1
|
Usuda JN, Plaça DR, Fonseca DLM, Marques AHC, Filgueiras IS, Chaves VGB, Adri AS, Torrentes-Carvalho A, Hirata MH, Freire PP, Catar R, Cabral-Miranda G, Schimke LF, Moll G, Cabral-Marques O. Interferome signature dynamics during the anti-dengue immune response: a systems biology characterization. Front Immunol 2023; 14:1243516. [PMID: 37638052 PMCID: PMC10449254 DOI: 10.3389/fimmu.2023.1243516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Dengue virus (DENV) infection manifests as a febrile illness with three distinct phases: early acute, late acute, and convalescent. Dengue can result in clinical manifestations with different degrees of severity, dengue fever, dengue hemorrhagic fever, and dengue shock syndrome. Interferons (IFNs) are antiviral cytokines central to the anti-DENV immune response. Notably, the distinct global signature of type I, II, and III interferon-regulated genes (the interferome) remains uncharacterized in dengue patients to date. Therefore, we performed an in-depth cross-study for the integrative analysis of transcriptome data related to DENV infection. Our systems biology analysis shows that the anti-dengue immune response is characterized by the modulation of numerous interferon-regulated genes (IRGs) enriching, for instance, cytokine-mediated signaling (e.g., type I and II IFNs) and chemotaxis, which is then followed by a transcriptional wave of genes associated with cell cycle, also regulated by the IFN cascade. The adjunct analysis of disease stratification potential, followed by a transcriptional meta-analysis of the interferome, indicated genes such as IFI27, ISG15, and CYBRD1 as potential suitable biomarkers of disease severity. Thus, this study characterizes the landscape of the interferome signature in DENV infection, indicating that interferome dynamics are a crucial and central part of the anti-dengue immune response.
Collapse
Affiliation(s)
- Júlia Nakanishi Usuda
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Desirée Rodrigues Plaça
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Dennyson Leandro M. Fonseca
- Interunit PostGraduate Program on Bioinformatics, Institute of Mathematics and Statistics, University of São Paulo, São Paulo, Brazil
| | - Alexandre H. C. Marques
- Departament of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Igor Salerno Filgueiras
- Departament of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Victor Gabriel Bastos Chaves
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Anny Silva Adri
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Mario Hiroyuki Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Paula Paccielli Freire
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Departament of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rusan Catar
- Departament of Nephrology and Internal Intensive Care Medicine, Charité University Hospital, Berlin, Germany
| | - Gustavo Cabral-Miranda
- Departament of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Lena F. Schimke
- Departament of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Department of Medicine, Division of Molecular Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
- Laboratory of Medical Investigation 29, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Guido Moll
- Departament of Nephrology and Internal Intensive Care Medicine, Charité University Hospital, Berlin, Germany
| | - Otavio Cabral-Marques
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Interunit PostGraduate Program on Bioinformatics, Institute of Mathematics and Statistics, University of São Paulo, São Paulo, Brazil
- Departament of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Department of Medicine, Division of Molecular Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
- Laboratory of Medical Investigation 29, University of São Paulo School of Medicine, São Paulo, Brazil
- Network of Immunity in Infection, Malignancy, Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), São Paulo, SP, Brazil
| |
Collapse
|
2
|
Mantri CK, Soundarajan G, Saron WAA, Rathore APS, Alonso S, St. John AL. Maternal Immunity and Vaccination Influence Disease Severity in Progeny in a Novel Mast Cell-Deficient Mouse Model of Severe Dengue. Viruses 2021; 13:v13050900. [PMID: 34066286 PMCID: PMC8152039 DOI: 10.3390/v13050900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 12/25/2022] Open
Abstract
Sub-neutralizing concentrations of antibodies in dengue infected patients is a major risk factor for the development of dengue hemorrhagic fever and dengue shock syndrome. Here, we describe a mouse model with a deficiency in mast cells (MCs) in addition to a deficiency in Type-I and II IFN receptors for studying dengue virus (DENV) infection. We used this model to understand the influence of MCs in a maternal antibody-dependent model of severe dengue, where offspring born to DENV-immune mothers are challenged with a heterologous DENV serotype. Mice lacking both MCs and IFN receptors were found susceptible to primary DENV infection and showed morbidity and mortality. When these mice were immunized, pups born to DENV-immune mothers were found to be protected for a longer duration from a heterologous DENV challenge. In the absence of MCs and type-I interferon signaling, IFN-γ was found to protect pups born to naïve mothers but had the opposite effect on pups born to DENV-immune mothers. Our results highlight the complex interactions between MCs and IFN-signaling in influencing the role of maternal antibodies in DENV-induced disease severity.
Collapse
Affiliation(s)
- Chinmay Kumar Mantri
- Program in Emerging Infectious Diseases, Duke–National University of Singapore Medical School, Singapore 169857, Singapore; (G.S.); (W.A.A.S.)
- Correspondence: (C.K.M.); (A.L.S.J.)
| | - Gayathri Soundarajan
- Program in Emerging Infectious Diseases, Duke–National University of Singapore Medical School, Singapore 169857, Singapore; (G.S.); (W.A.A.S.)
| | - Wilfried A. A. Saron
- Program in Emerging Infectious Diseases, Duke–National University of Singapore Medical School, Singapore 169857, Singapore; (G.S.); (W.A.A.S.)
| | - Abhay P. S. Rathore
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA;
| | - Sylvie Alonso
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore;
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore 119077, Singapore
| | - Ashley L. St. John
- Program in Emerging Infectious Diseases, Duke–National University of Singapore Medical School, Singapore 169857, Singapore; (G.S.); (W.A.A.S.)
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA;
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore 119077, Singapore
- SingHealth Duke-National University of Singapore Global Health Institute, Singapore 168753, Singapore
- Correspondence: (C.K.M.); (A.L.S.J.)
| |
Collapse
|
3
|
Zhu T, Fernandez-Sesma A. Innate Immune DNA Sensing of Flaviviruses. Viruses 2020; 12:v12090979. [PMID: 32899347 PMCID: PMC7552040 DOI: 10.3390/v12090979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/13/2022] Open
Abstract
Flaviviruses are arthropod-borne RNA viruses that have been used extensively to study host antiviral responses. Often selected just to represent standard single-stranded positive-sense RNA viruses in early studies, the Flavivirus genus over time has taught us how truly unique it is in its remarkable ability to target not just the RNA sensory pathways but also the cytosolic DNA sensing system for its successful replication inside the host cell. This review summarizes the main developments on the unexpected antagonistic strategies utilized by different flaviviruses, with RNA genomes, against the host cyclic GAMP synthase (cGAS)/stimulator of interferon genes (STING) cytosolic DNA sensing pathway in mammalian systems. On the basis of the recent advancements on this topic, we hypothesize that the mechanisms of viral sensing and innate immunity are much more fluid than what we had anticipated, and both viral and host factors will continue to be found as important factors contributing to the host innate immune system in the future.
