1
|
Krittika S, Yadav P. Correlated changes in stress resistance and biochemical parameters in response to long-term protein restriction in Drosophila melanogaster. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231741. [PMID: 39100164 PMCID: PMC11295984 DOI: 10.1098/rsos.231741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 05/02/2024] [Indexed: 08/06/2024]
Abstract
Studies in fruit flies, Drosophila melanogaster, have observed considerable variation in the effect of dietary protein restriction (PR) on various fitness traits. In addition, not only are there inconsistent results relating lifespan to stress resistance, but also the long-term effects of PR are unexplored. We study PR implementation across generations (long term) hypothesizing that it will be beneficial for fitness traits, stress resistance and storage reserves due to nutritional plasticity transferred by parents to offspring in earlier Drosophila studies. By imposing two concentrations of PR diets (50% and 70% of control protein) from the pre-adult and adult (age 1 day) stages of the flies, we assessed the stage-specific and long-term effect of the imposed PR. All long-term PR flies showed increased resistance against the tested stressors (starvation, desiccation, H2O2-induced oxidative stress). In addition, we also found long-term PR-induced increased stress resistance across generations. The PR flies also possessed higher protein and triglyceride (TG) content, reduced glucose and unaffected glycogen levels. We also assayed the effect of returning the PR flies to control (AL) food for a single generation and assessed their biochemical parameters to witness the transient PR effect. It was seen that TG content upon reversal was similar to AL flies except for PRI70 males; however, the glucose levels of PR males increased, while they were consistently lower in females. Taken altogether, our study suggests that long-term PR implementation contributes to increased stress resistance and was found to influence storage reserves in D. melanogaster.
Collapse
Affiliation(s)
- Sudhakar Krittika
- Fly Laboratory # 210, Anusandhan Kendra-II, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu 613401, India
| | - Pankaj Yadav
- Fly Laboratory # 210, Anusandhan Kendra-II, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu 613401, India
| |
Collapse
|
2
|
He L, Wu B, Shi J, Du J, Zhao Z. Regulation of feeding and energy homeostasis by clock-mediated Gart in Drosophila. Cell Rep 2023; 42:112912. [PMID: 37531254 DOI: 10.1016/j.celrep.2023.112912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/19/2023] [Accepted: 07/16/2023] [Indexed: 08/04/2023] Open
Abstract
Feeding behavior is essential for growth and survival of animals; however, relatively little is known about its intrinsic mechanisms. Here, we demonstrate that Gart is expressed in the glia, fat body, and gut and positively regulates feeding behavior via cooperation and coordination. Gart in the gut is crucial for maintaining endogenous feeding rhythms and food intake, while Gart in the glia and fat body regulates energy homeostasis between synthesis and metabolism. These roles of Gart further impact Drosophila lifespan. Importantly, Gart expression is directly regulated by the CLOCK/CYCLE heterodimer via canonical E-box, in which the CLOCKs (CLKs) in the glia, fat body, and gut positively regulate Gart of peripheral tissues, while the core CLK in brain negatively controls Gart of peripheral tissues. This study provides insight into the complex and subtle regulatory mechanisms of feeding and lifespan extension in animals.
Collapse
Affiliation(s)
- Lei He
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, P.R. China
| | - Binbin Wu
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| | - Jian Shi
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, P.R. China
| | - Juan Du
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, P.R. China
| | - Zhangwu Zhao
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, P.R. China; College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, P.R. China.
