1
|
Wang LJ, Kuo HC, Lee SY, Huang LH, Lin Y, Lin PH, Li SC. MicroRNAs serve as prediction and treatment-response biomarkers of attention-deficit/hyperactivity disorder and promote the differentiation of neuronal cells by repressing the apoptosis pathway. Transl Psychiatry 2022; 12:67. [PMID: 35184133 PMCID: PMC8858317 DOI: 10.1038/s41398-022-01832-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 12/02/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a highly heritable neurodevelopmental disorder. This study aimed to examine whether miRNA expression abundance in total white blood cells (WBCs) facilitated the identification of ADHD and reflected its response to treatment. Furthermore, whether miRNA markers facilitated the growth of the human cortical neuronal (HCN-2) cells was also investigated. Total WBC samples were collected from 145 patients and 83 controls, followed by RNA extraction and qPCR assays. Subsequently, WBC samples were also collected at the endpoint from ADHD patients who had undergone 12 months of methylphenidate treatment. The determined ΔCt values of 12 miRNAs were applied to develop an ADHD prediction model and to estimate the correlation with treatment response. The prediction model applying the ΔCt values of 12 examined miRNAs (using machine learning algorithm) demonstrated good validity in discriminating ADHD patients from controls (sensitivity: 96%; specificity: 94.2%). Among the 92 ADHD patients completing the 12-month follow-up, miR-140-3p, miR-27a-3p, miR-486-5p, and miR-151-5p showed differential trends of ΔCt values between treatment responders and non-responders. In addition, the in vitro cell model revealed that miR-140-3p and miR-126-5p promoted the differentiation of HCN-2 cells by enhancing the length of neurons and the number of junctions. Microarray and flow cytometry assays confirmed that this promotion was achieved by repressing apoptosis and/or necrosis. The findings of this study suggest that the expression levels of miRNAs have the potential to serve as both diagnostic and therapeutic biomarkers for ADHD. The possible biological mechanisms of these biomarker miRNAs in ADHD pathophysiology were also clarified.
Collapse
Affiliation(s)
- Liang-Jen Wang
- grid.145695.a0000 0004 1798 0922Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ho-Chang Kuo
- grid.145695.a0000 0004 1798 0922Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan ,grid.413804.aKawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Sheng-Yu Lee
- grid.415011.00000 0004 0572 9992Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan ,grid.412019.f0000 0000 9476 5696Department of Psychiatry, College of Medicine, Graduate Institute of Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Lien-Hung Huang
- grid.145695.a0000 0004 1798 0922Center for Mitochondrial Research and Medicine and Genomics and Proteomics Core Laboratory, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yuyu Lin
- grid.145695.a0000 0004 1798 0922Center for Mitochondrial Research and Medicine and Genomics and Proteomics Core Laboratory, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pei-Hsien Lin
- grid.145695.a0000 0004 1798 0922Center for Mitochondrial Research and Medicine and Genomics and Proteomics Core Laboratory, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Sung-Chou Li
- Center for Mitochondrial Research and Medicine and Genomics and Proteomics Core Laboratory, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| |
Collapse
|
2
|
Ávila-Mendoza J, Mora J, Carranza M, Luna M, Arámburo C. Growth hormone reverses excitotoxic damage induced by kainic acid in the green iguana neuroretina. Gen Comp Endocrinol 2016; 234:57-67. [PMID: 27064058 DOI: 10.1016/j.ygcen.2016.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 04/05/2016] [Accepted: 04/05/2016] [Indexed: 11/28/2022]
Abstract