Collapse
Affiliation(s)
- Tongtong Zhu
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ana Fernandez-Sesma
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence: ; Tel.: +1-212-241-5182
| |
Collapse
|
4
|
Márquez-Jurado S, Nogales A, Ávila-Pérez G, Iborra FJ, Martínez-Sobrido L, Almazán F. An Alanine-to-Valine Substitution in the Residue 175 of Zika Virus NS2A Protein Affects Viral RNA Synthesis and Attenuates the Virus In Vivo. Viruses 2018; 10:v10100547. [PMID: 30301244 PMCID: PMC6212934 DOI: 10.3390/v10100547] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/02/2018] [Accepted: 10/04/2018] [Indexed: 12/19/2022] Open
Abstract
The recent outbreaks of Zika virus (ZIKV), its association with Guillain–Barré syndrome and fetal abnormalities, and the lack of approved vaccines and antivirals, highlight the importance of developing countermeasures to combat ZIKV disease. In this respect, infectious clones constitute excellent tools to accomplish these goals. However, flavivirus infectious clones are often difficult to work with due to the toxicity of some flavivirus sequences in bacteria. To bypass this problem, several alternative approaches have been applied for the generation of ZIKV clones including, among others, in vitro ligation, insertions of introns and using infectious subgenomic amplicons. Here, we report a simple and novel DNA-launched approach based on the use of a bacterial artificial chromosome (BAC) to generate a cDNA clone of Rio Grande do Norte Natal ZIKV strain. The sequence was identified from the brain tissue of an aborted fetus with microcephaly. The BAC clone was fully stable in bacteria and the infectious virus was efficiently recovered in Vero cells through direct delivery of the cDNA clone. The rescued virus yielded high titers in Vero cells and was pathogenic in a validated mouse model (A129 mice) of ZIKV infection. Furthermore, using this infectious clone we have generated a mutant ZIKV containing a single amino acid substitution (A175V) in the NS2A protein that presented reduced viral RNA synthesis in cell cultures, was highly attenuated in vivo and induced fully protection against a lethal challenge with ZIKV wild-type. This BAC approach provides a stable and reliable reverse genetic system for ZIKV that will help to identify viral determinants of virulence and facilitate the development of vaccine and therapeutic strategies.
Collapse
Affiliation(s)
- Silvia Márquez-Jurado
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 3 Darwin street, 28049 Madrid, Spain.
| | - Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| | - Ginés Ávila-Pérez
- Department of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| | - Francisco J Iborra
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 3 Darwin street, 28049 Madrid, Spain.
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| | - Fernando Almazán
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 3 Darwin street, 28049 Madrid, Spain.
| |
Collapse
|
5
|
Schwameis M, Buchtele N, Wadowski PP, Schoergenhofer C, Jilma B. Chikungunya vaccines in development. Hum Vaccin Immunother 2017; 12:716-31. [PMID: 26554522 PMCID: PMC4964651 DOI: 10.1080/21645515.2015.1101197] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Chikungunya virus has become a global health threat, spreading to the industrial world of Europe and the Americas; no treatment or prophylactic vaccine is available. Since the late 1960s much effort has been put into the development of a vaccine, and several heterogeneous strategies have already been explored. Only two candidates have recently qualified to enter clinical phase II trials, a chikungunya virus-like particle-based vaccine and a recombinant live attenuated measles virus-vectored vaccine. This review focuses on the current status of vaccine development against chikungunya virus in humans and discusses the diversity of immunization strategies, results of recent human trials and promising vaccine candidates.
Collapse
Affiliation(s)
- Michael Schwameis
- a Departments of Clinical Pharmacology and Internal Medicine I , Medical University of Vienna , Vienna , Austria
| | - Nina Buchtele
- a Departments of Clinical Pharmacology and Internal Medicine I , Medical University of Vienna , Vienna , Austria
| | - Patricia Pia Wadowski
- a Departments of Clinical Pharmacology and Internal Medicine I , Medical University of Vienna , Vienna , Austria
| | | | - Bernd Jilma
- a Departments of Clinical Pharmacology and Internal Medicine I , Medical University of Vienna , Vienna , Austria
| |
Collapse
|
6
|
Vidotto A, Morais ATS, Ribeiro MR, Pacca CC, Terzian ACB, Gil LHVG, Mohana-Borges R, Gallay P, Nogueira ML. Systems Biology Reveals NS4B-Cyclophilin A Interaction: A New Target to Inhibit YFV Replication. J Proteome Res 2017; 16:1542-1555. [PMID: 28317380 DOI: 10.1021/acs.jproteome.6b00933] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Yellow fever virus (YFV) replication is highly dependent on host cell factors. YFV NS4B is reported to be involved in viral replication and immune evasion. Here interactions between NS4B and human proteins were determined using a GST pull-down assay and analyzed using 1-DE and LC-MS/MS. We present a total of 207 proteins confirmed using Scaffold 3 Software. Cyclophilin A (CypA), a protein that has been shown to be necessary for the positive regulation of flavivirus replication, was identified as a possible NS4B partner. 59 proteins were found to be significantly increased when compared with a negative control, and CypA exhibited the greatest difference, with a 22-fold change. Fisher's exact test was significant for 58 proteins, and the p value of CypA was the most significant (0.000000019). The Ingenuity Systems software identified 16 pathways, and this analysis indicated sirolimus, an mTOR pathway inhibitor, as a potential inhibitor of CypA. Immunofluorescence and viral plaque assays showed a significant reduction in YFV replication using sirolimus and cyclosporine A (CsA) as inhibitors. Furthermore, YFV replication was strongly inhibited in cells treated with both inhibitors using reporter BHK-21-rep-YFV17D-LucNeoIres cells. Taken together, these data suggest that CypA-NS4B interaction regulates YFV replication. Finally, we present the first evidence that YFV inhibition may depend on NS4B-CypA interaction.
