1
|
Moin M, Bommineni PR, Tyagi W. Exploration of the pearl millet phospholipase gene family to identify potential candidates for grain quality traits. BMC Genomics 2024; 25:581. [PMID: 38858648 PMCID: PMC11165789 DOI: 10.1186/s12864-024-10504-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/06/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Phospholipases constitute a diverse category of enzymes responsible for the breakdown of phospholipids. Their involvement in signal transduction with a pivotal role in plant development and stress responses is well documented. RESULTS In the present investigation, a thorough genome-wide analysis revealed that the pearl millet genome contains at least 44 phospholipase genes distributed across its 7 chromosomes, with chromosome one harbouring the highest number of these genes. The synteny analysis suggested a close genetic relationship of pearl millet phospholipases with that of foxtail millet and sorghum. All identified genes were examined to unravel their gene structures, protein attributes, cis-regulatory elements, and expression patterns in two pearl millet genotypes contrasting for rancidity. All the phospholipases have a high alpha-helix content and distorted regions within the predicted secondary structures. Moreover, many of these enzymes possess binding sites for both metal and non-metal ligands. Additionally, the putative promoter regions associated with these genes exhibit multiple copies of cis-elements specifically responsive to biotic and abiotic stress factors and signaling molecules. The transcriptional profiling of 44 phospholipase genes in two genotypes contrasting for rancidity across six key tissues during pearl millet growth revealed a predominant expression in grains, followed by seed coat and endosperm. Specifically, the genes PgPLD-alpha1-1, PgPLD-alpha1-5, PgPLD-delta1-7a, PgPLA1-II-1a, and PgPLD-delta1-2a exhibited notable expression in grains of both the genotypes while showing negligible expression in the other five tissues. The sequence alignment of putative promoters revealed several variations including SNPs and InDels. These variations resulted in modifications to the corresponding cis-acting elements, forming distinct transcription factor binding sites suggesting the transcriptional-level regulation for these five genes in pearl millet. CONCLUSIONS The current study utilized a genome-wide computational analysis to characterize the phospholipase gene family in pearl millet. A comprehensive expression profile of 44 phospholipases led to the identification of five grain-specific candidates. This underscores a potential role for at least these five genes in grain quality traits including the regulation of rancidity in pearl millet. Therefore, this study marks the first exploration highlighting the possible impact of phospholipases towards enhancing agronomic traits in pearl millet.
Collapse
Affiliation(s)
- Mazahar Moin
- Cell and Molecular Biology and Trait Engineering, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Patancheru, Telangana, 502324, India
| | - Pradeep Reddy Bommineni
- Cell and Molecular Biology and Trait Engineering, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Patancheru, Telangana, 502324, India
| | - Wricha Tyagi
- Cell and Molecular Biology and Trait Engineering, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Patancheru, Telangana, 502324, India.
| |
Collapse
|
2
|
Zhao J, Pu X, Li W, Li M. Characterization and evolutionary diversification of the phospholipase D gene family in mosses. Front Genet 2022; 13:1015393. [PMID: 36313445 PMCID: PMC9607936 DOI: 10.3389/fgene.2022.1015393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022] Open
Abstract
Plant phospholipase D (PLD) exerts important roles in various biological processes, such as intracellular signaling and morphological development. Our knowledge about early land plant PLDs is still underdeveloped. In this study, we identified 84 PLD genes in six mosses, i.e., Physcomitrella patens, Ceratodon purpureus, Fontinalis antipyretica, Pleurozium schreberi, Sphagnum magellanicum, and Sphagnum fallax. These PLDs were classified into four clades (I-IV). We showed that PLD underwent rapid expansion in mosses. A total of six conserved domains and two core HKD motifs were detected. Structure analysis uncovered that the moss PLDs from within a clade generally exhibited similar exon-intron organization. Cis-elements prediction and expression analyses indicated that P. patens PLDs had key roles in stress responsiveness and plant development. Particularly, about half of the P. patens PLDs (e.g., PpPLD1, PpPLD2, and PpPLD5) were differentially expressed under biotic and abiotic stresses. We also determined the expression pattern of P. patens PLD genes in various tissues and at different stages of development. Although the moss, clubmoss, liverwort, and fern PLDs evolved largely under functional constraints, we found episodic positive selection in the moss PLDs, e.g., C. purpureus PLD2 and P. patens PLD11. We infer that the evolutionary force acting on the PLDs may have facilitated moss colonization of land. Our work provides valuable insights into the diversification of moss PLD genes, and can be used for future studies of their functions.