It is known that growth hormone (GH) is expressed in extrapituitary tissues, including the nervous system and ocular tissues, where it is involved in autocrine/paracrine actions related to cell survival and anti-apoptosis in several vertebrates. Little is known, however, in reptiles, so we analyzed the expression and distribution of GH in the eye of green iguana and its potential neuroprotective role in retinas that were damaged by the intraocular administration of kainic acid (KA). It was found, by Western blotting, that GH-immunoreactivity (GH-IR) was expressed as two isoforms (15 and 26kDa, under reducing conditions) in cornea, vitreous, retina, crystalline, iris and sclera, in varying proportions. Also, two bands for the growth hormone receptor (GHR)-IR were observed (70 and 44kDa, respectively) in the same tissues. By immunofluorescence, GH-IR was found in neurons present in several layers of the neuroretina (inner nuclear [INL], outer nuclear [ONL] and ganglion cell [GCL] layers) as determined by its co-existence with NeuN, but not in glial cells. In addition, GH and GHR co-expression was found in the same cells, suggesting paracrine/autocrine interactions. KA administration induced retinal excitotoxic damage, as determined by a significant reduction of the cell density and an increase in the appearance of apoptotic cells in the INL and GCL. In response to KA injury, both endogenous GH and Insulin-like Growth Factor I (IGF-I) expression were increased by 70±1.8% and 33.3±16%, respectively. The addition of exogenous GH significantly prevented the retinal damage produced by the loss of cytoarchitecture and cell density in the GCL (from 4.9±0.79 in the control, to 1.45±0.2 with KA, to 6.35±0.49cell/mm(2) with KA+GH) and in the INL (19.12±1.6, 10.05±1.9, 21.0±0.8cell/mm(2), respectively) generated by the long-term effect of 1mM KA intraocular administration. The co-incubation with a specific anti-GH antibody, however, blocked the protective effect of GH in GCL (1.4±0.23cell/mm(2)) and INL (11.35±1.06), respectively. Furthermore, added GH induced an increase of 90±14% in the retinal IGF-I concentration and the anti-GH antibody also blocked this effect. These results indicate that GH and GHR are expressed in the iguana eye and may be able to exert, either directly of mediated by IGF-I, a protective mechanism in neuroretinas that suffered damage by the administration of kainic acid.
Collapse
Affiliation(s)
- José Ávila-Mendoza
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro. 76230, Mexico
| | - Janeth Mora
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro. 76230, Mexico
| | - Martha Carranza
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro. 76230, Mexico
| | - Maricela Luna
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro. 76230, Mexico
| | - Carlos Arámburo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro. 76230, Mexico.
| |
Collapse
|
3
|
Martínez-Moreno CG, Ávila-Mendoza J, Wu Y, Arellanes-Licea EDC, Louie M, Luna M, Arámburo C, Harvey S. Neuroprotection by GH against excitotoxic-induced cell death in retinal ganglion cells. Gen Comp Endocrinol 2016; 234:68-80. [PMID: 27129619 DOI: 10.1016/j.ygcen.2016.03.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 03/16/2016] [Indexed: 01/13/2023]
Abstract
Retinal growth hormone (GH) has been shown to promote cell survival in retinal ganglion cells (RGCs) during developmental waves of apoptosis during chicken embryonic development. The possibility that it might also against excitotoxicity-induced cell death was therefore examined in the present study, which utilized quail-derived QNR/D cells as an in vitro RGC model. QNR/D cell death was induced by glutamate in the presence of BSO (buthionine sulfoxamide) (an enhancer of oxidative stress), but this was significantly reduced (P<0.01) in the presence of exogenous recombinant chicken GH (rcGH). Similarly, QNR/D cells that had been prior transfected with a GH plasmid to overexpress secreted and non-secreted GH. This treatment reduced the number of TUNEL-labeled cells and blocked their release of lactate dehydrogenase (LDH). In a further experiment with dissected neuroretinal explants from ED (embryonic day) 10 embryos, rcGH treatment of the explants also reduced (P<0.01) the number of glutamate-BSO-induced apoptotic cells and blocked the explant release of LDH. This neuroprotective action was likely mediated by increased STAT5 phosphorylation and increased bcl-2 production, as induced by exogenous rcGH treatment and the media from GH-overexpressing QNR/D cells. As rcGH treatment and GH-overexpression cells also increased the content of IGF-1 and IGF-1 mRNA this neuroprotective action of GH is likely to be mediated, at least partially, through an IGF-1 mechanism. This possibility is supported by the fact that the siRNA knockdown of GH or IGF-1 significantly reduced QNR/D cell viability, as did the immunoneutralization of IGF-1. GH is therefore neuroprotective against excitotoxicity-induced RGC cell death by anti-apoptotic actions involving IGF-1 stimulation.