| |
Collapse
|
3
|
Hughson BN. The Glucagon-Like Adipokinetic Hormone in Drosophila melanogaster - Biosynthesis and Secretion. Front Physiol 2021; 12:710652. [PMID: 35002748 PMCID: PMC8733639 DOI: 10.3389/fphys.2021.710652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/16/2021] [Indexed: 11/13/2022] Open
Abstract
Metabolic homeostasis requires the precise regulation of circulating sugar titers. In mammals, homeostatic control of circulating sugar titers requires the coordinated secretion and systemic activities of glucagon and insulin. Metabolic homeostasis is similarly regulated in Drosophila melanogaster through the glucagon-like adipokinetic hormone (AKH) and the Drosophila insulin-like peptides (DILPs). In flies and mammals, glucagon and AKH are biosynthesized in and secreted from specialized endocrine cells. KATP channels borne on these cells respond to fluctuations in circulating glucose titers and thereby regulate glucagon secretion. The influence of glucagon in the pathogenesis of type 2 diabetes mellitus is now recognized, and a crucial mechanism that regulates glucagon secretion was reported nearly a decade ago. Ongoing efforts to develop D. melanogaster models for metabolic syndrome must build upon this seminal work. These efforts make a critical review of AKH physiology timely. This review focuses on AKH biosynthesis and the regulation of glucose-responsive AKH secretion through changes in CC cell electrical activity. Future directions for AKH research in flies are discussed, including the development of models for hyperglucagonemia and epigenetic inheritance of acquired metabolic traits. Many avenues of AKH physiology remain to be explored and thus present great potential for improving the utility of D. melanogaster in metabolic research.
Collapse
Affiliation(s)
- Bryon N. Hughson
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Kim AK, Kwon DW, Yeom E, Lee KP, Kwon KS, Yu K, Lee KS. Lipophorin receptor 1 (LpR1) in Drosophila muscle influences life span by regulating mitochondrial aging. Biochem Biophys Res Commun 2021; 568:95-102. [PMID: 34217014 DOI: 10.1016/j.bbrc.2021.06.080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 06/24/2021] [Indexed: 10/21/2022]
Abstract
Sarcopenia is a syndrome characterized by progressive loss of muscle mass and function during aging. Although mitochondrial dysfunction and related metabolic defects precede age-related changes in muscle, their contributions to muscle aging are still not well known. In this study, we used a Drosophila model to investigate the role of lipophorin receptors (LpRs), a Drosophila homologue of the mammalian very low-density lipoprotein receptor (VLDLR), in mitochondrial dynamics and muscle aging. Muscle-specific knockdown of LpR1 or LpR2 resulted in mitochondrial dysfunction and reduced proteostasis, which contributed to muscle aging. Activation of AMP-activated protein kinase (AMPK) ameliorated muscle dysfunction induced by LpR1 knockdown. These results suggest that LpR1/VLDLR is a novel key target that modulates age-dependent lipid remodeling and muscle homeostasis.
Collapse
Affiliation(s)
- Ae-Kyeong Kim
- Metabolism and Neurophysiology Research Group, KRIBB, Daejeon, 34141, South Korea
| | - Dae-Woo Kwon
- Metabolism and Neurophysiology Research Group, KRIBB, Daejeon, 34141, South Korea; Department of Functional Genomics, UST, Daejeon, 34113, South Korea
| | - Eunbyul Yeom
- Metabolism and Neurophysiology Research Group, KRIBB, Daejeon, 34141, South Korea; Tunneling Nanotube Research Cnter, Korea University, Seoul, 02841, South Korea
| | - Kwang-Pyo Lee
- Department of Functional Genomics, UST, Daejeon, 34113, South Korea; Aging Research Center, KRIBB, Daejeon, 34141, South Korea; Aventi Inc. Daejeon, 34141, South Korea
| | - Ki-Sun Kwon
- Department of Functional Genomics, UST, Daejeon, 34113, South Korea; Aging Research Center, KRIBB, Daejeon, 34141, South Korea; Aventi Inc. Daejeon, 34141, South Korea
| | - Kweon Yu
- Metabolism and Neurophysiology Research Group, KRIBB, Daejeon, 34141, South Korea; Department of Functional Genomics, UST, Daejeon, 34113, South Korea; Convergence Research Center of Dementia, KIST, Seoul, 02792, South Korea.
| | - Kyu-Sun Lee
- Metabolism and Neurophysiology Research Group, KRIBB, Daejeon, 34141, South Korea; Department of Functional Genomics, UST, Daejeon, 34113, South Korea.