Collapse
Affiliation(s)
- Alessandra Vidotto
- Laboratório de Virologia, Faculdade de Medicina de José do Rio Preto , São José do Rio Preto, São Paulo 15090-000, Brazil
| | - Ana T S Morais
- Laboratório de Virologia, Faculdade de Medicina de José do Rio Preto , São José do Rio Preto, São Paulo 15090-000, Brazil
| | - Milene R Ribeiro
- Laboratório de Virologia, Faculdade de Medicina de José do Rio Preto , São José do Rio Preto, São Paulo 15090-000, Brazil
| | - Carolina C Pacca
- Laboratório de Virologia, Faculdade de Medicina de José do Rio Preto , São José do Rio Preto, São Paulo 15090-000, Brazil
| | - Ana C B Terzian
- Laboratório de Virologia, Faculdade de Medicina de José do Rio Preto , São José do Rio Preto, São Paulo 15090-000, Brazil
| | - Laura H V G Gil
- Departamento de Virologia, Centro de Pesquisa Aggeu Magalhães , Fundação Oswaldo Cruz (FIOCRUZ) - Recife, Pernambuco 50740-465, Brazil
| | - Ronaldo Mohana-Borges
- Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro - UFRJ , Rio de Janeiro RJ 21941-902, Brazil
| | - Philippe Gallay
- Department of Immunology & Microbial Science, The Scripps Research Institute - La Jolla , San Diego, California 92037, United States
| | - Mauricio L Nogueira
- Laboratório de Virologia, Faculdade de Medicina de José do Rio Preto , São José do Rio Preto, São Paulo 15090-000, Brazil
| |
Collapse
|
7
|
Routhu NK, Byrareddy SN. Host-Virus Interaction of ZIKA Virus in Modulating Disease Pathogenesis. J Neuroimmune Pharmacol 2017; 12:219-232. [PMID: 28349242 DOI: 10.1007/s11481-017-9736-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/03/2017] [Indexed: 01/08/2023]
Abstract
The Zika virus (ZIKV) is a newly emerging pathogen that has resulted in a worldwide epidemic. It primarily spreads either through infected Aedes aegypti or Aedes albopictus mosquitos leading to severe neurological disorders such as microcephaly and Guillain-Barré syndrome in susceptible individuals. The mode of ZIKV entry into specific cell types such as: epidermal keratinocytes, fibroblasts, immature dendritic cells (iDCs), and stem-cell-derived human neural progenitors has been determined through its major surface envelope glycoprotein. It has been known that oligosaccharides that are covalently linked to viral envelope proteins are crucial in defining host-virus interactions. However, the role of sugars/glycans in exploiting host-immune mechanisms and aiding receptor-mediated virus entry is not well defined. Therefore, this review focuses on host-pathogen interactions to better understand ZIKV pathogenesis.
Collapse
Affiliation(s)
- Nanda Kishore Routhu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA. .,Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
8
|
Cumberworth SL, Clark JJ, Kohl A, Donald CL. Inhibition of type I interferon induction and signalling by mosquito-borne flaviviruses. Cell Microbiol 2017; 19. [PMID: 28273394 PMCID: PMC5413821 DOI: 10.1111/cmi.12737] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/20/2017] [Accepted: 03/06/2017] [Indexed: 12/21/2022]
Abstract
The Flavivirus genus (Flaviviridae family) contains a number of important human pathogens, including dengue and Zika viruses, which have the potential to cause severe disease. In order to efficiently establish a productive infection in mammalian cells, flaviviruses have developed key strategies to counteract host immune defences, including the type I interferon response. They employ different mechanisms to control interferon signal transduction and effector pathways, and key research generated over the past couple of decades has uncovered new insights into their abilities to actively decrease interferon antiviral activity. Given the lack of antivirals or prophylactic treatments for many flaviviral infections, it is important to fully understand how these viruses affect cellular processes to influence pathogenesis and disease outcome. This review will discuss the strategies mosquito-borne flaviviruses have evolved to antagonise type I interferon mediated immune responses.
Collapse
Affiliation(s)
| | - Jordan J Clark
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, UK
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, UK
| | - Claire L Donald
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, UK
| |
Collapse
|
9
|
Torres S, Flipse J, Upasani VC, van der Ende-Metselaar H, Urcuqui-Inchima S, Smit JM, Rodenhuis-Zybert IA. Altered immune response of immature dendritic cells following dengue virus infection in the presence of specific antibodies. J Gen Virol 2016; 97:1584-1591. [PMID: 27121645 DOI: 10.1099/jgv.0.000491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Dengue virus (DENV) replication is known to prevent maturation of infected dendritic cells (DCs) thereby impeding the development of adequate immunity. During secondary DENV infection, dengue-specific antibodies can suppress DENV replication in immature DCs (immDCs), however how dengue-antibody complexes (DENV-IC) influence the phenotype of DCs remains elusive. Here, we evaluated the maturation state and cytokine profile of immDCs exposed to DENV-ICs. Indeed, DENV infection of immDCs in the absence of antibodies was hallmarked by blunted upregulation of CD83, CD86 and the major histocompatibility complex molecule HLA-DR. In contrast, DENV infection in the presence of neutralizing antibodies triggered full DC maturation and induced a balanced inflammatory cytokine response. Moreover, DENV infection under non-neutralizing conditions prompted upregulation of CD83 and CD86 but not HLA-DR, and triggered production of pro-inflammatory cytokines. The effect of DENV-IC was found to be dependent on the engagement of FcγRIIa. Altogether, our data show that the presence of DENV-IC alters the phenotype and cytokine profile of DCs.
