1
|
Dotov D, Bosnyak D, Trainor LJ. Collective music listening: Movement energy is enhanced by groove and visual social cues. Q J Exp Psychol (Hove) 2021; 74:1037-1053. [PMID: 33448253 PMCID: PMC8107509 DOI: 10.1177/1747021821991793] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 01/26/2023]
Abstract
The regularity of musical beat makes it a powerful stimulus promoting movement synchrony among people. Synchrony can increase interpersonal trust, affiliation, and cooperation. Musical pieces can be classified according to the quality of groove; the higher the groove, the more it induces the desire to move. We investigated questions related to collective music-listening among 33 participants in an experiment conducted in a naturalistic yet acoustically controlled setting of a research concert hall with motion tracking. First, does higher groove music induce (1) movement with more energy and (2) higher interpersonal movement coordination? Second, does visual social information manipulated by having eyes open or eyes closed also affect energy and coordination? Participants listened to pieces from four categories formed by crossing groove (high, low) with tempo (higher, lower). Their upper body movement was recorded via head markers. Self-reported ratings of grooviness, emotional valence, emotional intensity, and familiarity were collected after each song. A biomechanically motivated measure of movement energy increased with high-groove songs and was positively correlated with grooviness ratings, confirming the theoretically implied but less tested motor response to groove. Participants' ratings of emotional valence and emotional intensity correlated positively with movement energy, suggesting that movement energy relates to emotional engagement with music. Movement energy was higher in eyes-open trials, suggesting that seeing each other enhanced participants' responses, consistent with social facilitation or contagion. Furthermore, interpersonal coordination was higher both for the high-groove and eyes-open conditions, indicating that the social situation of collective music listening affects how music is experienced.
Collapse
Affiliation(s)
- Dobromir Dotov
- LIVELab, McMaster University, Hamilton, Ontario, Canada
- Research and High-Performance Computing Support, McMaster University, Hamilton, Ontario, Canada
| | | | - Laurel J Trainor
- LIVELab, McMaster University, Hamilton, Ontario, Canada
- Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada
- Rotman Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Tognoli E, Zhang M, Fuchs A, Beetle C, Kelso JAS. Coordination Dynamics: A Foundation for Understanding Social Behavior. Front Hum Neurosci 2020; 14:317. [PMID: 32922277 PMCID: PMC7457017 DOI: 10.3389/fnhum.2020.00317] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 07/17/2020] [Indexed: 11/13/2022] Open
Abstract
Humans' interactions with each other or with socially competent machines exhibit lawful coordination patterns at multiple levels of description. According to Coordination Dynamics, such laws specify the flow of coordination states produced by functional synergies of elements (e.g., cells, body parts, brain areas, people…) that are temporarily organized as single, coherent units. These coordinative structures or synergies may be mathematically characterized as informationally coupled self-organizing dynamical systems (Coordination Dynamics). In this paper, we start from a simple foundation, an elemental model system for social interactions, whose behavior has been captured in the Haken-Kelso-Bunz (HKB) model. We follow a tried and tested scientific method that tightly interweaves experimental neurobehavioral studies and mathematical models. We use this method to further develop a body of empirical research that advances the theory toward more generalized forms. In concordance with this interdisciplinary spirit, the present paper is written both as an overview of relevant advances and as an introduction to its mathematical underpinnings. We demonstrate HKB's evolution in the context of social coordination along several directions, with its applicability growing to increasingly complex scenarios. In particular, we show that accommodating for symmetry breaking in intrinsic dynamics and coupling, multiscale generalization and adaptation are principal evolutions. We conclude that a general framework for social coordination dynamics is on the horizon, in which models support experiments with hypothesis generation and mechanistic insights.
