1
|
Hightower AT, Chitwood DH, Josephs EB. Herbarium specimens reveal links between Capsella bursa-pastoris leaf shape and climate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580180. [PMID: 38405842 PMCID: PMC10888959 DOI: 10.1101/2024.02.13.580180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Studies into the evolution and development of leaf shape have connected variation in plant form, function, and fitness. For species with consistent leaf margin features, patterns in leaf architecture are related to both biotic and abiotic factors. However, for species with inconsistent leaf margin features, quantifying leaf shape variation and the effects of environmental factors on leaf shape has proven challenging. To investigate leaf shape variation in species with inconsistent shapes, we analyzed approximately 500 digitized Capsella bursa-pastoris specimens collected throughout the continental U.S. over a 100-year period with geometric morphometric modeling and deterministic techniques. We generated a morphospace of C. bursa-pastoris leaf shapes and modeled leaf shape as a function of environment and time. Our results suggest C. bursa-pastoris leaf shape variation is strongly associated with temperature over the C. bursa-pastoris growing season, with lobing decreasing as temperature increases. While we expected to see changes in variation over time, our results show that level of leaf shape variation is consistent over the 100-year period. Our findings showed that species with inconsistent leaf shape variation can be quantified using geometric morphometric modeling techniques and that temperature is the main environmental factor influencing leaf shape variation.
Collapse
Affiliation(s)
- Asia T Hightower
- Department of Plant Biology, Michigan State University, 612 Wilson Rd, East Lansing, MI, 48824-1226
- Ecology, Evolution, & Behavior Program, Michigan State University, 567 Wilson Rd, East Lansing, MI 48824-1226
- Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824-1226
| | - Daniel H Chitwood
- Department of Horticulture, Michigan State University, 1066 Bogue Street, East Lansing, MI 48824-1226
- Department of Computational Mathematics, Science, and Engineering, Michigan State University, 428 S Shaw Ln, East Lansing, MI 48824-1226
| | - Emily B Josephs
- Department of Plant Biology, Michigan State University, 612 Wilson Rd, East Lansing, MI, 48824-1226
- Ecology, Evolution, & Behavior Program, Michigan State University, 567 Wilson Rd, East Lansing, MI 48824-1226
- Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824-1226
| |
Collapse
|
2
|
Lawrence-Paul EH, Poethig RS, Lasky JR. Vegetative phase change causes age-dependent changes in phenotypic plasticity. THE NEW PHYTOLOGIST 2023; 240:613-625. [PMID: 37571856 PMCID: PMC10551844 DOI: 10.1111/nph.19174] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/05/2023] [Indexed: 08/13/2023]
Abstract
Phenotypic plasticity allows organisms to optimize traits for their environment. As organisms age, they experience diverse environments that benefit from varying degrees of phenotypic plasticity. Developmental transitions can control these age-dependent changes in plasticity, and as such, the timing of these transitions can determine when plasticity changes in an organism. Here, we investigate how the transition from juvenile-to adult-vegetative development known as vegetative phase change (VPC) contributes to age-dependent changes in phenotypic plasticity and how the timing of this transition responds to environment using both natural accessions and mutant lines in the model plant Arabidopsis thaliana. We found that the adult phase of vegetative development has greater plasticity in leaf morphology than the juvenile phase and confirmed that this difference in plasticity is caused by VPC using mutant lines. Furthermore, we found that the timing of VPC, and therefore the time when increased plasticity is acquired, varies significantly across genotypes and environments. The consistent age-dependent changes in plasticity caused by VPC suggest that VPC may be adaptive. This genetic and environmental variation in the timing of VPC indicates the potential for population-level adaptive evolution of VPC.