Collapse
Affiliation(s)
- Jinjie Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Research Center for Perennial Rice Engineering and Technology of Yunnan, School of Agriculture, Yunnan University, Kunming, Yunnan, China
| | - Xinyuan Pu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Research Center for Perennial Rice Engineering and Technology of Yunnan, School of Agriculture, Yunnan University, Kunming, Yunnan, China
| | - Wenfei Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Research Center for Perennial Rice Engineering and Technology of Yunnan, School of Agriculture, Yunnan University, Kunming, Yunnan, China
| | - Meng Li
- Yunnan Academy of Tobacco Science, Kunming, Yunnan, China
| |
Collapse
|
3
|
Jia Q, Zhang S, Lin Y, Zhang J, Li L, Chen H, Zhang Q. Phospholipase Dδ regulates pollen tube growth by modulating actin cytoskeleton organization in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2021; 16:1915610. [PMID: 33853512 PMCID: PMC8205101 DOI: 10.1080/15592324.2021.1915610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 05/19/2023]
Abstract
The actin cytoskeleton plays pivotal roles in pollen tube growth by regulating organelle movement, cytoplasmic streaming, and vesicle trafficking. Previous studies have reported that plasma membrane-localized phospholipase Dδ (PLDδ) binds to cortical microtubules and negatively regulates plant stress tolerance. However, it remains unknown whether or how PLDδ regulates microfilament organization. In this study, we found that loss of PLDδ function led to a significant increase in pollen tube growth, whereas PLDδ overexpression resulted in pollen tube growth inhibition. We also found that wild-type PLDδ, rather than Arg 622-mutated PLDδ, complemented the pldδ phenotype in pollen tubes. In vitro biochemical assays demonstrated that PLDδ binds directly to F-actin, and immunofluorescence assays revealed that PLDδ in pollen tubes influences actin organization. Together, these results suggest that PLDδ participates in the development of pollen tube growth by organizing actin filaments.
Collapse
Affiliation(s)
- Qianru Jia
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, P.R.China
| | - Shujuan Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, P.R.China
| | - Yaoxi Lin
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, P.R.China
| | - Jixiu Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, P.R.China
| | - Li Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, P.R.China
| | - Huatao Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, P.R.China
| | - Qun Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, P.R.China
- CONTACT Qun Zhang College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing Weigang Road 1, College of Life Sciences #48, 210095, Nanjing, Jiangsu Province, P.R.China.
| |
Collapse
|
4
|
Tang K, Liu JY. Molecular characterization of GhPLDα1 and its relationship with secondary cell wall thickening in cotton fibers. Acta Biochim Biophys Sin (Shanghai) 2017; 49:33-43. [PMID: 27864277 DOI: 10.1093/abbs/gmw113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 10/18/2016] [Indexed: 02/07/2023] Open
Abstract
Phospholipase D (PLD) hydrolyzes phospholipids to generate a free polar head group (e.g., choline) and a second messenger phosphatidic acid and plays diverse roles in plant growth and development, including seed germination, leaf senescence, root hair growth, and hypocotyl elongation. However, the function of PLD in cotton remains largely unexplored. Here, the comprehensive molecular characterization of GhPLDα1 was explored with its role in upland cotton (Gossypium hirsutum) fiber development. The GhPLDα1 gene was cloned successfully, and a sequence alignment showed that GhPLDα1 contains one C2 domain and two HKD (HxKxxxxD) domains. Quantitative reverse transcriptase-polymerase chain reaction measured the expression of GhPLDα1 in various cotton tissues with the highest level in fibers at 20 days post anthesis (d.p.a.). Fluorescent microscopy and immunoblotting in tobacco epidermis showed the GhPLDα1 distribution in both cell membranes and the cytoplasm. An activity assay indicated changes in PLDα enzyme activity in developing fiber cells with a peak level at 20 d.p.a., coinciding with the onset of cellulose accumulation and the increased H2O2 content during fiber development. Furthermore, the inhibition of PLDα activity obviously decreased the cellulose and H2O2 contents of in vitro-cultured cotton fibers. These results provide important evidence explaining the relationship of GhPLDα1 with secondary cell wall thickening in cotton fibers in that GhPLDα1 may correlate with the increased H2O2 content at the onset of secondary cell wall thickening, ultimately promoting cellulose biosynthesis.