| |
Collapse
|
5
|
Rivera O, McHan L, Konadu B, Patel S, Sint Jago S, Talbert ME. A high-fat diet impacts memory and gene expression of the head in mated female Drosophila melanogaster. J Comp Physiol B 2019; 189:179-198. [PMID: 30810797 PMCID: PMC6711602 DOI: 10.1007/s00360-019-01209-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 02/12/2019] [Accepted: 02/17/2019] [Indexed: 12/25/2022]
Abstract
Obesity predisposes humans to a range of life-threatening comorbidities, including type 2 diabetes and cardiovascular disease. Obesity also aggravates neural pathologies, such as Alzheimer's disease, but this class of comorbidity is less understood. When Drosophila melanogaster (flies) are exposed to high-fat diet (HFD) by supplementing a standard medium with coconut oil, they adopt an obese phenotype of decreased lifespan, increased triglyceride storage, and hindered climbing ability. The latter development has been previously regarded as a potential indicator of neurological decline in fly models of neurodegenerative disease. Our objective was to establish the obesity phenotype in Drosophila and identify a potential correlation, if any, between obesity and neurological decline through behavioral assays and gene expression microarray. We found that mated female w1118 flies exposed to HFD maintained an obese phenotype throughout adult life starting at 7 days, evidenced by increased triglyceride stores, diminished life span, and impeded climbing ability. While climbing ability worsened cumulatively between 7 and 14 days of exposure to HFD, there was no corresponding alteration in triglyceride content. Microarray analysis of the mated female w1118 fly head revealed HFD-induced changes in expression of genes with functions in memory, metabolism, olfaction, mitosis, cell signaling, and motor function. Meanwhile, an Aversive Phototaxis Suppression assay in mated female flies indicated reduced ability to recall an entrained memory 6 h after training. Overall, our results support the suitability of mated female flies for examining connections between diet-induced obesity and nervous or neurobehavioral pathology, and provide many directions for further investigation.
Collapse
Affiliation(s)
- Osvaldo Rivera
- Program in Biology, School of Sciences, University of Louisiana at Monroe, 700 University Avenue, Monroe, LA, 71209, USA
| | - Lara McHan
- Program in Biology, School of Sciences, University of Louisiana at Monroe, 700 University Avenue, Monroe, LA, 71209, USA
| | - Bridget Konadu
- Program in Biology, School of Sciences, University of Louisiana at Monroe, 700 University Avenue, Monroe, LA, 71209, USA
| | - Sumitkumar Patel
- Program in Biology, School of Sciences, University of Louisiana at Monroe, 700 University Avenue, Monroe, LA, 71209, USA
| | - Silvienne Sint Jago
- Program in Biology, School of Sciences, University of Louisiana at Monroe, 700 University Avenue, Monroe, LA, 71209, USA
| | - Matthew E Talbert
- Program in Biology, School of Sciences, University of Louisiana at Monroe, 700 University Avenue, Monroe, LA, 71209, USA.
| |
Collapse
|
6
|
Rovenko BM, Perkhulyn NV, Gospodaryov DV, Sanz A, Lushchak OV, Lushchak VI. High consumption of fructose rather than glucose promotes a diet-induced obese phenotype in Drosophila melanogaster. Comp Biochem Physiol A Mol Integr Physiol 2014; 180:75-85. [PMID: 25461489 DOI: 10.1016/j.cbpa.2014.11.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/04/2014] [Accepted: 11/07/2014] [Indexed: 12/31/2022]
Abstract
During the last 20 years, there has been a considerable scientific debate about the possible mechanisms of induction of metabolic disorders by reducing monosaccharides such as glucose or fructose. In this study, we report the metabolic rearrangement in response to consumption of these monosaccharides at concentrations ranging from 0.25% to 20% in a Drosophila model. Flies raised on high-glucose diet displayed delay in pupation and increased developmental mortality compared with fructose consumers. Both monosaccharides at high concentrations promoted an obese-like phenotype indicated by increased fly body mass, levels of uric acid, and circulating and stored carbohydrates and lipids; and decreased percentage of water in the body. However, flies raised on fructose showed lower levels of circulating glucose and higher concentrations of stored carbohydrates, lipids, and uric acid. The preferential induction of obesity caused by fructose in Drosophila was associated with increased food consumption and reduced mRNA levels of DILP2 and DILP5 in the brain of adult flies. Our data show that glucose and fructose differently affect carbohydrate and lipid metabolism in Drosophila in part by modulation of insulin/insulin-like growth factor signaling. Some reported similarities with effects observed in mammals make Drosophila as a useful model to study carbohydrate influence on metabolism and development of metabolic disorders.