Collapse
Affiliation(s)
- Erica H. Lawrence-Paul
- Pennsylvania State University, Department of Biology, University Park, PA 16802
- University of Pennsylvania, Department of Biology, Philadelphia, PA 19104
| | - R. Scott Poethig
- University of Pennsylvania, Department of Biology, Philadelphia, PA 19104
| | - Jesse R. Lasky
- Pennsylvania State University, Department of Biology, University Park, PA 16802
| |
Collapse
|
3
|
Mwangi JW, Okoth OR, Kariuki MP, Piero NM. Genetic and phenotypic diversity of selected Kenyan mung bean (Vigna radiata L. Wilckzek) genotypes. J Genet Eng Biotechnol 2021; 19:142. [PMID: 34570295 PMCID: PMC8476662 DOI: 10.1186/s43141-021-00245-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/14/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Mung bean is a pulse crop principally grown in the tropic and subtropic parts of the world for its nutrient-rich seeds. Seven mung beans accessions from Eastern Kenya were evaluated using thirteen phenotypic traits. In addition, 10 SSR markers were used to determine their genetic diversity and population structure. This aimed at enhancing germplasm utilization for subsequent mung bean breeding programs. RESULTS Analysis of variance for most of the phenology traits showed significant variation, with the yield traits recording the highest. The first three principal components (PC) explained 83.4% of the overall phenotypic variation, with the highest (PC1) being due to variation of majority of the traits studied such as pod length, plant height, and seeds per pod. The dendogram revealed that the improved genotypes had common ancestry with the local landraces. The seven mung beans were also genotyped using 10 microsatellite markers, eight of which showed clear and consistent amplification profiles with scorable polymorphisms in all the studied genotypes. Genetic diversity, allele number, and polymorphic information content (PIC) were determined using powermarker (version 3.25) and phylogenetic tree constructed using DARWIN version 6.0.12. Analysis of molecular variance (AMOVA) was calculated using GenALEx version 6.5. A total of 23 alleles were detected from the seven genotypes on all the chromosomes studied with an average of 2.875 across the loci. The PIC values ranged from 0.1224 (CEDG056) to 0.5918 (CEDG092) with a mean of 0.3724. Among the markers, CEDG092 was highly informative while the rest were reasonably informative except CEDG056, which was less informative. Gene diversity ranged from 0.1836 (CEDG050) to 0.5102 (CDED088) with an average of 0.3534. The Jaccards dissimilarity matrix indicated that genotypes VC614850 and N26 had the highest level of dissimilarity while VC637245 and N26 had lowest dissimilarity index. The phylogenetic tree grouped the genotypes into three clusters as revealed by population structure analysis (K = 3), with cluster III having one unique genotype (VC6137B) only. AMOVA indicated that the highest variation (99%) was between individual genotype. In addition, marker traits association analysis revealed 18 significant associations (P < 0.05). CONCLUSION These findings indicate sufficient variation among the studied genotypes that can be considered for germplasm breeding programs.
Collapse
Affiliation(s)
- Jedidah Wangari Mwangi
- Department of Biochemistry, Microbiology and Biotechnology Kenyatta University, P.O. Box 43844-00100, Nairobi, Kenya.
| | - Oduor Richard Okoth
- Department of Biochemistry, Microbiology and Biotechnology Kenyatta University, P.O. Box 43844-00100, Nairobi, Kenya
| | | | - Ngugi Mathew Piero
- Department of Biochemistry, Microbiology and Biotechnology Kenyatta University, P.O. Box 43844-00100, Nairobi, Kenya
| |
Collapse
|
4
|
Stitt M, Luca Borghi G, Arrivault S. Targeted metabolite profiling as a top-down approach to uncover interspecies diversity and identify key conserved operational features in the Calvin-Benson cycle. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5961-5986. [PMID: 34473300 PMCID: PMC8411860 DOI: 10.1093/jxb/erab291] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/21/2021] [Indexed: 05/02/2023]
Abstract
Improving photosynthesis is a promising avenue to increase crop yield. This will be aided by better understanding of natural variance in photosynthesis. Profiling of Calvin-Benson cycle (CBC) metabolites provides a top-down strategy to uncover interspecies diversity in CBC operation. In a study of four C4 and five C3 species, principal components analysis separated C4 species from C3 species and also separated different C4 species. These separations were driven by metabolites that reflect known species differences in their biochemistry and pathways. Unexpectedly, there was also considerable diversity between the C3 species. Falling atmospheric CO2 and changing temperature, nitrogen, and water availability have driven evolution of C4 photosynthesis in multiple lineages. We propose that analogous selective pressures drove lineage-dependent evolution of the CBC in C3 species. Examples of species-dependent variation include differences in the balance between the CBC and the light reactions, and in the balance between regulated steps in the CBC. Metabolite profiles also reveal conserved features including inactivation of enzymes in low irradiance, and maintenance of CBC metabolites at relatively high levels in the absence of net CO2 fixation. These features may be important for photosynthetic efficiency in low light, fluctuating irradiance, and when stomata close due to low water availability.