Collapse
Affiliation(s)
| | - José Ávila-Mendoza
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro. 76230, Mexico
| | - Yilun Wu
- Department of Physiology, University of Alberta, Edmonton T6G 2H7, Canada
| | - Elvira Del Carmen Arellanes-Licea
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro. 76230, Mexico
| | - Marcela Louie
- Department of Physiology, University of Alberta, Edmonton T6G 2H7, Canada
| | - Maricela Luna
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro. 76230, Mexico
| | - Carlos Arámburo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro. 76230, Mexico
| | - Steve Harvey
- Department of Physiology, University of Alberta, Edmonton T6G 2H7, Canada.
| |
Collapse
|
4
|
Heterogeneous Nuclear Ribonucleoprotein L is required for the survival and functional integrity of murine hematopoietic stem cells. Sci Rep 2016; 6:27379. [PMID: 27271479 PMCID: PMC4895350 DOI: 10.1038/srep27379] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 05/16/2016] [Indexed: 12/15/2022] Open
Abstract
The proliferation and survival of hematopoietic stem cells (HSCs) has to be strictly coordinated to ensure the timely production of all blood cells. Here we report that the splice factor and RNA binding protein hnRNP L (heterogeneous nuclear ribonucleoprotein L) is required for hematopoiesis, since its genetic ablation in mice reduces almost all blood cell lineages and causes premature death of the animals. In agreement with this, we observed that hnRNP L deficient HSCs lack both the ability to self-renew and foster hematopoietic differentiation in transplanted hosts. They also display mitochondrial dysfunction, elevated levels of γH2AX, are Annexin V positive and incorporate propidium iodide indicating that they undergo cell death. Lin(-)c-Kit(+) fetal liver cells from hnRNP L deficient mice show high p53 protein levels and up-regulation of p53 target genes. In addition, cells lacking hnRNP L up-regulated the expression of the death receptors TrailR2 and CD95/Fas and show Caspase-3, Caspase-8 and Parp cleavage. Treatment with the pan-caspase inhibitor Z-VAD-fmk, but not the deletion of p53, restored cell survival in hnRNP L deficient cells. Our data suggest that hnRNP L is critical for the survival and functional integrity of HSCs by restricting the activation of caspase-dependent death receptor pathways.
Collapse
|
5
|
Gooshe M, Abdolghaffari AH, Aleyasin AR, Chabouk L, Tofigh S, Hassanzadeh GR, Payandemehr B, Partoazar A, Azizi Y, Dehpour AR. Hypoxia/ischemia a key player in early post stroke seizures: modulation by opioidergic and nitrergic systems. Eur J Pharmacol 2014; 746:6-13. [PMID: 25449041 DOI: 10.1016/j.ejphar.2014.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 11/05/2014] [Accepted: 11/06/2014] [Indexed: 01/14/2023]
Abstract
Stroke is a leading cause of death, disability, and socioeconomic loss worldwide. All attempts at pharmacological reduction of the complications of stroke (e.g. post-stroke seizure, and brain׳s vulnerability to hypoxic/ischemic injury) have failed. Endogenous opioids and nitric oxide (NO) overproduction has been documented in brain hypoxia/ischemia (H/I), which can exert pro-convulsive effects. In this study, we aimed to examine the possible involvement of opioidergic and nitrergic pathways in the pathogenesis of post-stroke seizure. H/I was induced by right common carotid ligation and sham-operated mice served as controls. We demonstrated that right common carotid ligation decreases the threshold for clonic seizures induced by pentylenetetrazole (PTZ), a GABA antagonist. Furthermore, pro-convulsive effect of H/I following right common carotid ligation was blocked by naltrexone (NTX) (3mg/kg), NG-Nitro-l-arginine methyl ester (l-NAME) (10mg/kg), and aminoguanidine (AG) (100mg/kg) administration (P<0.001). Interestingly, co-administration of non-effective doses of NTX and l-NAME (1 and 0.5mg/kg, respectively) reverses epileptogenesis of H/I (P<0.001). In the same way, co-administration of non-effective doses of NTX and AG (1 and 5mg/kg, respectively), reverses epileptogenesis of H/I (P<0.001). Indeed, the histological studies performed on mice exposed to H/I confirmed our previous data. These findings suggest hyper-susceptibility to PTZ induced seizure following H/I is mediated by interaction of opioidergic, and iNOS/NO pathways. Therefore, our results identify new pharmacological targets and provide the rationale for a novel strategy to promote recovery after stroke and possibly other brain injuries.