Collapse
Affiliation(s)
- Emmanuelle Tognoli
- Human Brain and Behavior Laboratory, Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL, United States
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL, United States
| | - Mengsen Zhang
- Human Brain and Behavior Laboratory, Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL, United States
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| | - Armin Fuchs
- Human Brain and Behavior Laboratory, Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL, United States
- Department of Physics, Florida Atlantic University, Boca Raton, FL, United States
| | - Christopher Beetle
- Department of Physics, Florida Atlantic University, Boca Raton, FL, United States
| | - J. A. Scott Kelso
- Human Brain and Behavior Laboratory, Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL, United States
- Intelligent Systems Research Centre, Ulster University, Londonderry, United Kingdom
| |
Collapse
|
3
|
Abstract
The thalamus is a neural processor and integrator for the activities of the forebrain. Surprisingly, little is known about the roles of the "cerebellar" thalamus despite the anatomical observation that all the cortico-cerebello-cortical loops make relay in the main subnuclei of the thalamus. The thalamus displays a broad range of electrophysiological responses, such as neuronal spiking, bursting, or oscillatory rhythms, which contribute to precisely shape and to synchronize activities of cortical areas. We emphasize that the cerebellar thalamus deserves a renewal of interest to better understand its specific contributions to the cerebellar motor and associative functions, especially at a time where the anatomy between cerebellum and basal ganglia is being rewritten.
Collapse
|
4
|
Kostrubiec V, Huys R, Jas B, Kruck J. Age-dependent Relationship Between Socio-adaptability and Motor Coordination in High Functioning Children with Autism Spectrum Disorder. J Autism Dev Disord 2017; 48:209-224. [DOI: 10.1007/s10803-017-3326-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
5
|
Jantzen KJ, Ratcliff BR, Jantzen MG. Cortical Networks for Correcting Errors in Sensorimotor Synchronization Depend on the Direction of Asynchrony. J Mot Behav 2017; 50:235-248. [PMID: 28813229 DOI: 10.1080/00222895.2017.1327414] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Recent work provides clues that different cortical mechanisms may be employed when correcting for errors in sensorimotor synchronization that increase tap-tone asynchrony compared with those that decrease it. The authors tested this hypothesis by recording 64-channel electroencephalography while participants synchronized with an auditory metronome. We systematically introduced positive and negative phase-shift perturbations that were either liminal (10%) and subliminal (3%). We used a distributed source modeling approach to evaluate oscillatory activity and connectivity of discrete cortical sources. Three key findings support our hypothesis. First was a theta band response indicative of error detection and top-down control observed in frontomedial presupplementary motor area (pre-SMA) and anterior cingulate for liminal positive perturbations. Second was an increase in theta band coupling between the SMA and contralateral motor cortex exclusively for positive perturbations suggesting a top-down modulation of motor parameters. Third, when compared with other conditions, liminal positive perturbations result in an increase in postmovement beta rebound within contralateral primary motor cortex. The authors propose that frontomedial motor areas exert a top-down inhibitory influence over the primary motor cortex to effectively lengthen tap intervals in response to lengthening tap-tone asynchronies.
Collapse
Affiliation(s)
- K J Jantzen
- a Psychology , Western Washington University , Bellingham
| | | | | |
Collapse
|
6
|
Hasson U, Frith CD. Mirroring and beyond: coupled dynamics as a generalized framework for modelling social interactions. Philos Trans R Soc Lond B Biol Sci 2016; 371:rstb.2015.0366. [PMID: 27069044 PMCID: PMC4843605 DOI: 10.1098/rstb.2015.0366] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2016] [Indexed: 11/12/2022] Open
Abstract
When people observe one another, behavioural alignment can be detected at many levels, from the physical to the mental. Likewise, when people process the same highly complex stimulus sequences, such as films and stories, alignment is detected in the elicited brain activity. In early sensory areas, shared neural patterns are coupled to the low-level properties of the stimulus (shape, motion, volume, etc.), while in high-order brain areas, shared neural patterns are coupled to high-levels aspects of the stimulus, such as meaning. Successful social interactions require such alignments (both behavioural and neural), as communication cannot occur without shared understanding. However, we need to go beyond simple, symmetric (mirror) alignment once we start interacting. Interactions are dynamic processes, which involve continuous mutual adaptation, development of complementary behaviour and division of labour such as leader-follower roles. Here, we argue that interacting individuals are dynamically coupled rather than simply aligned. This broader framework for understanding interactions can encompass both processes by which behaviour and brain activity mirror each other (neural alignment), and situations in which behaviour and brain activity in one participant are coupled (but not mirrored) to the dynamics in the other participant. To apply these more sophisticated accounts of social interactions to the study of the underlying neural processes we need to develop new experimental paradigms and novel methods of data analysis.