Collapse
Affiliation(s)
- Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Gian Luca Borghi
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Stéphanie Arrivault
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
5
|
Sakurai G, Miklavcic SJ. On the Efficacy of Water Transport in Leaves. A Coupled Xylem-Phloem Model of Water and Solute Transport. FRONTIERS IN PLANT SCIENCE 2021; 12:615457. [PMID: 33613602 PMCID: PMC7889512 DOI: 10.3389/fpls.2021.615457] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/05/2020] [Indexed: 06/12/2023]
Abstract
In this paper, we present and use a coupled xylem/phloem mathematical model of passive water and solute transport through a reticulated vascular system of an angiosperm leaf. We evaluate the effect of leaf width-to-length proportion and orientation of second-order veins on the indexes of water transport into the leaves and sucrose transport from the leaves. We found that the most important factor affecting the steady-state pattern of hydraulic pressure distribution in the xylem and solute concentration in the phloem was leaf shape: narrower/longer leaves are less efficient in convecting xylem water and phloem solutes than wider/shorter leaves under all conditions studied. The degree of efficiency of transport is greatly influenced by the orientation of second-order veins relative to the main vein for all leaf proportions considered; the dependence is non-monotonic with efficiency maximized when the angle is approximately 45° to the main vein, although the angle of peak efficiency depends on other conditions. The sensitivity of transport efficiency to vein orientation increases with increasing vein conductivity. The vein angle at which efficiency is maximum tended to be smaller (relative to the main vein direction) in narrower leaves. The results may help to explain, or at least contribute to our understanding of, the evolution of parallel vein systems in monocot leaves.
Collapse
Affiliation(s)
- Gen Sakurai
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Stanley J. Miklavcic
- Phenomics and Bioinformatics Research Centre, University of South Australia, Mawson Lakes, SA, Australia
| |
Collapse
|
6
|
Turner KG, Ostevik KL, Grassa CJ, Rieseberg LH. Genomic Analyses of Phenotypic Differences Between Native and Invasive Populations of Diffuse Knapweed (Centaurea diffusa). Front Ecol Evol 2021. [DOI: 10.3389/fevo.2020.577635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Invasive species represent excellent opportunities to study the evolutionary potential of traits important to success in novel environments. Although some ecologically important traits have been identified in invasive species, little is typically known about the genetic mechanisms that underlie invasion success in non-model species. Here, we use a genome-wide association (GWAS) approach to identify the genetic basis of trait variation in the non-model, invasive, diffuse knapweed [Centaurea diffusa Lam. (Asteraceae)]. To assist with this analysis, we have assembled the first draft genome reference and fully annotated plastome assembly for this species, and one of the first from this large, weedy, genus, which is of major ecological and economic importance. We collected phenotype data from 372 individuals from four native and four invasive populations of C. diffusa grown in a common environment. Using these individuals, we produced reduced-representation genotype-by-sequencing (GBS) libraries and identified 7,058 SNPs. We identify two SNPs associated with leaf width in these populations, a trait which significantly varies between native and invasive populations. In this rosette forming species, increased leaf width is a major component of increased biomass, a common trait in invasive plants correlated with increased fitness. Finally, we use annotations from Arabidopsis thaliana to identify 98 candidate genes that are near the associated SNPs and highlight several good candidates for leaf width variation.
Collapse
|
7
|
Alcántara-Ayala O, Oyama K, Ríos-Muñoz CA, Rivas G, Ramirez-Barahona S, Luna-Vega I. Morphological variation of leaf traits in the Ternstroemia lineata species complex (Ericales: Penthaphylacaceae) in response to geographic and climatic variation. PeerJ 2020; 8:e8307. [PMID: 31942256 PMCID: PMC6956789 DOI: 10.7717/peerj.8307] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 11/27/2019] [Indexed: 11/29/2022] Open
Abstract
Variation in leaf morphology is correlated with environmental variables, such as precipitation, temperature and soil composition. Several studies have pointed out that individual plasticity can largely explain the foliar phenotypic differences observed in populations due to climatic change and have suggested that the environment plays an important role in the evolution of plant species by selecting for phenotypic variation. Thus, the study of foliar morphology in plant populations can help us identify the environmental factors that have potentially influenced the process of species diversification. In this study, we analyzed morphological variation in the leaf traits of the Ternstroemia lineata species complex (Penthaphylacaceae) and its relation to climatic variables across the species distribution area to identify the patterns of morphological differentiation within this species complex. Based on the collected leaves of 270 individuals from 32 populations, we analyzed nine foliar traits using spatial interpolation models and multivariate statistics. A principal component analysis identified three main morphological traits (leaf length and two leaf shape variables) that were used to generate interpolated surface maps to detect discrete areas delimited by zones of rapid change in the values of the morphological traits. We identified a mosaic coarse-grain pattern of geographical distribution in the variation of foliar traits. According to the interpolation maps, we could define nine morphological groups and their geographic distributions. Longer leaves, spatulate leaves and the largest foliar area were located in sites with lower precipitation and higher seasonality of precipitation following a northwest-southeast direction and following significant latitudinal and longitudinal gradients. According to the phenogram of the relationships of the nine morphological groups based on morphological similarity, the putative species and subspecies of the T. lineata species complex did not show a clear pattern of differentiation. In this study, we found a complex pattern of differentiation with some isolated populations and some other contiguous populations differentiated by different traits. Further genetic and systematic studies are needed to clarify the evolutionary relationships in this species complex.