Collapse
Affiliation(s)
- Maziar Gooshe
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Students׳ Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Abdolghaffari
- Pharmacology and Applied Medicine, Department of Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran; International Campus, ICTUMS, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Reza Aleyasin
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Students׳ Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Chabouk
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sina Tofigh
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholam Reza Hassanzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Borna Payandemehr
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Partoazar
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yaser Azizi
- Department of Physiology, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Bolea I, Colivicchi MA, Ballini C, Marco-Contelles J, Tipton KF, Unzeta M, Della Corte L. Neuroprotective effects of the MAO-B inhibitor, PF9601N, in an in vivo model of excitotoxicity. CNS Neurosci Ther 2014; 20:641-50. [PMID: 24767579 DOI: 10.1111/cns.12271] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/18/2014] [Accepted: 03/22/2014] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND PF9601N [N-(2-propynyl)-2-(5-benzyloxy-indolyl) methylamine] is an inhibitor of monoamine oxidase B (MAO-B), which has shown to possess neuroprotective properties in several in vitro and in vivo models of Parkinson's disease (PD). As there is evidence that excitotoxicity may be implicated in the pathophysiology of several neurodegenerative diseases, the aim of the present work was to investigate the effects of PF9601N in an acute in vivo model of excitotoxicity induced by the local administration of kainic acid during striatal microdialysis in adult rats. METHODS The basal and evoked release of neurotransmitters was monitored by HPLC analysis of microdialysate samples and tissue damage was evaluated histologically "ex vivo." RESULTS PF9601N (40 mg/kg, single i.p. administration) reduced the kainate-evoked release of glutamate and aspartate and increased taurine release, but it had no effect on the release of dopamine, DOPAC, and HVA. PF9601N pretreatment also resulted in a significant reduction in the kainate-induced astrocytosis, microgliosis, and apoptosis. CONCLUSIONS The results suggest PF9601N to be a good candidate for the treatment of neurodegenerative diseases mediated by excitotoxicity.
Collapse
Affiliation(s)
- Irene Bolea
- Departament de Bioquimica i Biologia Molecular, Facultat de Medicina, Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain; Dipartimento di Neuroscienze, Psicologia Area del Farmaco e Salute del Bambino (NEUROFARBA), Università degli Studi di Firenze, Firenze, Italy
| | | | | | | | | | | | | |
Collapse
|
7
|
Upregulated expression of NF-YC contributes to neuronal apoptosis via proapoptotic protein bim in rats' brain hippocampus following middle cerebral artery occlusion (MCAO). J Mol Neurosci 2013; 52:552-65. [PMID: 24014123 DOI: 10.1007/s12031-013-0111-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 08/27/2013] [Indexed: 01/10/2023]
Abstract
Cerebral ischemia represents a severe brain injury that could lead to significant neuronal damage and death. In this study, we performed a middle cerebral artery occlusion (MCAO) in adult rats and observed that a subunit of nuclear factor-Y (NF-Y) transcriptional factor, NF-YC, was accumulated in rat hippocampal CA1 neurons. Immunochemistrical and immunofluorescent analysis revealed that NF-YC was primarily expressed in the nucleus of neurons. Meanwhile, we found that the changes of bim, one of the target genes of NF-Y, were consistent with the expression of NF-YC and Bim was mainly located in the NF-YC positive cells. Moreover, there was a concomitant upregulation of active caspase-3 and TUNEL positive cells. Taken together, these results suggested that the upregulation of NF-YC might play an important role in the pathophysiology via proapoptotic protein Bim after MCAO and further research is needed to have a better understanding of its function and mechanism.
