1
|
Xiao H, Krauss M, Floehr T, Yan Y, Bahlmann A, Eichbaum K, Brinkmann M, Zhang X, Yuan X, Brack W, Hollert H. Effect-Directed Analysis of Aryl Hydrocarbon Receptor Agonists in Sediments from the Three Gorges Reservoir, China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:11319-11328. [PMID: 27640527 DOI: 10.1021/acs.est.6b03231] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The construction of the Three Gorges Dam (TGD) in the Yangtze River raises great concern in ecotoxicological research since large amounts of pollutants enter the Three Gorges Reservoir (TGR) water bodies after TGD impoundment. In this work, effect-directed analysis (EDA), combining effect assessment, fractionation procedure, and target and nontarget analyses, was used to characterize aryl hydrocarbon receptor (AhR) agonists in sediments of the TGR. Priority polycyclic aromatic hydrocarbons (PAHs) containing four to five aromatic rings were found to contribute significantly to the overall observed effects in the area of Chongqing. The relatively high potency fractions in the Kaixian area were characterized by PAHs and methylated derivatives thereof and heterocyclic polycyclic aromatic compounds (PACs) such as dinaphthofurans. Benzothiazole and derivatives were identified as possible AhR agonists in the Kaixian area based on nontarget liquid chromatography-high resolution mass spectrometry (LC-HRMS). To our knowledge, this study is the first one applying the EDA approach and identifying potential AhR agonists in TGR.
Collapse
Affiliation(s)
- Hongxia Xiao
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University , Aachen 52074, Germany
| | - Martin Krauss
- Department of Effect-Directed Analysis, Helmholtz Centre for Environmental Research-UFZ , Leipzig 04318, Germany
| | - Tilman Floehr
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University , Aachen 52074, Germany
| | - Yan Yan
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University , Aachen 52074, Germany
| | - Arnold Bahlmann
- Department of Effect-Directed Analysis, Helmholtz Centre for Environmental Research-UFZ , Leipzig 04318, Germany
| | - Kathrin Eichbaum
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University , Aachen 52074, Germany
| | - Markus Brinkmann
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University , Aachen 52074, Germany
- School of Environment and Sustainability, University of Saskatchewan , Saskatoon S7N 5B3, Canada
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University , Nanjing 210046, China
| | - Xingzhong Yuan
- College of Resources and Environmental Science, Chongqing University , Chongqing 400030, China
| | - Werner Brack
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University , Aachen 52074, Germany
- Department of Effect-Directed Analysis, Helmholtz Centre for Environmental Research-UFZ , Leipzig 04318, Germany
| | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University , Aachen 52074, Germany
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University , Nanjing 210046, China
- College of Resources and Environmental Science, Chongqing University , Chongqing 400030, China
- Key Laboratory of Yangtze Water Environment, Ministry of Education, Tongji University , Shanghai 200092, China
| |
Collapse
|
2
|
Bailey HC, Curran CA, Arth P, Lo BP, Gossett R. Application of sediment toxicity identification evaluation techniques to a site with multiple contaminants. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:2456-2465. [PMID: 27167751 DOI: 10.1002/etc.3488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/12/2016] [Accepted: 05/09/2016] [Indexed: 06/05/2023]
Abstract
Sediment toxicity identification evaluations (TIEs) are conducted to determine causes of adverse effects observed in whole-sediment toxicity tests. However, in multiple contaminant scenarios, it is problematic to partition contributions of individual contaminants to overall toxicity. Using data from a site with multiple inputs and contaminants of concern, the authors describe a quantitative approach for the TIE process by tracking toxicity units to determine whether all toxicity is accounted for. The initial step established the level of toxicity associated with the whole sediment and then partitioned sources of toxicity into general contaminant classes (e.g., ammonia, metals, nonpolar organic compounds). In this case, toxicity was largely the result of nonpolar organics, so the sediments were extracted and the extracts added back into dilution water and tested to confirm recovery of toxicity. Individual fractions were then generated using a solvent gradient and tested for toxicity. Fractions of interest were evaluated with gas chromatography/mass spectrometry to identify specific constituents associated with toxicity. Toxicity units associated with these constituents were then evaluated to determine probable associations with cause and whether all toxicity was accounted for. The data indicated that toxicity was associated with 2 contaminant classes, representing legacy compounds and contaminants of emerging concern, with the contribution of each varying across the site. Environ Toxicol Chem 2016;35:2456-2465. © 2016 SETAC.