Collapse
Affiliation(s)
- Kai Tang
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jin-Yuan Liu
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Wipf D, Mongelard G, van Tuinen D, Gutierrez L, Casieri L. Transcriptional responses of Medicago truncatula upon sulfur deficiency stress and arbuscular mycorrhizal symbiosis. FRONTIERS IN PLANT SCIENCE 2014; 5:680. [PMID: 25520732 PMCID: PMC4251294 DOI: 10.3389/fpls.2014.00680] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 11/14/2014] [Indexed: 05/18/2023]
Abstract
Sulfur plays an essential role in plants' growth and development and in their response to various abiotic and biotic stresses despite its leachability and its very low abundance in the only form that plant roots can uptake (sulfate). It is part of amino acids, glutathione (GSH), thiols of proteins and peptides, membrane sulfolipids, cell walls and secondary products, so reduced availability can drastically alter plant growth and development. The nutritional benefits of symbiotic interactions can help the plant in case of S deficiency. In particular the arbuscular mycorrhizal (AM) interaction improves N, P, and S plant nutrition, but the mechanisms behind these exchanges are not fully known yet. Although the transcriptional changes in the leguminous model plant Medicago truncatula have been already assessed in several biotic and/or abiotic conditions, S deficiency has not been considered so far. The aim of this work is to get a first overview on S-deficiency responses in the leaf and root tissues of plants interacting with the AM fungus Rhizophagus irregularis. Several hundred genes displayed significantly different transcript accumulation levels. Annotation and GO ID association were used to identify biological processes and molecular functions affected by sulfur starvation. Beside the beneficial effects of AM interaction, plants were greatly affected by the nutritional status, showing various differences in their transcriptomic footprints. Several pathways in which S plays an important role appeared to be differentially affected according to mycorrhizal status, with a generally reduced responsiveness to S deficiency in mycorrhized plants.
Collapse
Affiliation(s)
- Daniel Wipf
- UMR 1347 Agroécologie, Pôle Interactions Plantes-Microorganismes - ERL 6300 CNRS, Université de BourgogneDijon, France
| | - Gaëlle Mongelard
- CRRBM and BIOPI EA3900, Université de Picardie Jules VerneAmiens, France
| | - Diederik van Tuinen
- Institut National de la Recherche Agronomique, UMR 1347 Agroécologie, Pôle Interactions Plantes-Microorganismes - ERL 6300 CNRSDijon, France
| | - Laurent Gutierrez
- CRRBM and BIOPI EA3900, Université de Picardie Jules VerneAmiens, France
| | - Leonardo Casieri
- UMR 1347 Agroécologie, Pôle Interactions Plantes-Microorganismes - ERL 6300 CNRS, Université de BourgogneDijon, France
| |
Collapse
|
6
|
Wang J, Ding B, Guo Y, Li M, Chen S, Huang G, Xie X. Overexpression of a wheat phospholipase D gene, TaPLDα, enhances tolerance to drought and osmotic stress in Arabidopsis thaliana. PLANTA 2014; 240:103-15. [PMID: 24705986 DOI: 10.1007/s00425-014-2066-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 03/12/2014] [Indexed: 05/04/2023]
Abstract