Collapse
|
8
|
Schubert S, Gerlach F, Stoltenburg-Didinger G, Burmester T, Hankeln T, Boettcher W, Wehsack A, Hübler M, Berger F, Abdul-Khaliq H. Cerebral expression of neuroglobin and cytoglobin after deep hypothermic circulatory arrest in neonatal piglets. Brain Res 2010; 1356:1-10. [DOI: 10.1016/j.brainres.2010.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2010] [Revised: 06/29/2010] [Accepted: 08/03/2010] [Indexed: 12/26/2022]
|
9
|
Galons JP, Morse DL, Jennings DR, Gillies RJ. Diffusion-Weighted MRI and Response to Anti-Cancer Therapies. Isr J Chem 2010. [DOI: 10.1560/gj5m-pp8r-ghub-vuup] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Fonge H, de Saint Hubert M, Vunckx K, Rattat D, Nuyts J, Bormans G, Ni Y, Reutelingsperger C, Verbruggen A. Preliminary in vivo evaluation of a novel 99mTc-Labeled HYNIC-cys-annexin A5 as an apoptosis imaging agent. Bioorg Med Chem Lett 2008; 18:3794-8. [DOI: 10.1016/j.bmcl.2008.05.044] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 05/08/2008] [Accepted: 05/09/2008] [Indexed: 12/22/2022]
|
11
|
Lee J, Sharma S, Kim J, Ferrante RJ, Ryu H. Mitochondrial nuclear receptors and transcription factors: who's minding the cell? J Neurosci Res 2008; 86:961-71. [PMID: 18041090 DOI: 10.1002/jnr.21564] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Mitochondria are power organelles generating biochemical energy, ATP, in the cell. Mitochondria play a variety of roles, including integrating extracellular signals and executing critical intracellular events, such as neuronal cell survival and death. Increasing evidence suggests that a cross-talk mechanism between mitochondria and the nucleus is closely related to neuronal function and activity. Nuclear receptors (estrogen receptors, thyroid (T3) hormone receptor, peroxisome proliferators-activated receptor gamma2) and transcription factors (cAMP response binding protein, p53) have been found to target mitochondria and exert prosurvival and prodeath pathways. In this context, the regulation of mitochondrial function via the translocation of nuclear receptors and transcription factors may underlie some of the mechanisms involved in neuronal survival and death. Understanding the function of nuclear receptors and transcription factors in the mitochondria may provide important pharmacological utility in the treatment of neurodegenerative conditions. Thus, the modulation of signaling pathways via mitochondria-targeting nuclear receptors and transcription factors is rapidly emerging as a novel therapeutic target.
Collapse
Affiliation(s)
- Junghee Lee
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
12
|
Lee KJ, Panzera A, Rogawski D, Greene LE, Eisenberg E. Cellular prion protein (PrPC) protects neuronal cells from the effect of huntingtin aggregation. J Cell Sci 2007; 120:2663-71. [PMID: 17635996 DOI: 10.1242/jcs.004598] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The effect of normal cellular prion protein (PrP(C)) on abnormal protein aggregation was examined by transfecting huntingtin fragments (Htt) into SN56 neuronal-derived cells depleted of PrP(C) by RNA interference. PrP(C) depletion caused an increase in both the number of cells containing granules and the number of apoptotic cells. Consistent with the increase in Htt aggregation, PrP(C) depletion caused an decrease in proteasome activity and a decrease in the activities of cellular defense enzymes compared with control cells whereas reactive oxygen species (ROS) increased more than threefold. Therefore, PrP(C) may protect against Htt toxicity in neuronal cells by increasing cellular defense proteins, decreasing ROS and increasing proteasome activity thereby increasing Htt degradation. Depletion of endogenous PrP(C) in non-neuronal Caco-2 and HT-29 cells did not affect ROS levels or proteasome activity suggesting that only in neuronal cells does PrP(C) confer protection against Htt toxicity. The protective effect of PrP(C) was further evident in that overexpression of mouse PrP(C) in SN56 cells transfected with Htt caused a decrease in both the number of cells with Htt granules and the number of apoptotic cells, whereas there was no effect of PrP(C) expression in non-neuronal NIH3T3 or CHO cells. Finally, in chronically scrapie (PrP(Sc))-infected cells, ROS increased more than twofold while proteasome activity was decreased compared to control cells. Although this could be a direct effect of PrP(Sc), it is also possible that, since PrP(C) specifically prevents pathological protein aggregation in neuronal cells, partial loss of PrP(C) itself increases PrP(Sc) aggregation.