Collapse
Affiliation(s)
- Silvia Torres
- Department of Medical Microbiology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
- Grupo Inmunovirologia, Facultad de Medicina, Universidad de Antioquia, UdeA calle 70 No. 52-21, Medellín, Colombia
| | - Jacky Flipse
- Department of Medical Microbiology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Vinit C Upasani
- Department of Medical Microbiology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Heidi van der Ende-Metselaar
- Department of Medical Microbiology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Silvio Urcuqui-Inchima
- Grupo Inmunovirologia, Facultad de Medicina, Universidad de Antioquia, UdeA calle 70 No. 52-21, Medellín, Colombia
| | - Jolanda M Smit
- Department of Medical Microbiology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Izabela A Rodenhuis-Zybert
- Department of Medical Microbiology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
10
|
Zhang H, Sun J, Ye J, Ashraf U, Chen Z, Zhu B, He W, Xu Q, Wei Y, Chen H, Fu ZF, Liu R, Cao S. Quantitative Label-Free Phosphoproteomics Reveals Differentially Regulated Protein Phosphorylation Involved in West Nile Virus-Induced Host Inflammatory Response. J Proteome Res 2015; 14:5157-68. [DOI: 10.1021/acs.jproteome.5b00424] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Zhen F. Fu
- Department
of Pathology, University of Georgia, Athens, Georgia 30602, United States
| | | | | |
Collapse
|
11
|
Fang CY, Chen SJ, Wu HN, Ping YH, Lin CY, Shiuan D, Chen CL, Lee YR, Huang KJ. Honokiol, a Lignan Biphenol Derived from the Magnolia Tree, Inhibits Dengue Virus Type 2 Infection. Viruses 2015; 7:4894-910. [PMID: 26378567 PMCID: PMC4584296 DOI: 10.3390/v7092852] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 08/20/2015] [Accepted: 08/26/2015] [Indexed: 01/20/2023] Open
Abstract
Dengue is the most widespread arbovirus infection and poses a serious health and economic issue in tropical and subtropical countries. Currently no licensed vaccine or compounds can be used to prevent or manage the severity of dengue virus (DENV) infection. Honokiol, a lignan biphenol derived from the Magnolia tree, is commonly used in Eastern medicine. Here we report that honokiol has profound antiviral activity against serotype 2 DENV (DENV-2). In addition to inhibiting the intracellular DENV-2 replicon, honokiol was shown to suppress the replication of DENV-2 in baby hamster kidney (BHK) and human hepatocarcinoma Huh7 cells. At the maximum non-toxic dose of honokiol treatment, the production of infectious DENV particles was reduced >90% in BHK and Huh7 cells. The underlying mechanisms revealed that the expression of DENV-2 nonstructural protein NS1/NS3 and its replicating intermediate, double-strand RNA, was dramatically reduced by honokiol treatment. Honokiol has no effect on the expression of DENV putative receptors, but may interfere with the endocytosis of DENV-2 by abrogating the co-localization of DENV envelope glycoprotein and the early endosomes. These results indicate that honokiol inhibits the replication, viral gene expression, and endocytotic process of DENV-2, making it a promising agent for chemotherapy of DENV infection.
Collapse
Affiliation(s)
- Chih-Yeu Fang
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan.
| | - Siang-Jyun Chen
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 974,Taiwan.
| | - Huey-Nan Wu
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan.
| | - Yueh-Hsin Ping
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University,Taipei 112, Taiwan.
- Institute of Biophotonics, National Yang-Ming University, Taipei 112, Taiwan.
| | - Ching-Yen Lin
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 974,Taiwan.
| | - David Shiuan
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 974,Taiwan.
| | - Chi-Long Chen
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan.
- Department of Pathology, Taipei Medical University Hospital, Taipei Medical University,Taipei 110, Taiwan.
| | - Ying-Ray Lee
- Department of Medical Research, Chiayi Christian Hospital, Chiayi 600, Taiwan.
- Department of Nursing, Min-Hwei College of Health Care Management, Tainan 73658, Taiwan.
| | - Kao-Jean Huang
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 974,Taiwan.
- Institute of Biologics, Development Center for Biotechnology, New Taipei City 22180, Taiwan.
| |
Collapse
|
12
|
Zmurko J, Neyts J, Dallmeier K. Flaviviral NS4b, chameleon and jack-in-the-box roles in viral replication and pathogenesis, and a molecular target for antiviral intervention. Rev Med Virol 2015; 25:205-23. [PMID: 25828437 PMCID: PMC4864441 DOI: 10.1002/rmv.1835] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 02/16/2015] [Accepted: 02/17/2015] [Indexed: 12/27/2022]
Abstract
Dengue virus and other flaviviruses such as the yellow fever, West Nile, and Japanese encephalitis viruses are emerging vector-borne human pathogens that affect annually more than 100 million individuals and that may cause debilitating and potentially fatal hemorrhagic and encephalitic diseases. Currently, there are no specific antiviral drugs for the treatment of flavivirus-associated disease. A better understanding of the flavivirus-host interactions during the different events of the flaviviral life cycle may be essential when developing novel antiviral strategies. The flaviviral non-structural protein 4b (NS4b) appears to play an important role in flaviviral replication by facilitating the formation of the viral replication complexes and in counteracting innate immune responses such as the following: (i) type I IFN signaling; (ii) RNA interference; (iii) formation of stress granules; and (iv) the unfolded protein response. Intriguingly, NS4b has recently been shown to constitute an excellent target for the selective inhibition of flavivirus replication. We here review the current knowledge on NS4b.
Collapse
Affiliation(s)
- Joanna Zmurko
- KU Leuven, Rega Institute for Medical Research, Department of Microbiology and Immunology, Laboratory of Virology and Chemotherapy
| | - Johan Neyts
- KU Leuven, Rega Institute for Medical Research, Department of Microbiology and Immunology, Laboratory of Virology and Chemotherapy
| | - Kai Dallmeier
- KU Leuven, Rega Institute for Medical Research, Department of Microbiology and Immunology, Laboratory of Virology and Chemotherapy
| |
Collapse
|
13
|
Lim DSL, Yawata N, Selva KJ, Li N, Tsai CY, Yeong LH, Liong KH, Ooi EE, Chong MK, Ng ML, Leo YS, Yawata M, Wong SBJ. The combination of type I IFN, TNF-α, and cell surface receptor engagement with dendritic cells enables NK cells to overcome immune evasion by dengue virus. THE JOURNAL OF IMMUNOLOGY 2014; 193:5065-75. [PMID: 25320280 DOI: 10.4049/jimmunol.1302240] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Clinical studies have suggested the importance of the NK cell response against dengue virus (DenV), an arboviral infection that afflicts >50 million individuals each year. However, a comprehensive understanding of the NK cell response against dengue-infected cells is lacking. To characterize cell-contact mechanisms and soluble factors that contribute to the antidengue response, primary human NK cells were cocultured with autologous DenV-infected monocyte-derived dendritic cells (DC). NK cells responded by cytokine production and the lysis of target cells. Notably, in the absence of significant monokine production by DenV-infected DC, it was the combination of type I IFNs and TNF-α produced by DenV-infected DC that was important for stimulating the IFN-γ and cytotoxic responses of NK cells. Cell-bound factors enhanced NK cell IFN-γ production. In particular, reduced HLA class I expression was observed on DenV-infected DC, and IFN-γ production was enhanced in licensed/educated NK cell subsets. NK-DC cell contact was also identified as a requirement for a cytotoxic response, and there was evidence for both perforin/granzyme as well as Fas/Fas ligand-dependent pathways of killing by NK cells. In summary, our results have uncovered a previously unappreciated role for the combined effect of type I IFNs, TNF-α, and cell surface receptor-ligand interactions in triggering the antidengue response of primary human NK cells.
