1
|
Ohashi Y. Activation Mechanisms of the VPS34 Complexes. Cells 2021; 10:cells10113124. [PMID: 34831348 PMCID: PMC8624279 DOI: 10.3390/cells10113124] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 01/18/2023] Open
Abstract
Phosphatidylinositol-3-phosphate (PtdIns(3)P) is essential for cell survival, and its intracellular synthesis is spatially and temporally regulated. It has major roles in two distinctive cellular pathways, namely, the autophagy and endocytic pathways. PtdIns(3)P is synthesized from phosphatidylinositol (PtdIns) by PIK3C3C/VPS34 in mammals or Vps34 in yeast. Pathway-specific VPS34/Vps34 activity is the consequence of the enzyme being incorporated into two mutually exclusive complexes: complex I for autophagy, composed of VPS34/Vps34-Vps15/Vps15-Beclin 1/Vps30-ATG14L/Atg14 (mammals/yeast), and complex II for endocytic pathways, in which ATG14L/Atg14 is replaced with UVRAG/Vps38 (mammals/yeast). Because of its involvement in autophagy, defects in which are closely associated with human diseases such as cancer and neurodegenerative diseases, developing highly selective drugs that target specific VPS34/Vps34 complexes is an essential goal in the autophagy field. Recent studies on the activation mechanisms of VPS34/Vps34 complexes have revealed that a variety of factors, including conformational changes, lipid physicochemical parameters, upstream regulators, and downstream effectors, greatly influence the activity of these complexes. This review summarizes and highlights each of these influences as well as clarifying key questions remaining in the field and outlining future perspectives.
Collapse
Affiliation(s)
- Yohei Ohashi
- MRC Laboratory of Molecular Biology, Protein and Nucleic Acid Chemistry Division, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
2
|
Sasvari Z, Lin W, Inaba JI, Xu K, Kovalev N, Nagy PD. Co-opted Cellular Sac1 Lipid Phosphatase and PI(4)P Phosphoinositide Are Key Host Factors during the Biogenesis of the Tombusvirus Replication Compartment. J Virol 2020; 94:e01979-19. [PMID: 32269127 PMCID: PMC7307105 DOI: 10.1128/jvi.01979-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 04/02/2020] [Indexed: 12/19/2022] Open
Abstract
Positive-strand RNA [(+)RNA] viruses assemble numerous membrane-bound viral replicase complexes (VRCs) with the help of viral replication proteins and co-opted host proteins within large viral replication compartments in the cytosol of infected cells. In this study, we found that deletion or depletion of Sac1 phosphatidylinositol 4-phosphate [PI(4)P] phosphatase reduced tomato bushy stunt virus (TBSV) replication in yeast (Saccharomyces cerevisiae) and plants. We demonstrate a critical role for Sac1 in TBSV replicase assembly in a cell-free replicase reconstitution assay. The effect of Sac1 seems to be direct, based on its interaction with the TBSV p33 replication protein, its copurification with the tombusvirus replicase, and its presence in the virus-induced membrane contact sites and within the TBSV replication compartment. The proviral functions of Sac1 include manipulation of lipid composition, sterol enrichment within the VRCs, and recruitment of additional host factors into VRCs. Depletion of Sac1 inhibited the recruitment of Rab5 GTPase-positive endosomes and enrichment of phosphatidylethanolamine in the viral replication compartment. We propose that Sac1 might be a component of the assembly hub for VRCs, likely in collaboration with the co-opted the syntaxin18-like Ufe1 SNARE protein within the TBSV replication compartments. This work also led to demonstration of the enrichment of PI(4)P phosphoinositide within the replication compartment. Reduction in the PI(4)P level due to chemical inhibition in plant protoplasts; depletion of two PI(4)P kinases, Stt4p and Pik1p; or sequestration of free PI(4)P via expression of a PI(4)P-binding protein in yeast strongly inhibited TBSV replication. Altogether, Sac1 and PI(4)P play important proviral roles during TBSV replication.IMPORTANCE Replication of positive-strand RNA viruses depends on recruitment of host components into viral replication compartments or organelles. Using TBSV, we uncovered the critical roles of Sac1 PI(4)P phosphatase and its substrate, PI(4)P phosphoinositide, in promoting viral replication. Both Sac1 and PI(4)P are recruited to the site of viral replication to facilitate the assembly of the viral replicase complexes, which perform viral RNA replication. We found that Sac1 affects the recruitment of other host factors and enrichment of phosphatidylethanolamine and sterol lipids within the subverted host membranes to promote optimal viral replication. In summary, this work demonstrates the novel functions of Sac1 and PI(4)P in TBSV replication in the model host yeast and in plants.