Collapse
Affiliation(s)
- Kyung-Jin Lee
- Laboratory of Cell Biology, NHBLI, NIH, Bethesda, MD 20892-0301, USA
| | | | | | | | | |
Collapse
|
13
|
Meurette O, Rebillard A, Huc L, Le Moigne G, Merino D, Micheau O, Lagadic-Gossmann D, Dimanche-Boitrel MT. TRAIL induces receptor-interacting protein 1-dependent and caspase-dependent necrosis-like cell death under acidic extracellular conditions. Cancer Res 2007; 67:218-26. [PMID: 17210702 DOI: 10.1158/0008-5472.can-06-1610] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tumor necrosis factor-alpha-related apoptosis-inducing ligand (TRAIL) is a potential anticancer agent that induces apoptosis in cancer cells but not in most normal cells. How tumor physiology, particularly acidic extracellular pH (pH(e)), would modify sensitivity of cancer cells to TRAIL-induced cell death is not known. We have previously shown that cancer cells, resistant to TRAIL-induced apoptosis at physiologic pH(e) (7.4), could be sensitized to TRAIL at acidic pH(e) (6.5). However, at this acidic pH(e), cell death was necrotic. We show here that, in spite of a necrosis-like cell death morphology, caspases are activated and are necessary for TRAIL-induced cell death at acidic pH(e) in HT29 human colon cancer cells. Furthermore, we observed that, whereas receptor-interacting protein (RIP) was cleaved following TRAIL treatment at physiologic pH(e) (7.4), it was not cleaved following TRAIL treatment at acidic pH(e) (6.5). Moreover, RIP degradation by geldanamycin or decrease expression of RIP by small RNA interference transfection inhibited TRAIL-induced necrosis at acidic pH(e), showing that RIP was necessary for this necrotic cell death pathway. We also show that RIP kinase activity was essential for this cell death pathway. Altogether, we show that, under acidic pH(e) conditions, TRAIL induces a necrosis-like cell death pathway that depends both on caspases and RIP kinase activity. Thus, our data suggest for the first time that RIP-dependent necrosis might be a major death pathway in TRAIL-based therapy in solid tumors with acidic pH(e).
Collapse
Affiliation(s)
- Olivier Meurette
- Institut National de la Santé et de la Recherche Médicale UMR620, Faculté de Pharmacie, Université Rennes 1, 2 Avenue du Pr Léon Bernard, 35043 Rennes, France
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Calcium ions are the most ubiquitous and pluripotent cellular signaling molecules that control a wide variety of cellular processes. The calcium signaling system is represented by a relatively limited number of highly conserved transporters and channels, which execute Ca2+ movements across biological membranes and by many thousands of Ca2+-sensitive effectors. Molecular cascades, responsible for the generation of calcium signals, are tightly controlled by Ca2+ ions themselves and by genetic factors, which tune the expression of different Ca2+-handling molecules according to adaptational requirements. Ca2+ ions determine normal physiological reactions and the development of many pathological processes.