Collapse
Affiliation(s)
- Daniel Say Liang Lim
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Republic of Singapore
| | - Nobuyo Yawata
- Infection and Immunity Programme, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore 117609, Republic of Singapore; Singapore Eye Research Institute, Singapore 168751, Republic of Singapore; Office of Clinical Sciences, Duke-National University of Singapore Graduate Medical School, Singapore 169857, Republic of Singapore
| | - Kevin John Selva
- Infection and Immunity Programme, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore 117609, Republic of Singapore
| | - Na Li
- Singapore-Massachusetts Institute of Technology Alliance for Research and Technology, Singapore 138602, Republic of Singapore
| | - Chen Yu Tsai
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Republic of Singapore
| | - Lai Han Yeong
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Republic of Singapore
| | - Ka Hang Liong
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Republic of Singapore
| | - Eng Eong Ooi
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Graduate Medical School, Singapore 169857, Republic of Singapore
| | - Mun Keat Chong
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Republic of Singapore
| | - Mah Lee Ng
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Republic of Singapore
| | - Yee Sin Leo
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore 308433, Republic of Singapore
| | - Makoto Yawata
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Republic of Singapore; Infection and Immunity Programme, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore 117609, Republic of Singapore; Singapore Eye Research Institute, Singapore 168751, Republic of Singapore; Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Republic of Singapore;
| | - Soon Boon Justin Wong
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Republic of Singapore; Immunology Programme, Life Science Institute, National University of Singapore, Singapore 117456, Republic of Singapore; and Department of Pathology, National University Hospital, Singapore 119074, Republic of Singapore
| |
Collapse
|
14
|
Guabiraba R, Ryffel B. Dengue virus infection: current concepts in immune mechanisms and lessons from murine models. Immunology 2014; 141:143-56. [PMID: 24182427 PMCID: PMC3904235 DOI: 10.1111/imm.12188] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 10/07/2013] [Accepted: 10/08/2013] [Indexed: 12/21/2022] Open
Abstract
Dengue viruses (DENV), a group of four serologically distinct but related flaviviruses, are responsible for one of the most important emerging viral diseases. This mosquito-borne disease has a great impact in tropical and subtropical areas of the world in terms of illness, mortality and economic costs, mainly due to the lack of approved vaccine or antiviral drugs. Infections with one of the four serotypes of DENV (DENV-1-4) result in symptoms ranging from an acute, self-limiting febrile illness, dengue fever, to severe dengue haemorrhagic fever or dengue shock syndrome. We reviewed the existing mouse models of infection, including the DENV-2-adapted strain P23085. The role of CC chemokines, interleukin-17 (IL-17), IL-22 and invariant natural killer T cells in mediating the exacerbation of disease in immune-competent mice is highlighted. Investigations in both immune-deficient and immune-competent mouse models of DENV infection may help to identify key host–pathogen factors and devise novel therapies to restrain the systemic and local inflammatory responses associated with severe DENV infection.
Collapse
Affiliation(s)
- Rodrigo Guabiraba
- Institute of Infection, Immunity and Inflammation, Glasgow Biomedical Research Centre, College of Medical, Veterinary and Life Sciences, University of GlasgowGlasgow, UK
- Université d’Orléans and CNRS, UMR 7355 Molecular and Experimental Immunology and NeurogeneticsOrléans, France
| | - Bernhard Ryffel
- Université d’Orléans and CNRS, UMR 7355 Molecular and Experimental Immunology and NeurogeneticsOrléans, France
- IIDMM, UCTCape Town, South Africa
- Artimmune SASOrléans, France
| |
Collapse
|
15
|
Dengue virus subverts the interferon induction pathway via NS2B/3 protease-IκB kinase epsilon interaction. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 21:29-38. [PMID: 24173023 DOI: 10.1128/cvi.00500-13] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Dengue is the world's most common mosquito-borne viral infection and a leading cause of morbidity throughout the tropics and subtropics. Viruses are known to evade the establishment of an antiviral state by regulating the activation of interferon regulatory factor 3 (IRF3), a critical transcription factor in the alpha/beta interferon induction pathway. Here, we show that dengue virus (DENV) circumvents the induction of the retinoic acid-inducible gene I-like receptor (RLR) pathway during infection by blocking serine 386 phosphorylation and nuclear translocation of IRF3. This effect is associated with the expression of nonstructural 2B/3 protein (NS2B/3) protease in human cells. Using interaction assays, we found that NS2B/3 interacts with the cellular IκB kinase ε (IKKε). Docking computational analysis revealed that in this interaction, NS2B/3 masks the kinase domain of IKKε and potentially affects its functionality. This observation is supported by the DENV-associated inhibition of the kinase activity of IKKε. Our data identify IKKε as a novel target of DENV NS2B/3 protease.