Collapse
Affiliation(s)
- Bohdana M Rovenko
- Department of Biochemistry and Biotechnology, Vassyl Stefanyk Precarpathian National University, Ivano-Frankivsk, 76025, Ukraine
| | - Natalia V Perkhulyn
- Department of Biochemistry and Biotechnology, Vassyl Stefanyk Precarpathian National University, Ivano-Frankivsk, 76025, Ukraine
| | - Dmytro V Gospodaryov
- Department of Biochemistry and Biotechnology, Vassyl Stefanyk Precarpathian National University, Ivano-Frankivsk, 76025, Ukraine
| | - Alberto Sanz
- Institute for Cell and Molecular Biosciences and Newcastle Institute for Ageing, Newcastle University, Newcastle-Upon-Tyne, UK, NE4 5PL
| | - Oleh V Lushchak
- Department of Biochemistry and Biotechnology, Vassyl Stefanyk Precarpathian National University, Ivano-Frankivsk, 76025, Ukraine.
| | - Volodymyr I Lushchak
- Department of Biochemistry and Biotechnology, Vassyl Stefanyk Precarpathian National University, Ivano-Frankivsk, 76025, Ukraine.
| |
Collapse
|
7
|
Smith WW, Thomas J, Liu J, Li T, Moran TH. From fat fruit fly to human obesity. Physiol Behav 2014; 136:15-21. [PMID: 24508822 PMCID: PMC4125553 DOI: 10.1016/j.physbeh.2014.01.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/13/2014] [Accepted: 01/27/2014] [Indexed: 12/31/2022]
Abstract
Obesity is a chronic metabolic disease that has become a global problem. Although a tremendous amount of effort has been spent to prevent and treat obesity, its etiology is still largely unknown and there are not yet sufficient strategies to control obesity. Recently, the fruit fly, Drosophila melanogaster, has become a useful model for studying metabolic homeostasis and obesity related disorders. The goal of this mini-review is to summarize the recent achievements of Drosophila models and to highlight the experimental protocols used in studying feeding behavior and energy homeostasis in the fly. The Drosophila models provide useful tools to understand obesity pathogenesis and to develop novel therapeutics.
Collapse
Affiliation(s)
- Wanli W Smith
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA.
| | - Joseph Thomas
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Jingnan Liu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Tianxia Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Timothy H Moran
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
8
|
Tennessen JM, Barry WE, Cox J, Thummel CS. Methods for studying metabolism in Drosophila. Methods 2014; 68:105-15. [PMID: 24631891 PMCID: PMC4048761 DOI: 10.1016/j.ymeth.2014.02.034] [Citation(s) in RCA: 295] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 02/21/2014] [Accepted: 02/25/2014] [Indexed: 01/17/2023] Open
Abstract
Recent research using Drosophila melanogaster has seen a resurgence in studies of metabolism and physiology. This review focuses on major methods used to conduct this work. These include protocols for dietary interventions, measurements of triglycerides, cholesterol, glucose, trehalose, and glycogen, stains for lipid detection, and the use of gas chromatography-mass spectrometry (GC-MS) to detect major polar metabolites. It is our hope that this will provide a useful framework for both new and current researchers in the field.
Collapse
Affiliation(s)
- Jason M Tennessen
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112-5330, USA
| | - William E Barry
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112-5330, USA
| | - James Cox
- Department of Biochemistry and the Metabolomics Core Research Facility, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Carl S Thummel
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112-5330, USA.
| |
Collapse
|
9
|
Trinh I, Boulianne GL. Modeling obesity and its associated disorders in Drosophila. Physiology (Bethesda) 2014; 28:117-24. [PMID: 23455770 DOI: 10.1152/physiol.00025.2012] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In recent years, obesity has been recognized as a major public health problem due to its increased prevalence in both children and adults and its association with numerous life-threatening complications including diabetes, heart disease, hypertension, and cancer. Obesity is a complex disorder that is the result of the interaction between predisposing genetic and environmental factors. However, the precise nature of these gene-gene and gene-environment interactions remains unclear. Here, we will describe recent studies demonstrating how fruit flies can be used to identify and characterize the mechanisms underlying obesity and to establish models of obesity-associated disorders.