Collapse
|
15
|
Schubert S, Stoltenburg-Didinger G, Wehsack A, Troitzsch D, Boettcher W, Huebler M, Redlin M, Kanaan M, Meissler M, Lange PE, Abdul-Khaliq H. Large-Dose Pretreatment with Methylprednisolone Fails to Attenuate Neuronal Injury After Deep Hypothermic Circulatory Arrest in a Neonatal Piglet Model. Anesth Analg 2005; 101:1311-1318. [PMID: 16243986 DOI: 10.1213/01.ane.0000180206.95542.76] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Conflicting results have been reported with regard to the neuroprotective effects of steroid treatment with cardiopulmonary bypass (CPB) and deep hypothermic circulatory arrest (DHCA). We evaluated the mode and severity of neuronal cell injury in neonatal piglets after prolonged DHCA and the possible neuroprotective effect of systemic pretreatment (>6 h before surgery) with large-dose methylprednisolone (MP). Nineteen neonatal piglets (age, <10 days; weight, 2.1 +/- 0.5 kg) were randomly assigned to 2 groups: 7 animals were pretreated with large-dose systemic MP (30 mg/kg) 24 h before surgery, and 12 animals without pharmacological pretreatment (saline) served as control groups. All animals were connected to full-flow CPB with cooling to 15 degrees C and 120 min of DHCA. After rewarming to 38.5 degrees C with CPB, animals were weaned from CPB and survived 6 h before they were killed, and the brain was prepared for light and electron microscopy, immunohistochemistry, and TUNEL-staining. Quantitative histological studies were performed in hippocampus, cortex, cerebellum, and caudate nucleus. Systemic pretreatment with large-dose MP lead to persistent hyperglycemia but no significant changes of cerebral perfusion. Necrotic and apoptotic neuronal cell death were detected in all analyzed brain regions after 120 min of DHCA. In comparison to the control group, large-dose pretreatment with systemic MP lead to an increase of necrotic neuronal cell death and induced significant neuronal apoptosis in the dentate gyrus of the hippocampus (P = 0.001). In conclusion, systemic pretreatment with large-dose MP fails to attenuate neuronal cell injury after prolonged DHCA and induces regional neuronal apoptosis in the dentate gyrus.
Collapse
Affiliation(s)
- Stephan Schubert
- Departments of *Paediatric Cardiology and Congenital Heart Disease, †Anesthesiology, and ‡Thoracic and Cardiovascular Surgery, Deutsches Herzzentrum Berlin; §Department of Neuropathology, University Clinic Benjamin Franklin, Free University of Berlin; and ∥Animal Experimental Laboratory, Charité, Humboldt University, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
MacCormac LP, Muqit MMK, Faulkes DJ, Wood NW, Latchman DS. Reduction in endogenous parkin levels renders glial cells sensitive to both caspase-dependent and caspase-independent cell death. Eur J Neurosci 2004; 20:2038-48. [PMID: 15450083 DOI: 10.1111/j.1460-9568.2004.03659.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Mutations in the parkin gene give rise to a familial form of Parkinson's disease, autosomal recessive juvenile Parkinsonism (AR-JP). Although the exact mechanisms are unclear, it is thought that these 'loss-of-function' mutations contribute to the pathological process by interfering with parkin's E3 ubiquitin ligase activity. In order to mimic the in vivo loss-of-function, we produced tet-inducible glial cell lines that, in the presence of doxycycline, were able either to under- or to over-express the parkin protein. Using this cell-culture system, we found that the induced alteration of parkin levels in glial cell lines caused different responses compared with their un-induced counterparts under conditions of stress (staurosporine, hydrogen peroxide and dopamine). In particular, reduction in the levels of parkin within the transfected cells rendered them more susceptible to both apoptotic and necrotic cell death. Interestingly, blocking the cell death pathway with caspase inhibitors rescued the cells under-expressing parkin from only some of the stress-induced death. These findings implicate a pathogenic role of glial cells in the pathogenesis of AR-JP caused by mutations in the parkin gene.
Collapse
Affiliation(s)
- Luci P MacCormac
- Medical Molecular Biology Unit, Institute of Child Health, University College London, Guilford Street, London, UK
| | | | | | | | | |
Collapse
|
17
|
Steinmetz RD, Firla B, Steinhilber D. Inhibition of the functional expression of N-methyl-d-aspartate receptors in a stably transformed cell line by cyclosporin A. Biochem Pharmacol 2004; 68:563-71. [PMID: 15242822 DOI: 10.1016/j.bcp.2004.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2004] [Accepted: 04/23/2004] [Indexed: 11/27/2022]
Abstract
The L(tk-) cell line L12-G10 stably transformed with the human N-methyl-D-aspartate (NMDA) receptor subunits NR1-1a/NR2A showed a Ca(2+)-dependent increase in cell death, loss of mitochondrial membrane potential, and ATP depletion after agonist stimulation. Treatment of the cells with cyclosporine A (CsA) for 4h reduced glutamate-induced cell death by 60% (IC(50) of 7.1microM). The immunophilin binding drug FK506 was not effective. Short preincubation with CsA for 10 min already decreased the glutamate-induced loss of mitochondrial membrane potential while the NMDA receptor function is not affected. However, pretreatment of the cells with CsA (30 microM) for 6h reduced membrane associated NR1-1a protein amount by approximately 85%, whereas mRNA expression remained unaffected. These results suggest, that the cytoprotective effect of CsA in L12-G10 cells is due to the inhibition of the permeability transition pore on the one hand and to the inhibition of the expression of functional NMDA receptors by an additional posttranscriptional mechanism on the other hand.