Collapse
|
16
|
Christofferson RC, McCracken MK, Johnson AM, Chisenhall DM, Mores CN. Development of a transmission model for dengue virus. Virol J 2013; 10:127. [PMID: 23617898 PMCID: PMC3659020 DOI: 10.1186/1743-422x-10-127] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 04/11/2013] [Indexed: 01/12/2023] Open
Abstract
Background Dengue virus (DENV) research has historically been hampered by the lack of a susceptible vertebrate transmission model. Recently, there has been progress towards such models using several varieties of knockout mice, particularly those deficient in type I and II interferon receptors. Based on the critical nature of the type I interferon response in limiting DENV infection establishment, we assessed the permissiveness of a mouse strain with a blunted type I interferon response via gene deficiencies in interferon regulatory factors 3 and 7 (IRF3/7 −/− −/−) with regards to DENV transmission success. We investigated the possibility of transmission to the mouse by needle and infectious mosquito, and subsequent transmission back to mosquito from an infected animal during its viremic period. Methods Mice were inoculated subcutaneously with non-mouse adapted DENV-2 strain 1232 and serum was tested for viral load and cytokine production each day. Additionally, mosquitoes were orally challenged with the same DENV-2 strain via artificial membrane feeder, and then allowed to forage or naïve mice. Subsequently, we determined acquisition potential by allowing naïve mosquitoes on forage on exposed mice during their viremic period. Results Both needle inoculation and infectious mosquito bite(s) resulted in 100% infection. Significant differences between these groups in viremia on the two days leading to peak viremia were observed, though no significant difference in cytokine production was seen. Through our determination of transmission and acquisition potentials, the transmission cycle (mouse-to mosquito-to mouse) was completed. We confirmed that the IRF3/7 −/− −/− mouse supports DENV replication and is competent for transmission experiments, with the ability to use a non-mouse adapted DENV-2 strain. A significant finding of this study was that this IRF3/7 −/− −/− mouse strain was able to be infected by and transmit virus to mosquitoes, thus providing means to replicate the natural transmission cycle of DENV. Conclusion As there is currently no approved vaccine for DENV, public health monitoring and a greater understanding of transmission dynamics leading to outbreak events are critical. The further characterization of DENV using this model will expand knowledge of key entomological, virological and immunological components of infection establishment and transmission events.
Collapse
Affiliation(s)
- Rebecca C Christofferson
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA 70803, USA
| | | | | | | | | |
Collapse
|
17
|
|
18
|
Vetter ML, Rodgers MA, Patricelli MP, Yang PL. Chemoproteomic profiling identifies changes in DNA-PK as markers of early dengue virus infection. ACS Chem Biol 2012; 7:2019-26. [PMID: 22999307 DOI: 10.1021/cb300420z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Many cellular factors are regulated via mechanisms affecting protein conformation, localization, and function that may be undetected by most commonly used RNA- and protein-based profiling methods that monitor steady-state gene expression. Mass-spectrometry-based chemoproteomic profiling provides alternatives for interrogating changes in the functional properties of proteins that occur in response to biological stimuli, such as viral infection. Taking dengue virus 2 (DV2) infection as a model system, we utilized reactive ATP- and ADP-acyl phosphates as chemical proteomic probes to detect changes in host kinase function that occur within the first hour of infection. The DNA-dependent protein kinase (DNA-PK) was discovered as a host enzyme with significantly elevated probe labeling within 60 min of DV2 infection. Increased probe labeling was associated with increased DNA-PK activity in nuclear lysates and localization of DNA-PK in nucleoli. These effects on DNA-PK were found to require a postfusion step of DV2 entry and were recapitulated by transfection of cells with RNA corresponding to stem loop B of the DV2 5' untranslated region. Upon investigation of the potential downstream consequences of these phenomena, we detected a modest but significant reduction in the interferon response induced by DV2 in cells partially depleted of the Ku80 subunit of DNA-PK. These findings identify changes in DNA-PK localization and activity as very early markers of DV2 infection. More broadly, these results highlight the utility of chemoproteomic profiling as a tool to detect changes in protein function associated with different cell states and that may occur on very short time scales.
Collapse
Affiliation(s)
- Michael L. Vetter
- Department of Microbiology and
Immunobiology, Harvard Medical School,
Boston, Massachusetts 02115, United States
| | - Mary A. Rodgers
- Department of Microbiology and
Immunobiology, Harvard Medical School,
Boston, Massachusetts 02115, United States
| | | | - Priscilla L. Yang
- Department of Microbiology and
Immunobiology, Harvard Medical School,
Boston, Massachusetts 02115, United States
| |
Collapse
|
19
|
Interferon response factors 3 and 7 protect against Chikungunya virus hemorrhagic fever and shock. J Virol 2012; 86:9888-98. [PMID: 22761364 DOI: 10.1128/jvi.00956-12] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chikungunya virus (CHIKV) infections can produce severe disease and mortality. Here we show that CHIKV infection of adult mice deficient in interferon response factors 3 and 7 (IRF3/7(-/-)) is lethal. Mortality was associated with undetectable levels of alpha/beta interferon (IFN-α/β) in serum, ∼50- and ∼10-fold increases in levels of IFN-γ and tumor necrosis factor (TNF), respectively, increased virus replication, edema, vasculitis, hemorrhage, fever followed by hypothermia, oliguria, thrombocytopenia, and raised hematocrits. These features are consistent with hemorrhagic shock and were also evident in infected IFN-α/β receptor-deficient mice. In situ hybridization suggested CHIKV infection of endothelium, fibroblasts, skeletal muscle, mononuclear cells, chondrocytes, and keratinocytes in IRF3/7(-/-) mice; all but the latter two stained positive in wild-type mice. Vaccination protected IRF3/7(-/-) mice, suggesting that defective antibody responses were not responsible for mortality. IPS-1- and TRIF-dependent pathways were primarily responsible for IFN-α/β induction, with IRF7 being upregulated >100-fold in infected wild-type mice. These studies suggest that inadequate IFN-α/β responses following virus infection can be sufficient to induce hemorrhagic fever and shock, a finding with implications for understanding severe CHIKV disease and dengue hemorrhagic fever/dengue shock syndrome.