Collapse
Affiliation(s)
- Uri Hasson
- Department of Psychology and the Neuroscience Institute, Princeton University, NJ 08544-1010, USA
| | - Chris D Frith
- Wellcome Trust Centre for Neuroimaging, University College London, 12 Queen Square, London WC1N 3BG, UK Institute of Philosophy, School of Advanced Studies, University of London, Senate House, Malet Street, London WC1E 7HU, UK
| |
Collapse
|
7
|
Tilsen S. A dynamical model of hierarchical selection and coordination in speech planning. PLoS One 2013; 8:e62800. [PMID: 23638147 PMCID: PMC3634742 DOI: 10.1371/journal.pone.0062800] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 03/25/2013] [Indexed: 11/18/2022] Open
Abstract
studies of the control of complex sequential movements have dissociated two aspects of movement planning: control over the sequential selection of movement plans, and control over the precise timing of movement execution. This distinction is particularly relevant in the production of speech: utterances contain sequentially ordered words and syllables, but articulatory movements are often executed in a non-sequential, overlapping manner with precisely coordinated relative timing. This study presents a hybrid dynamical model in which competitive activation controls selection of movement plans and coupled oscillatory systems govern coordination. The model departs from previous approaches by ascribing an important role to competitive selection of articulatory plans within a syllable. Numerical simulations show that the model reproduces a variety of speech production phenomena, such as effects of preparation and utterance composition on reaction time, and asymmetries in patterns of articulatory timing associated with onsets and codas. The model furthermore provides a unified understanding of a diverse group of phonetic and phonological phenomena which have not previously been related.
Collapse
Affiliation(s)
- Sam Tilsen
- Department of Linguistics, Cornell University, Ithaca, New York, United States of America.
| |
Collapse
|
8
|
Tilsen S, Goldstein L. Articulatory gestures are individually selected in production. JOURNAL OF PHONETICS 2012; 40:764-779. [PMID: 23002316 PMCID: PMC3446769 DOI: 10.1016/j.wocn.2012.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Most models of speech planning and production incorporate a selection mechanism, whereby units are activated in parallel and chosen for execution sequentially. The lowest level units which can be selected are assumed to be segments, i.e. consonants and vowels. The features or articulatory gestures affiliated with segments are presumed to be automatically selected as a consequence of segmental selection. An alternative possibility is that articulatory gestures themselves are subject to a selection process; this predicts that there can be circumstances in which gestures affiliated with the same segment fail to co-occur. We conducted a stop-signal task in which subjects produced /pa/- or /ka/-initial monosyllables and disyllables in response to a go-signal; on 50% of trials subjects halted production as quickly as possible when given a stop-signal within ±300 ms of the go-signal. Articulatory kinematics were recorded using a speech magnetometer. We found that vowel-affiliated gestures of glottal adduction, tongue body lowering, and bilabial opening did not necessarily co-occur in the context of halting speech. This finding indicates that gestures are selected individually, rather than as an automatic consequence of segmental selection.
Collapse
|
9
|
Jantzen KJ, Steinberg FL, Kelso JAS. Coordination dynamics of large-scale neural circuitry underlying rhythmic sensorimotor behavior. J Cogn Neurosci 2010; 21:2420-33. [PMID: 19199411 DOI: 10.1162/jocn.2008.21182] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
In coordination dynamics, rate is a nonspecific control parameter that alters the stability of behavioral patterns and leads to spontaneous pattern switching. We used fMRI in conjunction with measures of effective connectivity to investigate the neural basis of behavioral dynamics by examining two coordination patterns known to be differentially stable (synchronization and syncopation) across a range of rates (0.75 to 1.75 Hz). Activity in primary auditory and motor cortices increased linearly with rate, independent of coordination pattern. On the contrary, activity in a premotor-cerebellar circuit varied directly with the stability of the collective variable (relative phase) that specifies coordinated behavioral patterns. Connectivity between premotor and motor cortices was also modulated by the stability of the behavioral pattern indicative of greater reliance on sensorimotor integration as action becomes more variable. By establishing a critical connection between behavioral and large scale brain dynamics, these findings reveal a basic principle for the neural organization underlying coordinated action.