Collapse
Affiliation(s)
- Othón Alcántara-Ayala
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, México
- Laboratorio de Biogeografía y Sistemática, Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, México
| | - Ken Oyama
- Escuela Nacional de Estudios Superiores (ENES), Unidad Morelia, Universidad Nacional Autónoma de México, Morelia, Michoacán, México
| | - César A. Ríos-Muñoz
- Coordinación Universitaria para la Sustentabilidad, Universidad Nacional Autónoma de México, Mexico City, México
| | - Gerardo Rivas
- Departamento de Biología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, México
| | - Santiago Ramirez-Barahona
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, México
| | - Isolda Luna-Vega
- Laboratorio de Biogeografía y Sistemática, Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, México
| |
Collapse
|
8
|
Teobaldelli M, Basile B, Giuffrida F, Romano D, Toscano S, Leonardi C, Rivera CM, Colla G, Rouphael Y. Analysis of Cultivar-Specific Variability in Size-Related Leaf Traits and Modeling of Single Leaf Area in Three Medicinal and Aromatic Plants: Ocimum basilicum L., Mentha Spp., and Salvia Spp. PLANTS (BASEL, SWITZERLAND) 2019; 9:E13. [PMID: 31861772 PMCID: PMC7020212 DOI: 10.3390/plants9010013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 11/30/2022]
Abstract
In this study, five allometric models were used to estimate the single leaf area of three well-known medicinal and aromatic plants (MAPs) species, namely basil (Ocimum basilicum L.), mint (Mentha spp.), and sage (Salvia spp.). MAPs world production is expected to rise up to 5 trillion US$ by 2050 and, therefore, there is a high interest in developing research related to this horticultural sector. Calibration of the models was obtained separately for three selected species by analyzing (a) the cultivar variability-i.e., 5 cultivars of basil (1094 leaves), 4 of mint (901 leaves), and 5 of sage (1103 leaves)-in the main two traits related to leaf size (leaf length, L, and leaf width, W) and (b) the relationship between these traits and single leaf area (LA). Validation of the chosen models was obtained for each species using an independent dataset, i.e., 487, 441, and 418 leaves, respectively, for basil (cv. 'Lettuce Leaf'), mint (cv. 'Comune'), and sage (cv. 'Comune'). Model calibration based on fast-track methodologies, such as those using one measured parameter (one-regressor models: L, W, L2, and W2) or on more accurate two-regressors models (L × W), allowed to achieve different levels of accuracy. This approach highlighted the importance of considering intra-specific variability before applying any models to a certain cultivar to predict single LA. Eventually, during the validation phase, although modeling of single LA based on W2 showed a good fitting (R2basil = 0.948; R2mint = 0.963; R2sage = 0.925), the distribution of the residuals was always unsatisfactory. On the other hand, two-regressor models (based on the product L × W) provided the best fitting and accuracy for basil (R2 = 0.992; RMSE = 0.327 cm2), mint (R2 = 0.998; RMSE = 0.222 cm2), and sage (R2 = 0.998; RMSE = 0.426 cm2).
Collapse
Affiliation(s)
- Maurizio Teobaldelli
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.T.)
| | - Boris Basile
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.T.)
| | - Francesco Giuffrida
- Department of Agriculture, Food and Environment, University of Catania, 95100 Catania, Italy; (F.G.); (D.R.); (S.T.); (C.L.)
| | - Daniela Romano
- Department of Agriculture, Food and Environment, University of Catania, 95100 Catania, Italy; (F.G.); (D.R.); (S.T.); (C.L.)
| | - Stefania Toscano
- Department of Agriculture, Food and Environment, University of Catania, 95100 Catania, Italy; (F.G.); (D.R.); (S.T.); (C.L.)
| | - Cherubino Leonardi
- Department of Agriculture, Food and Environment, University of Catania, 95100 Catania, Italy; (F.G.); (D.R.); (S.T.); (C.L.)