Collapse
Affiliation(s)
- Irene Trinh
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
10
|
Walls SM, Attle SJ, Brulte GB, Walls ML, Finley KD, Chatfield DA, Herr DR, Harris GL. Identification of sphingolipid metabolites that induce obesity via misregulation of appetite, caloric intake and fat storage in Drosophila. PLoS Genet 2013; 9:e1003970. [PMID: 24339790 PMCID: PMC3854795 DOI: 10.1371/journal.pgen.1003970] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 10/07/2013] [Indexed: 12/22/2022] Open
Abstract
Obesity is defined by excessive lipid accumulation. However, the active mechanistic roles that lipids play in its progression are not understood. Accumulation of ceramide, the metabolic hub of sphingolipid metabolism, has been associated with metabolic syndrome and obesity in humans and model systems. Here, we use Drosophila genetic manipulations to cause accumulation or depletion of ceramide and sphingosine-1-phosphate (S1P) intermediates. Sphingolipidomic profiles were characterized across mutants for various sphingolipid metabolic genes using liquid chromatography electrospray ionization tandem mass spectroscopy. Biochemical assays and microscopy were used to assess classic hallmarks of obesity including elevated fat stores, increased body weight, resistance to starvation induced death, increased adiposity, and fat cell hypertrophy. Multiple behavioral assays were used to assess appetite, caloric intake, meal size and meal frequency. Additionally, we utilized DNA microarrays to profile differential gene expression between these flies, which mapped to changes in lipid metabolic pathways. Our results show that accumulation of ceramides is sufficient to induce obesity phenotypes by two distinct mechanisms: 1) Dihydroceramide (C14:0) and ceramide diene (C14:2) accumulation lowered fat store mobilization by reducing adipokinetic hormone- producing cell functionality and 2) Modulating the S1P: ceramide (C14:1) ratio suppressed postprandial satiety via the hindgut-specific neuropeptide like receptor dNepYr, resulting in caloric intake-dependent obesity. Obesity is characterized by excessive weight gain that increases one's risk for pathologies such as Type II diabetes and heart disease. It is well-known that a high calorie diet rich in saturated fats contributes to excessive weight gain. However, the role that saturated fats play in this process goes far beyond simple storage in fat tissue. Saturated fats are essential building blocks for the bioactive lipid ceramide. Accumulation of ceramide has recently been associated with obesity. However, it is not known whether its accumulation plays an active role in the induction of obesity. Here, we utilized genetic manipulation in Drosophila to accumulate and deplete a variety of ceramide species and other related lipids. Our results showed that modulation of ceramide and related lipids is sufficient to induce obesity through two distinct mechanisms: a caloric intake-dependent mechanism works through suppression of neuropeptide Y satiety signaling, while a caloric intake-independent mechanism works through regulation of hormone producing cells that regulate fat storage. These data implicate ceramides in actively promoting obesity by increasing caloric intake and fat storage.