Collapse
|
10
|
Rabinovich MI, Huerta R, Varona P, Afraimovich VS. Transient cognitive dynamics, metastability, and decision making. PLoS Comput Biol 2008; 4:e1000072. [PMID: 18452000 PMCID: PMC2358972 DOI: 10.1371/journal.pcbi.1000072] [Citation(s) in RCA: 234] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Accepted: 03/27/2008] [Indexed: 12/11/2022] Open
Abstract
The idea that cognitive activity can be understood using nonlinear dynamics has been intensively discussed at length for the last 15 years. One of the popular points of view is that metastable states play a key role in the execution of cognitive functions. Experimental and modeling studies suggest that most of these functions are the result of transient activity of large-scale brain networks in the presence of noise. Such transients may consist of a sequential switching between different metastable cognitive states. The main problem faced when using dynamical theory to describe transient cognitive processes is the fundamental contradiction between reproducibility and flexibility of transient behavior. In this paper, we propose a theoretical description of transient cognitive dynamics based on the interaction of functionally dependent metastable cognitive states. The mathematical image of such transient activity is a stable heteroclinic channel, i.e., a set of trajectories in the vicinity of a heteroclinic skeleton that consists of saddles and unstable separatrices that connect their surroundings. We suggest a basic mathematical model, a strongly dissipative dynamical system, and formulate the conditions for the robustness and reproducibility of cognitive transients that satisfy the competing requirements for stability and flexibility. Based on this approach, we describe here an effective solution for the problem of sequential decision making, represented as a fixed time game: a player takes sequential actions in a changing noisy environment so as to maximize a cumulative reward. As we predict and verify in computer simulations, noise plays an important role in optimizing the gain.
Collapse
Affiliation(s)
- Mikhail I Rabinovich
- Institute for Nonlinear Science, University of California San Diego, La Jolla, California, United States of America.
| | | | | | | |
Collapse
|
11
|
Abstract
Several conjectures by A. S. Iberall on life and mind are used as a backdrop to sketch a theory of mental activity that respects both the contents of thought and the dynamics of thinking. The dynamics, in this case, refers fundamentally to animated, meaningfully coupled self-organizing processes (coordination dynamics) and exhibit multistability, switching, and, because of symmetry breaking, metastability. The interplay of 2 simultaneously acting forces underlies the metastable mind: the tendency for the coordinating elements to couple together (integration) and the tendency for the elements to express their individual autonomy (segregation). Metrics for metastability are introduced that enable these cooperative and competitive tendencies to be quantified. Whereas bistability is the basis for polarized, either/or thinking, the metastable régime-which contains neither stable nor unstable states, no states at all, in fact-gives rise to a far more fluid, complementary mode of operation in which it is possible for apparent contraries to coexist in the mind at the same time.
Collapse
Affiliation(s)
- J A Scott Kelso
- The Human Brain and Behavior Laboratory Center for Complex Systems and Brain Sciences Florida Atlantic University
| |
Collapse
|
12
|
Abstract
Spontaneous social coordination has been extensively described in natural settings but so far no controlled methodological approaches have been employed that systematically advance investigations into the possible self-organized nature of bond formation and dissolution between humans. We hypothesized that, under certain contexts, spontaneous synchrony-a well-described phenomenon in biological and physical settings-could emerge spontaneously between humans as a result of information exchange. Here, a new way to quantify interpersonal interactions in real time is proposed. In a simple experimental paradigm, pairs of participants facing each other were required to actively produce actions, while provided (or not) with the vision of similar actions being performed by someone else. New indices of interpersonal coordination, inspired by the theoretical framework of coordination dynamics (based on relative phase and frequency overlap between movements of individuals forming a pair) were developed and used. Results revealed that spontaneous phase synchrony (i.e., unintentional in-phase coordinated behavior) between two people emerges as soon as they exchange visual information, even if they are not explicitly instructed to coordinate with each other. Using the same tools, we also quantified the degree to which the behavior of each individual remained influenced by the social encounter even after information exchange had been removed, apparently a kind of social memory.
Collapse
|
13
|
|