Collapse
|
20
|
Liang Z, Wu S, Li Y, He L, Wu M, Jiang L, Feng L, Zhang P, Huang X. Activation of Toll-like receptor 3 impairs the dengue virus serotype 2 replication through induction of IFN-β in cultured hepatoma cells. PLoS One 2011; 6:e23346. [PMID: 21829730 PMCID: PMC3150425 DOI: 10.1371/journal.pone.0023346] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 07/15/2011] [Indexed: 12/01/2022] Open
Abstract
Toll-like receptors (TLRs) play an important role in innate immunity against invading pathogens. Although TLR signaling has been indicated to protect cells from infection of several viruses, the role of TLRs in Dengue virus (DENV) replication is still unclear. In the present study, we examined the replication of DENV serotype 2 (DENV2) by challenging hepatoma cells HepG2 with different TLR ligands. Activation of TLR3 showed an antiviral effect, while pretreatment of other TLR ligands (including TLR1/2, TLR2/6, TLR4, TLR5 or TLR7/8) did not show a significant effect. TLR3 ligand poly(I∶C) treatment prior to viral infection or simultaneously, but not post-treatment, significantly down-regulated virus replication. Pretreatment with poly(I∶C) reduced viral mRNA expression and viral staining positive cells, accompanying an induction of the type I interferon (IFN-β) and type III IFN (IL-28A/B). Intriguingly, neutralization of IFN-β alone successfully restored the poly(I∶C)-inhibited replication of DENV2. The poly(I∶C)-mediated effects, including IFN induction and DENV2 suppression, were significantly reversed by IKK inhibitor, further suggesting that IFN-β is the dominant factor involved in the poly(I∶C) mediated antiviral effect. Our study presented the first evidence to show that activation of TLR3 is effective in blocking DENV2 replication via IFN-β, providing an experimental clue that poly(I∶C) may be a promising immunomodulatory agent against DENV infection and might be applicable for clinical prevention.
Collapse
Affiliation(s)
- Zhaoduan Liang
- Department of Immunology, Institute of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Siyu Wu
- Department of Immunology, Institute of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Yuye Li
- Department of Immunology, Institute of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Li He
- Department of Immunology, Institute of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Minhao Wu
- Department of Immunology, Institute of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Lifang Jiang
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Lianqiang Feng
- Department of Immunology, Institute of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Ping Zhang
- Department of Immunology, Institute of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- * E-mail: (XH); (PZ)
| | - Xi Huang
- Department of Immunology, Institute of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- * E-mail: (XH); (PZ)
| |
Collapse
|
21
|
Kelley JF, Kaufusi PH, Volper EM, Nerurkar VR. Maturation of dengue virus nonstructural protein 4B in monocytes enhances production of dengue hemorrhagic fever-associated chemokines and cytokines. Virology 2011; 418:27-39. [PMID: 21810535 DOI: 10.1016/j.virol.2011.07.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 04/25/2011] [Accepted: 07/03/2011] [Indexed: 11/19/2022]
Abstract
High levels of viremia and chemokines and cytokines underlie the progression of severe dengue disease. Dengue virus (DENV) preferentially infects peripheral blood monocytes, which secrete elevated levels of immunomediators in patients with severe disease. Further, DENV nonstructural proteins (NS) are capable of modifying intracellular signaling, including interferon inhibition. We demonstrate that peak secretions of immunomediators such as IL-6, IL-8, IP-10, TNFα or IFNγ in DENV-infected monocytes correlate with maximum virus production and NS4B and NS5 are primarily responsible for the induction of immunomediators. Furthermore, we demonstrate that sequential NS4AB processing initiated by the viral protease NS2B3(pro) and via the intermediate 2KNS4B significantly enhances immunomediator induction. While the 2K-signal peptide is not essential for immunomediator induction, it plays a synergistic role with NS4B. These data suggest that NS4B maturation is important during innate immune signaling in DENV-infected monocytes. Given similar NS4B topologies and polyprotein processing across flaviviruses, NS4B may be an attractive target for developing Flavivirus-wide therapeutic interventions.
Collapse
Affiliation(s)
- James F Kelley
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | | | | | | |
Collapse
|
22
|
Delayed cytosolic exposure of Japanese encephalitis virus double-stranded RNA impedes interferon activation and enhances viral dissemination in porcine cells. J Virol 2011; 85:6736-49. [PMID: 21525349 DOI: 10.1128/jvi.00233-11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Interferon is a principal component of the host antiviral defense system. In this study, abortive focus formation by Japanese encephalitis virus (JEV) in primate cells was accompanied by early interferon induction, while productive focus formation in porcine cells was associated with a late interferon response. Neutralization antibodies against interferon relieved the restricted infection in primate cells, and increasingly larger foci were generated as treatment with exogenous interferon was delayed, thereby establishing a solid correlation between interferon response and viral dissemination. However, delayed interferon induction in JEV-infected porcine cells occurred in the absence of active inhibition by the virus. We further demonstrated that JEV mediates interferon activation through double-stranded RNA and cytosolic pattern recognition receptors. Immunofluorescence and subcellular fractionation studies revealed that double-stranded RNA is concealed in intracellular membranes at an early phase of infection but eventually appears in the cytosol at later periods, which could then allow detection by cytosolic pattern recognition receptors. Interestingly, cytosolic exposure of double-stranded RNA was delayed in porcine cells compared to primate cells, independent of total double-stranded RNA levels and in correlation with the timing of the interferon response. Furthermore, when double-stranded RNA was artificially introduced into the cytosol of porcine cells, more rapid and robust interferon activation was triggered than in viral infection. Thus, cytosolic exposure of JEV double-stranded RNA is imperative for interferon induction, but in cell lines (e.g., porcine cells) with delayed emergence of cytosolic double-stranded RNA, the interferon response is late and viral dissemination is consequently enhanced.
Collapse
|
23
|
Nasirudeen AMA, Wong HH, Thien P, Xu S, Lam KP, Liu DX. RIG-I, MDA5 and TLR3 synergistically play an important role in restriction of dengue virus infection. PLoS Negl Trop Dis 2011; 5:e926. [PMID: 21245912 PMCID: PMC3014945 DOI: 10.1371/journal.pntd.0000926] [Citation(s) in RCA: 234] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 11/26/2010] [Indexed: 12/25/2022] Open
Abstract
Dengue virus (DV) infection is one of the most common mosquito-borne viral diseases in the world. The innate immune system is important for the early detection of virus and for mounting a cascade of defense measures which include the production of type 1 interferon (IFN). Hence, a thorough understanding of the innate immune response during DV infection would be essential for our understanding of the DV pathogenesis. A recent application of the microarray to dengue virus type 1 (DV1) infected lung carcinoma cells revealed the increased expression of both extracellular and cytoplasmic pattern recognition receptors; retinoic acid inducible gene-I (RIG-I), melanoma differentiation associated gene-5 (MDA-5) and Toll-like receptor-3 (TLR3). These intracellular RNA sensors were previously reported to sense DV infection in different cells. In this study, we show that they are collectively involved in initiating an effective IFN production against DV. Cells silenced for these genes were highly susceptible to DV infection. RIG-I and MDA5 knockdown HUH-7 cells and TLR3 knockout macrophages were highly susceptible to DV infection. When cells were silenced for only RIG-I and MDA5 (but not TLR3), substantial production of IFN-β was observed upon virus infection and vice versa. High susceptibility to virus infection led to ER-stress induced apoptosis in HUH-7 cells. Collectively, our studies demonstrate that the intracellular RNA virus sensors (RIG-I, MDA5 and TLR3) are activated upon DV infection and are essential for host defense against the virus.