Collapse
Affiliation(s)
- Stanley M. Walls
- Department of Biology and Molecular Biology Institute, San Diego State University, San Diego, California, United States of America
| | - Steve J. Attle
- Department of Biology and Molecular Biology Institute, San Diego State University, San Diego, California, United States of America
| | - Gregory B. Brulte
- Department of Biology and Molecular Biology Institute, San Diego State University, San Diego, California, United States of America
| | - Marlena L. Walls
- Department of Biology and Molecular Biology Institute, San Diego State University, San Diego, California, United States of America
| | - Kim D. Finley
- Bioscience Center, San Diego State University, San Diego, California, United States of America
| | - Dale A. Chatfield
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California, United States of America
| | - Deron R. Herr
- Department of Pharmacology, National University of Singapore, Singapore
| | - Greg L. Harris
- Department of Biology and Molecular Biology Institute, San Diego State University, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
11
|
Attardo GM, Benoit JB, Michalkova V, Yang G, Roller L, Bohova J, Takáč P, Aksoy S. Analysis of lipolysis underlying lactation in the tsetse fly, Glossina morsitans. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 42:360-70. [PMID: 22509523 PMCID: PMC3561780 DOI: 10.1016/j.ibmb.2012.01.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Female tsetse flies undergo viviparous reproduction, generating one larva each gonotrophic cycle. Larval nourishment is provided by the mother in the form of milk secretions. The milk consists mostly of lipids during early larval development and shifts to a balanced combination of protein and lipids in the late larval instars. Provisioning of adequate lipids to the accessory gland is an indispensable process for tsetse fecundity. This work investigates the roles of Brummer lipase (Bmm) and the adipokinetic hormone (AKH)/adipokinetic hormone receptor (AKHR) systems on lipid metabolism and mobilization during lactation in tsetse. The contributions of each system were investigated by a knockdown approach utilizing siRNA injections. Starvation experiments revealed that silencing of either system results in prolonged female lifespan. Simultaneous suppression of bmm and akhr prolonged survival further than either individual knockdown. Knockdown of akhr and bmm transcript levels resulted in high levels of whole body lipids at death, indicating an inability to utilize lipid reserves during starvation. Silencing of bmm resulted in delayed oocyte development. Respective reductions in fecundity of 20 and 50% were observed upon knockdown of akhr and bmm, while simultaneous knockdown of both genes resulted in 80% reduction of larval production. Omission of one bloodmeal during larvigenesis (nutritional stress) after simultaneous knockdown led to almost complete suppression of larval production. This phenotype likely results from tsetse's inability to utilize lipid reserves as loss of both lipolysis systems leads to accumulation and retention of stored lipids during pregnancy. This shows that both Bmm lipolysis and AKH/AKHR signaling are critical for lipolysis required for milk production during tsetse pregnancy, and identifies the underlying mechanisms of lipid metabolism critical to tsetse lactation. The similarities in the lipid metabolic pathways and other aspects of milk production between tsetse and mammals indicate that this fly could be used as a novel model for lactation research.
Collapse
Affiliation(s)
- Geoffrey M Attardo
- Yale School of Public Health, Yale University, New Haven, CT 06520, USA.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Hildebrandt A, Bickmeyer I, Kühnlein RP. Reliable Drosophila body fat quantification by a coupled colorimetric assay. PLoS One 2011; 6:e23796. [PMID: 21931614 PMCID: PMC3170289 DOI: 10.1371/journal.pone.0023796] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 07/26/2011] [Indexed: 12/22/2022] Open
Abstract
Factors and mechanisms controlling lipometabolism homeostasis share a remarkable evolutionary conservation between humans and Drosophila flies. Accordingly, the Drosophila model has been successfully used to understand the pathophysiology of human metabolic diseases such as obesity. Body fat stores in species as different as humans and flies consist of neutral lipids, mainly triacylglycerols. Changes in body fat storage are a diagnostic phenotype of lipometabolism imbalances of genetic or environmental origin. Various methods have been developed to quantify Drosophila body fat storage. The most widely used method adopts a commercial coupled colorimetric assay designed for human serum triacylglycerol quantification, which is based on glycerol content determination after enzymatic conversion of glycerides into glycerol. The coupled colorimetric assay is compatible with large-scale genetic screen approaches and has been successfully applied to characterize central regulators of Drosophila lipometabolism. Recently, the applicability of the coupled colorimetric assay for Drosophila storage fat quantification has been questioned in principle. Here we compare the performance of the coupled colorimetric assay on Drosophila samples with thin layer chromatography, the “gold standard” in storage lipid analysis. Our data show that the presented variant of the coupled colorimetric assay reliably discriminates between lean and fat flies and allows robust, quick and cost-effective quantification of Drosophila body fat stores.
Collapse
Affiliation(s)
- Anja Hildebrandt
- Forschungsgruppe Molekulare Physiologie, Abteilung Molekulare Entwicklungsbiologie, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | - Iris Bickmeyer
- Forschungsgruppe Molekulare Physiologie, Abteilung Molekulare Entwicklungsbiologie, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | - Ronald P. Kühnlein
- Forschungsgruppe Molekulare Physiologie, Abteilung Molekulare Entwicklungsbiologie, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
- * E-mail:
| |
Collapse
|