Collapse
Affiliation(s)
- Zsuzsanna Sasvari
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | - Wenwu Lin
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | - Jun-Ichi Inaba
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | - Kai Xu
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | - Nikolay Kovalev
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | - Peter D Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
3
|
Bussi C, Gutierrez MG. Mycobacterium tuberculosis infection of host cells in space and time. FEMS Microbiol Rev 2019; 43:341-361. [PMID: 30916769 PMCID: PMC6606852 DOI: 10.1093/femsre/fuz006] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 03/26/2019] [Indexed: 12/16/2022] Open
Abstract
Tuberculosis (TB) caused by the bacterial pathogen Mycobacterium tuberculosis (Mtb) remains one of the deadliest infectious diseases with over a billion deaths in the past 200 years (Paulson 2013). TB causes more deaths worldwide than any other single infectious agent, with 10.4 million new cases and close to 1.7 million deaths in 2017. The obstacles that make TB hard to treat and eradicate are intrinsically linked to the intracellular lifestyle of Mtb. Mtb needs to replicate within human cells to disseminate to other individuals and cause disease. However, we still do not completely understand how Mtb manages to survive within eukaryotic cells and why some cells are able to eradicate this lethal pathogen. Here, we summarise the current knowledge of the complex host cell-pathogen interactions in TB and review the cellular mechanisms operating at the interface between Mtb and the human host cell, highlighting the technical and methodological challenges to investigating the cell biology of human host cell-Mtb interactions.
Collapse
Affiliation(s)
- Claudio Bussi
- Host-pathogen interactions in tuberculosis laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, United Kingdom
| | - Maximiliano G Gutierrez
- Host-pathogen interactions in tuberculosis laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, United Kingdom
| |
Collapse
|
4
|
Nakada-Tsukui K, Watanabe N, Maehama T, Nozaki T. Phosphatidylinositol Kinases and Phosphatases in Entamoeba histolytica. Front Cell Infect Microbiol 2019; 9:150. [PMID: 31245297 PMCID: PMC6563779 DOI: 10.3389/fcimb.2019.00150] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 04/23/2019] [Indexed: 12/11/2022] Open
Abstract
Phosphatidylinositol (PtdIns) metabolism is indispensable in eukaryotes. Phosphoinositides (PIs) are phosphorylated derivatives of PtdIns and consist of seven species generated by reversible phosphorylation of the inositol moieties at the positions 3, 4, and 5. Each of the seven PIs has a unique subcellular and membrane domain distribution. In the enteric protozoan parasite Entamoeba histolytica, it has been previously shown that the PIs phosphatidylinositol 3-phosphate (PtdIns3P), PtdIns(4,5)P2, and PtdIns(3,4,5)P3 are localized to phagosomes/phagocytic cups, plasma membrane, and phagocytic cups, respectively. The localization of these PIs in E. histolytica is similar to that in mammalian cells, suggesting that PIs have orthologous functions in E. histolytica. In contrast, the conservation of the enzymes that metabolize PIs in this organism has not been well-documented. In this review, we summarized the full repertoire of the PI kinases and PI phosphatases found in E. histolytica via a genome-wide survey of the current genomic information. E. histolytica appears to have 10 PI kinases and 23 PI phosphatases. It has a panel of evolutionarily conserved enzymes that generate all the seven PI species. However, class II PI 3-kinases, type II PI 4-kinases, type III PI 5-phosphatases, and PI 4P-specific phosphatases are not present. Additionally, regulatory subunits of class I PI 3-kinases and type III PI 4-kinases have not been identified. Instead, homologs of class I PI 3-kinases and PTEN, a PI 3-phosphatase, exist as multiple isoforms, which likely reflects that elaborate signaling cascades mediated by PtdIns(3,4,5)P3 are present in this organism. There are several enzymes that have the nuclear localization signal: one phosphatidylinositol phosphate (PIP) kinase, two PI 3-phosphatases, and one PI 5-phosphatase; this suggests that PI metabolism also has conserved roles related to nuclear functions in E. histolytica, as it does in model organisms.
