biomaterials require improved biological attributes. Silk fibroin (SF), which is produced by Bombyx mori, is a widely used and studied protein polymer for biomaterial application. Here, we prepared aligned and random eletrospun regenerated SF (RSF) scaffolds, and evaluated their impact on the growth of NPCs. First, we isolated NPCs and then cultured them on either laminin-coated RSF mats or conventional laminin-coated coverslips for cell assays. We found that aligned and random RSF led to increases in NPC proliferation of 143.8 ± 13.3% and 156.3 ± 14.7%, respectively, compared to controls. Next, we investigated neuron differentiation and found that the aligned and the random RSF led to increases in increase in neuron differentiation of about 93.2 ± 6.4%, and 3167.1 ± 4.8%, respectively, compared to controls. Furthermore, we measured the survival of NPCs and found that RSF promoted NPC survival, and found there was no difference among those three groups. Finally, signaling pathways in cells cultured on RSF mats were studied for their contributions in neural cell differentiation. Our results indicate that RSF mats provide a functional microenvironment and represent a useful scaffold for the development of new strategies in neural engineering research.
Collapse
Affiliation(s)
- Guangfei Li
- NHC Key Laboratory of Hearing Medicine, State Key Laboratory of Medical Neurobiology, Shanghai Engineering Research Centre of Cochlear Implant, Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Ear, Nose & Throat Institute, Fudan University, Shanghai, China
| | - Kai Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Dan You
- NHC Key Laboratory of Hearing Medicine, State Key Laboratory of Medical Neurobiology, Shanghai Engineering Research Centre of Cochlear Implant, Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Ear, Nose & Throat Institute, Fudan University, Shanghai, China
| | - Mingyu Xia
- NHC Key Laboratory of Hearing Medicine, State Key Laboratory of Medical Neurobiology, Shanghai Engineering Research Centre of Cochlear Implant, Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Ear, Nose & Throat Institute, Fudan University, Shanghai, China
| | - Wen Li
- NHC Key Laboratory of Hearing Medicine, State Key Laboratory of Medical Neurobiology, Shanghai Engineering Research Centre of Cochlear Implant, Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Ear, Nose & Throat Institute, Fudan University, Shanghai, China
| | - Suna Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Renjie Chai
- NHC Key Laboratory of Hearing Medicine, State Key Laboratory of Medical Neurobiology, Shanghai Engineering Research Centre of Cochlear Implant, Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Ear, Nose & Throat Institute, Fudan University, Shanghai, China.,Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Yaopeng Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Huawei Li
- NHC Key Laboratory of Hearing Medicine, State Key Laboratory of Medical Neurobiology, Shanghai Engineering Research Centre of Cochlear Implant, Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Ear, Nose & Throat Institute, Fudan University, Shanghai, China.,Collaborative Innovation Center for Brain Science, Institute of Biomedical Sciences, Institute of Brain Science, Fudan University, Shanghai, China
| | - Shan Sun
- NHC Key Laboratory of Hearing Medicine, State Key Laboratory of Medical Neurobiology, Shanghai Engineering Research Centre of Cochlear Implant, Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Ear, Nose & Throat Institute, Fudan University, Shanghai, China
| |
Collapse
|