Phospholipase D (PLD) is crucial for plant responses to stress and signal transduction, however, the regulatory mechanism of PLD in abiotic stress is not completely understood; especially, in crops. In this study, we isolated a gene, TaPLDα, from common wheat (Triticum aestivum L.). Analysis of the amino acid sequence of TaPLDα revealed a highly conserved C2 domain and two characteristic HKD motifs, which is similar to other known PLD family genes. Further characterization revealed that TaPLDα expressed differentially in various organs, such as roots, stems, leaves and spikelets of wheat. After treatment with abscisic acid (ABA), methyl jasmonate, dehydration, polyethylene glycol and NaCl, the expression of TaPLDα was up-regulated in shoots. Subsequently, we generated TaPLDα-overexpressing transgenic Arabidopsis lines under the control of the dexamethasone-inducible 35S promoter. The overexpression of TaPLDα in Arabidopsis resulted in significantly enhanced tolerance to drought, as shown by reduced chlorosis and leaf water loss, higher relative water content and lower relative electrolyte leakage than the wild type. Moreover, the TaPLDα-overexpressing plants exhibited longer roots in response to mannitol treatment. In addition, the seeds of TaPLDα-overexpressing plants showed hypersensitivity to ABA and osmotic stress. Under dehydration, the expression of several stress-related genes, RD29A, RD29B, KIN1 and RAB18, was up-regulated to a higher level in TaPLDα-overexpressing plants than in wild type. Taken together, our results indicated that TaPLDα can enhance tolerance to drought and osmotic stress in Arabidopsis and represents a potential candidate gene to enhance stress tolerance in crops.
Collapse
Affiliation(s)
- Junbin Wang
- Tianjin-Bristol Research Center for the Effects of the Environment Change on Crops, Tianjin Agricultural University, Tianjin, 300384, China
| | | | | | | | | | | | | |
Collapse
|
7
|
Phospholipase Ds in Plant Response to Hyperosmotic Stresses. SIGNALING AND COMMUNICATION IN PLANTS 2014. [DOI: 10.1007/978-3-642-42011-5_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
8
|
|
9
|
Zhao J, Zhou D, Zhang Q, Zhang W. Genomic analysis of phospholipase D family and characterization of GmPLDαs in soybean (Glycine max). JOURNAL OF PLANT RESEARCH 2012; 125:569-78. [PMID: 22161123 DOI: 10.1007/s10265-011-0468-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 11/14/2011] [Indexed: 05/28/2023]
Abstract
Phospholipase D (PLD) and its product phosphatidic acid play important roles in the regulation of plant growth, development, and stress responses. The genome database analysis has revealed PLD family in Arabidopsis, rice, poplar and grape. In this study, we report a genomic analysis of 18 putative soybean (Glycine max) PLD genes (GmPLDs), which exist in the 14 of 20 chromosomes. GmPLDs were grouped into six types, α(3), β(4), γ, δ(5), ε(2), and ζ(3), based on gene architectures, protein domains, evolutionary relationship, and sequence identity. These GmPLDs contained two HKD domains, PX/PH domains (for GmPLDζs), and C2 domain (for the other GmPLDs). The expression patterns analyzed by quantitative reverse transcription PCR demonstrated that GmPLDs were expressed differentially in various tissues. GmPLDα1, α2, and β2 were highly expressed in most tissues, whereas GmPLDδ5 was only expressed in flowers and GmPLDζ1 was predominantly expressed in flowers and early pods. The expression of GmPLDα1 and α2 was increased and that of GmPLDγ was decreased by salt stress. GmPLDα1 protein expressed in E. coli was active under the reaction conditions for both PLDα and PLDδ, hydrolyzing the common membrane phospholipids phosphatidylcholine, phosphatidylethanolamine, and phosphatidylglycerol. The genomic analysis for soybean PLD family provides valuable data for further identity and characterization of their functions.