Collapse
Affiliation(s)
| | | | - Peter Arth
- Nautilus Environmental, San Diego, California, USA
| | - Bonnie P Lo
- Nautilus Environmental, Burnaby, British Columbia, Canada
| | - Rich Gossett
- Physis Analytical Laboratory, Anaheim, California, USA
| |
Collapse
|
3
|
Biales AD, Denton DL, Riordan D, Breuer R, Batt AL, Crane DB, Schoenfuss HL. Complex watersheds, collaborative teams: Assessing pollutant presence and effects in the San Francisco Delta. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2015; 11:674-688. [PMID: 25779725 DOI: 10.1002/ieam.1633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 12/19/2014] [Accepted: 02/23/2015] [Indexed: 06/04/2023]
Abstract
There is a great diversity of sources of chemical contaminants and stressors over large geographic areas. Chemical contaminant inputs and magnitude can potentially exhibit wide seasonal variation over large geographic areas. Together, these factors make linking exposure to monitored chemical contaminants and effects difficult. In practice, this linkage typically relies on relatively limited chemical occurrence data loosely coupled with individual effects, and population- or community-level assessments. Increased discriminatory power may be gained by approaching watershed level assessment in a more holistic manner, drawing from a number of disciplines that target endpoints spanning levels of the biological hierarchy. Using the Sacramento River as a case study, the present study aimed to 1) evaluate the performance of new analytical and biomarker tools in a real world setting and their potential for linking occurrence and effect; 2) characterize the effects of geographic and temporal variability through the integration of suborganismal, tissue, and individual level endpoints, as well as extensive chemical analyses; 3) identify knowledge gaps and research needs that limit the implementation of this holistic approach; and 4) provide an experimental design workflow for these types of assessments. Sites were selected to target inputs into the Sacramento River as it transitions from an agricultural to a mixed but primarily urban landscape. Chemical analyses were conducted on surface water samples at each site in both the spring and fall for pesticides, hormones, and active pharmaceutical ingredients (APIs). Active pharmaceutical ingredients were more often detected across sampling events in the fall; however, at the most downstream site the number of analytes detected and their concentrations were greater in the spring, which may be due to seasonal differences in rainfall. Changes in gene and protein expression targeting endocrine and reproductive effects were observed within each sampling event; however, they were inconsistent across seasons. Larval mortality at the most downstream site was seen in both seasons; however, behavioral changes were only observed in the spring. No clear linkages of specific analyte exposure to biological response were observed, nor were linkages across biological levels of organization. This failure may have resulted from limitations of the scope of molecular endpoints used, inconsistent timing of exposure, or discordance of analytical chemistry through grab sampling and longer term, integrative exposure. Together, results indicate a complicated view of the watershed.
Collapse
Affiliation(s)
- Adam D Biales
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, Ohio
| | - Debra L Denton
- US Environmental Protection Agency, Region 9, Sacramento, California
| | - Dan Riordan
- California Department of Water Resources, West Sacramento, California, USA
| | - Richard Breuer
- State Water Resources Control Board, Sacramento, California, USA
| | - Angela L Batt
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, Ohio
| | - David B Crane
- California Department of Fish and Wildlife, Rancho Cordova, California, USA
| | - Heiko L Schoenfuss
- Aquatic Toxicology Laboratory, Saint Cloud State University, Saint Cloud, Minnesota, USA
| |
Collapse
|
4
|
Biales AD, Kostich M, Burgess RM, Ho KT, Bencic DC, Flick RL, Portis LM, Pelletier MC, Perron MM, Reiss M. Linkage of genomic biomarkers to whole organism end points in a Toxicity Identification Evaluation (TIE). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:1306-1312. [PMID: 23305514 DOI: 10.1021/es304274a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Aquatic organisms are exposed to many toxic chemicals and interpreting the cause and effect relationships between occurrence and impairment is difficult. Toxicity Identification Evaluation (TIE) provides a systematic approach for identifying responsible toxicants. TIE relies on relatively uninformative and potentially insensitive toxicological end points. Gene expression analysis may provide needed sensitivity and specificity aiding in the identification of primary toxicants. The current work aims to determine the added benefit of integrating gene expression end points into the TIE process. A cDNA library and a custom microarray were constructed for the marine amphipod Ampelisca abdita. Phase 1 TIEs were conducted using 10% and 40% dilutions of acutely toxic sediment. Gene expression was monitored in survivors and controls. An expression-based classifier was developed and evaluated against control organisms, organisms exposed to low or medium toxicity diluted sediment, and chemically selective manipulations of highly toxic sediment. The expression-based classifier correctly identified organisms exposed to toxic sediment even when little mortality was observed, suggesting enhanced sensitivity of the TIE process. The ability of the expression-based end point to correctly identify toxic sediment was lost concomitantly with acute toxicity when organic contaminants were removed. Taken together, this suggests that gene expression enhances the performance of the TIE process.
Collapse
Affiliation(s)
- Adam D Biales
- US EPA, National Exposure Research Laboratory AWBERC, MD 592 26 W. Martin Luther King Drive Cincinnati, Ohio 45268, United States.
| | | | | | | | | | | | | | | | | | | |
Collapse
|