| | - Carlos Mario Rivera
- Department of Agriculture and Forest Sciences, Tuscia University, 01100 Viterbo, Italy;
| | - Giuseppe Colla
- Department of Agriculture and Forest Sciences, Tuscia University, 01100 Viterbo, Italy;
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.T.)
| |
Collapse
|
9
|
Teobaldelli M, Rouphael Y, Fascella G, Cristofori V, Rivera CM, Basile B. Developing an Accurate and Fast Non-Destructive Single Leaf Area Model for Loquat ( Eriobotrya japonica Lindl) Cultivars. PLANTS (BASEL, SWITZERLAND) 2019; 8:E230. [PMID: 31319530 PMCID: PMC6681347 DOI: 10.3390/plants8070230] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/09/2019] [Accepted: 07/16/2019] [Indexed: 11/17/2022]
Abstract
In this research, seven different models to predict leaf area (LA) of loquat (Eriobotrya japonica Lindl) were tested and evaluated. This species was chosen due to the relevant importance of its fruit as an appreciated early summer product and of its leaves and flower as a source of additional income within the nutraceutical and functional food markets. The analysis (calibration and validation) was made using a large dataset (2190) of leaf width (W), leaf length (L), and single LA collected in ten common loquat cultivars. During the analysis, the results obtained using one- and two-regressor models were also evaluated to assess the need for fast measurements against different levels of accuracy achieved during the final estimate. The analysis permitted to finally select two different models: 1) a model based on a single measurement and quadratic relationship between the single LA and W (R2 = 0.894; root mean squared error [RMSE] = 12.98) and another model 2) based, instead, on two measurements (L and W), and on the linear relationship between single LA and the product of L × W (R2 = 0.980; RMSE = 5.61). Both models were finally validated with an independent dataset (cultivar 'Tanaka') confirming the quality of fitting and accuracy already observed during the calibration phase. The analysis permitted to select two different models to be used according to the aims and accuracy required by the analysis. One, based on a single-regressor quadratic model and W (rather than L) as a proxy variable, is capable of obtaining a good quality of fitting of the single LA of loquat cultivars (R2 = 0.894; RMSE = 12.98), whereas, the other, a linear two-regressor (i.e., W and L) model, permitted to achieve the highest prediction (R2 = 0.980; RMSE = 5.61) of the observed variable, but double the time required for leaf measurement.
Collapse
Affiliation(s)
- Maurizio Teobaldelli
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Naples, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Naples, Italy
| | - Giancarlo Fascella
- CREA Research Centre for Plant Protection and Certification, 90011 Bagheria (Palermo), Italy
| | - Valerio Cristofori
- Department of Agriculture and Forest Sciences, Tuscia University, 01100 Viterbo, Italy
| | - Carlos Mario Rivera
- Department of Agriculture and Forest Sciences, Tuscia University, 01100 Viterbo, Italy
| | - Boris Basile
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Naples, Italy.
| |
Collapse
|
10
|
Ren T, Weraduwage SM, Sharkey TD. Prospects for enhancing leaf photosynthetic capacity by manipulating mesophyll cell morphology. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1153-1165. [PMID: 30590670 DOI: 10.1093/jxb/ery448] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 12/25/2018] [Indexed: 06/09/2023]
Abstract
Leaves are beautifully specialized organs designed to maximize the use of light and CO2 for photosynthesis. Engineering leaf anatomy therefore holds great potential to enhance photosynthetic capacity. Here we review the effect of the dominant leaf anatomical traits on leaf photosynthesis and confirm that a high chloroplast surface area exposed to intercellular airspace per unit leaf area (Sc) is critical for efficient photosynthesis. The possibility of improving Sc through appropriately increasing mesophyll cell density is further analyzed. The potential influences of modifying mesophyll cell morphology on CO2 diffusion, light distribution within the leaf, and other physiological processes are also discussed. Some potential target genes regulating leaf mesophyll cell proliferation and expansion are explored. Indeed, more comprehensive research is needed to understand how manipulating mesophyll cell morphology through editing the potential target genes impacts leaf photosynthetic capacity and related physiological processes. This will pinpoint the targets for engineering leaf anatomy to maximize photosynthetic capacity.
Collapse
Affiliation(s)
- Tao Ren
- College of Resources and Environment, Huazhong Agricultural University, China
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, USA
| | - Sarathi M Weraduwage
- Department of Energy Plant Research Laboratory and Plant Resiience Institute, Michigan State University, East Lansing, USA
| | - Thomas D Sharkey
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, USA
- Department of Energy Plant Research Laboratory and Plant Resiience Institute, Michigan State University, East Lansing, USA
| |
Collapse
|