Collapse
Affiliation(s)
- Jiangzhe Zhao
- College of Life Science, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | | | | | | |
Collapse
|
10
|
Abstract
The simple polyol, myo-inositol, is used as a building block of a cellular language that plays various roles in signal transduction. This review describes the terminology used to denote myo-inositol-containing molecules, with an emphasis on how phosphate and fatty acids are added to create second messengers used in signaling. Work in model systems has delineated the genes and enzymes required for synthesis and metabolism of many myo-inositol-containing molecules, with genetic mutants and measurement of second messengers playing key roles in developing our understanding. There is increasing evidence that molecules such as myo- inositol(1,4,5)trisphosphate and phosphatidylinositol(4,5)bisphosphate are synthesized in response to various signals plants encounter. In particular, the controversial role of myo-inositol(1,4,5)trisphosphate is addressed, accompanied by a discussion of the multiple enzymes that act to regulate this molecule. We are also beginning to understand new connections of myo-inositol signaling in plants. These recent discoveries include the novel roles of inositol phosphates in binding to plant hormone receptors and that of phosphatidylinositol(3)phosphate binding to pathogen effectors.
Collapse
Affiliation(s)
- Glenda E Gillaspy
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
11
|
Shen P, Wang R, Jing W, Zhang W. Rice phospholipase Dα is involved in salt tolerance by the mediation of H(+)-ATPase activity and transcription. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2011; 53:289-99. [PMID: 21205187 DOI: 10.1111/j.1744-7909.2010.01021.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Phospholipase Dα (PLDα) is involved in plant response to salt stress, but the mechanisms remain unclear. We investigated rice PLDα (OsPLDα) localization and its effect on tonoplast (TP) and plasma membrane (PM) H(+)-ATPase activity and transcription in response to NaCl. When rice suspension-cultured cells were treated with 100 mM NaCl, PLDα activity in cell extracts showed a transient activation with a threefold increase at 1 h. The amount of OsPLDα protein decreased slightly in the cytosolic fractions, whereas it increased significantly in the TP after NaCl treatment. OsPLDα1 knockdown cells were developed using RNA interference (RNAi) methods. The increase in TP and PM H(+)-ATPase activity induced by NaCl was significantly inhibited in OsPLDα1-RNAi cells. Knockdown of OsPLDα1 prevented the NaCl-induced increase in the transcript level of OsVHA-A (encodes TP H(+)-ATPase) and OSA2 (encodes PM H(+)-ATPase), as well as OsNHX1 (encodes TP Na(+) /H(+) antiporter). The cells died more in OsPLDα1-RNAi mutant than in wild type when they were treated with NaCl. These results suggest that OsPLDα is involved in salt tolerance in rice through the mediation of H(+)-ATPase activity and transcription.
Collapse
Affiliation(s)
- Peng Shen
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | |
Collapse
|
12
|
Yu L, Nie J, Cao C, Jin Y, Yan M, Wang F, Liu J, Xiao Y, Liang Y, Zhang W. Phosphatidic acid mediates salt stress response by regulation of MPK6 in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2010; 188:762-73. [PMID: 20796215 DOI: 10.1111/j.1469-8137.2010.03422.x] [Citation(s) in RCA: 297] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
• Phospholipase D (PLD) hydrolyzes phospholipids to produce phosphatidic acid (PA) and a head group, and is involved in the response to various environmental stresses, including salinity. Here, we determined the roles of PLDα and PA in the mediation of salt (NaCl)-stress signaling through the regulation of mitogen-activated protein kinase (MAPK or MPK) in Arabidopsis thaliana. • NaCl-induced changes in the content and composition of PA were quantitatively profiled by electrospray ionization-tandem mass spectrometry (ESI-MS/MS). A specific PA species (a MAPK 16:0-18:2 PA), which was increased in abundance by exposure to NaCl, bound to a MPK6, according to filter binding and ELISA. The effect of PA on MPK6 activity was tested using in-gel analysis. • 16:0-18:2 PA stimulated the activity of MPK6 immunoprecipitated from Arabidopsis leaf extracts. Treatment with NaCl induced a transient activation of MPK6 in wild-type plant, but the activation was abolished in the pldα1 plant mutant. A plasma membrane Na(+)/H(+) antiporter (SOS1) was identified as a downstream target of MPK6. MPK6 phosphorylated the C-terminal fragment of SOS1. The MPK6 phosphorylation of SOS1 was stimulated by treatment with NaCl, as well as directly by PA. • These results suggest that PA plays a critical role in coupling MAPK cascades in response to salt stress.
Collapse
Affiliation(s)
- Lijuan Yu
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|