Collapse
Affiliation(s)
- Ralf Dirk Steinmetz
- Institute for Pharmaceutical Chemistry, University of Frankfurt, Marie-Curie-Strasse 9, D-60439 Frankfurt am Main, Germany
| | | | | |
Collapse
|
18
|
Mallucci G, Ratté S, Asante E, Linehan J, Gowland I, Jefferys J, Collinge J. Post-natal knockout of prion protein alters hippocampal CA1 properties, but does not result in neurodegeneration. EMBO J 2002; 21:202-10. [PMID: 11823413 PMCID: PMC125833 DOI: 10.1093/emboj/21.3.202] [Citation(s) in RCA: 274] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Prion protein (PrP) plays a crucial role in prion disease, but its physiological function remains unclear. Mice with gene deletions restricted to the coding region of PrP have only minor phenotypic deficits, but are resistant to prion disease. We generated double transgenic mice using the Cre-loxP system to examine the effects of PrP depletion on neuronal survival and function in adult brain. Cre-mediated ablation of PrP in neurons occurred after 9 weeks. We found that the mice remained healthy without evidence of neurodegeneration or other histopathological changes for up to 15 months post-knockout. However, on neurophysiological evaluation, they showed significant reduction of afterhyperpolarization potentials (AHPs) in hippocampal CA1 cells, suggesting a direct role for PrP in the modulation of neuronal excitability. These data provide new insights into PrP function. Furthermore, they show that acute depletion of PrP does not affect neuronal survival in this model, ruling out loss of PrP function as a pathogenic mechanism in prion disease and validating therapeutic approaches targeting PrP.
Collapse
Affiliation(s)
| | - S. Ratté
- MRC Prion Unit and Department of Neurodegenerative Disease, Institute of Neurology, Queen Square, London WC1N 3BG and
Department of Neurophysiology, Division of Neuroscience, The Medical School, University of Birmingham, Birmingham B15 2TT, UK Corresponding author e-mail:
| | | | | | | | - J.G.R. Jefferys
- MRC Prion Unit and Department of Neurodegenerative Disease, Institute of Neurology, Queen Square, London WC1N 3BG and
Department of Neurophysiology, Division of Neuroscience, The Medical School, University of Birmingham, Birmingham B15 2TT, UK Corresponding author e-mail:
| | - J. Collinge
- MRC Prion Unit and Department of Neurodegenerative Disease, Institute of Neurology, Queen Square, London WC1N 3BG and
Department of Neurophysiology, Division of Neuroscience, The Medical School, University of Birmingham, Birmingham B15 2TT, UK Corresponding author e-mail:
| |
Collapse
|
19
|
Härter L, Keel M, Hentze H, Leist M, Ertel W. Caspase-3 activity is present in cerebrospinal fluid from patients with traumatic brain injury. J Neuroimmunol 2001; 121:76-8. [PMID: 11730942 DOI: 10.1016/s0165-5728(01)00409-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Loss of neurons after traumatic brain injury (TBI) might involve dysregulated apoptosis. Activation of caspase-3 is one hallmark of apoptosis. Therefore, caspase-3 activity (cleavage of DEVD-afc) was measured in cerebrospinal fluid (CSF) samples (n=113) from 27 patients with TBI at day 1 to 14 after trauma. Caspase-3 activity was detected in 31 (27.4%) CSF samples with highest values (> 5.5 microM/min) seen at day 2-5 after trauma. No caspase-3 activity was found in serum from patients or CSF from controls. The presence of activated caspase-3 in CSF suggests ongoing apoptotic processes during traumatic brain injury.
Collapse
Affiliation(s)
- L Härter
- Department of Trauma Surgery, University Hospital Zürich, Zürich, Switzerland
| | | | | | | | | |
Collapse
|