Collapse
Affiliation(s)
| | - Hui Hui Wong
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Peiling Thien
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Shengli Xu
- Immunology Group, Bioprocessing Technology Institute, Singapore, Singapore
| | - Kong-Peng Lam
- Immunology Group, Bioprocessing Technology Institute, Singapore, Singapore
| | - Ding Xiang Liu
- Institute of Molecular and Cell Biology, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
24
|
Inhibition of the type I interferon response in human dendritic cells by dengue virus infection requires a catalytically active NS2B3 complex. J Virol 2010; 84:9760-74. [PMID: 20660196 DOI: 10.1128/jvi.01051-10] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dengue virus (DENV) is the most prevalent arthropod-borne human virus, able to infect and replicate in human dendritic cells (DCs), inducing their activation and the production of proinflammatory cytokines. However, DENV can successfully evade the immune response in order to produce disease in humans. Several mechanisms of immune evasion have been suggested for DENV, most of them involving interference with type I interferon (IFN) signaling. We recently reported that DENV infection of human DCs does not induce type I IFN production by those infected DCs, impairing their ability to prime naive T cells toward Th1 immunity. In this article, we report that DENV also reduces the ability of DCs to produce type I IFN in response to several inducers, such as infection with other viruses or exposure to Toll-like receptor (TLR) ligands, indicating that DENV antagonizes the type I IFN production pathway in human DCs. DENV-infected human DCs showed a reduced type I IFN response to Newcastle disease virus (NDV), Sendai virus (SeV), and Semliki Forest virus (SFV) infection and to the TLR3 agonist poly(I:C). This inhibitory effect is DENV dose dependent, requires DENV replication, and takes place in DENV-infected DCs as early as 2 h after infection. Expressing individual proteins of DENV in the presence of an IFN-alpha/beta production inducer reveals that a catalytically active viral protease complex is required to reduce type I IFN production significantly. These results provide a new mechanism by which DENV evades the immune system in humans.
Collapse
|
25
|
Gomes ALV, Wee LJK, Khan AM, Gil LHVG, Marques ETA, Calzavara-Silva CE, Tan TW. Classification of dengue fever patients based on gene expression data using support vector machines. PLoS One 2010; 5:e11267. [PMID: 20585645 PMCID: PMC2890409 DOI: 10.1371/journal.pone.0011267] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 05/14/2010] [Indexed: 12/22/2022] Open
Abstract
Background Symptomatic infection by dengue virus (DENV) can range from dengue fever (DF) to dengue haemorrhagic fever (DHF), however, the determinants of DF or DHF progression are not completely understood. It is hypothesised that host innate immune response factors are involved in modulating the disease outcome and the expression levels of genes involved in this response could be used as early prognostic markers for disease severity. Methodology/Principal Findings mRNA expression levels of genes involved in DENV innate immune responses were measured using quantitative real time PCR (qPCR). Here, we present a novel application of the support vector machines (SVM) algorithm to analyze the expression pattern of 12 genes in peripheral blood mononuclear cells (PBMCs) of 28 dengue patients (13 DHF and 15 DF) during acute viral infection. The SVM model was trained using gene expression data of these genes and achieved the highest accuracy of ∼85% with leave-one-out cross-validation. Through selective removal of gene expression data from the SVM model, we have identified seven genes (MYD88, TLR7, TLR3, MDA5, IRF3, IFN-α and CLEC5A) that may be central in differentiating DF patients from DHF, with MYD88 and TLR7 observed to be the most important. Though the individual removal of expression data of five other genes had no impact on the overall accuracy, a significant combined role was observed when the SVM model of the two main genes (MYD88 and TLR7) was re-trained to include the five genes, increasing the overall accuracy to ∼96%. Conclusions/Significance Here, we present a novel use of the SVM algorithm to classify DF and DHF patients, as well as to elucidate the significance of the various genes involved. It was observed that seven genes are critical in classifying DF and DHF patients: TLR3, MDA5, IRF3, IFN-α, CLEC5A, and the two most important MYD88 and TLR7. While these preliminary results are promising, further experimental investigation is necessary to validate their specific roles in dengue disease.
Collapse
Affiliation(s)
- Ana Lisa V. Gomes
- Department of Virology and Experimental Therapy, Aggeu Magalhães Research Center-CPqAM/FIOCRUZ, Recife, Brazil
| | - Lawrence J. K. Wee
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Asif M. Khan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Laura H. V. G. Gil
- Department of Virology and Experimental Therapy, Aggeu Magalhães Research Center-CPqAM/FIOCRUZ, Recife, Brazil
| | - Ernesto T. A. Marques
- Department of Virology and Experimental Therapy, Aggeu Magalhães Research Center-CPqAM/FIOCRUZ, Recife, Brazil
- Center for Vaccine Research, Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Carlos E. Calzavara-Silva
- Department of Cellular and Molecular Immunology, Rene Rachou Research Center - CPqRR/FIOCRUZ, Belo Horizonte-MG, Brazil
| | - Tin Wee Tan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
26
|
Dengue virus inhibits the production of type I interferon in primary human dendritic cells. J Virol 2010; 84:4845-50. [PMID: 20164230 DOI: 10.1128/jvi.02514-09] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Dengue virus (DENV) infects human immune cells in vitro and likely infects dendritic cells (DCs) in vivo. DENV-2 productive infection induces activation and release of high levels of chemokines and proinflammatory cytokines in monocyte-derived DCs (moDCs), with the notable exception of alpha/beta interferon (IFN-alpha/beta). Interestingly, DENV-2-infected moDCs fail to prime T cells, most likely due to the lack of IFN-alpha/beta released by moDCs, since this effect was reversed by addition of exogenous IFN-beta. Together, our data show that inhibition of IFN-alpha/beta production by DENV in primary human moDCs is a novel mechanism of immune evasion.
Collapse
|