Collapse
Affiliation(s)
- Kumiko Nakada-Tsukui
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Natsuki Watanabe
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tomohiko Maehama
- Division of Molecular and Cellular Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Abstract
Recently, a new form of autosomal recessive early-onset parkinsonism (PARK20), due to mutations in the gene encoding the phosphoinositide phosphatase, Synaptojanin 1 (Synj1), has been reported. Several genes responsible for hereditary forms of Parkinson’s disease are implicated in distinct steps of the endolysosomal pathway. However, the nature and the degree of endocytic membrane trafficking impairment in early-onset parkinsonism remains elusive. Here, we show that depletion of Synj1 causes drastic alterations of early endosomes, which become enlarged and more numerous, while it does not affect the morphology of late endosomes both in non-neuronal and neuronal cells. Moreover, Synj1 loss impairs the recycling of transferrin, while it does not alter the trafficking of the epidermal growth factor receptor. The ectopic expression of Synj1 restores the functions of early endosomes, and rescues these trafficking defects in depleted cells. Importantly, the same alterations of early endosomal compartments and trafficking defects occur in fibroblasts of PARK20 patients. Our data indicate that Synj1 plays a crucial role in regulating the homeostasis and functions of early endosomal compartments in different cell types, and highlight defective cellular pathways in PARK20. In addition, they strengthen the link between endosomal trafficking and Parkinson’s disease.
Collapse
|
6
|
A Rab5 GTPase module is important for autophagosome closure. PLoS Genet 2017; 13:e1007020. [PMID: 28934205 PMCID: PMC5626503 DOI: 10.1371/journal.pgen.1007020] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 10/03/2017] [Accepted: 09/14/2017] [Indexed: 02/03/2023] Open
Abstract
In the conserved autophagy pathway, the double-membrane autophagosome (AP) engulfs cellular components to be delivered for degradation in the lysosome. While only sealed AP can productively fuse with the lysosome, the molecular mechanism of AP closure is currently unknown. Rab GTPases, which regulate all intracellular trafficking pathways in eukaryotes, also regulate autophagy. Rabs function in GTPase modules together with their activators and downstream effectors. In yeast, an autophagy-specific Ypt1 GTPase module, together with a set of autophagy-related proteins (Atgs) and a phosphatidylinositol-3-phosphate (PI3P) kinase, regulates AP formation. Fusion of APs and endosomes with the vacuole (the yeast lysosome) requires the Ypt7 GTPase module. We have previously shown that the Rab5-related Vps21, within its endocytic GTPase module, regulates autophagy. However, it was not clear which autophagy step it regulates. Here, we show that this module, which includes the Vps9 activator, the Rab5-related Vps21, the CORVET tethering complex, and the Pep12 SNARE, functions after AP expansion and before AP closure. Whereas APs are not formed in mutant cells depleted for Atgs, sealed APs accumulate in cells depleted for the Ypt7 GTPase module members. Importantly, depletion of individual members of the Vps21 module results in a novel phenotype: accumulation of unsealed APs. In addition, we show that Vps21-regulated AP closure precedes another AP maturation step, the previously reported PI3P phosphatase-dependent Atg dissociation. Our results delineate three successive steps in the autophagy pathway regulated by Rabs, Ypt1, Vps21 and Ypt7, and provide the first insight into the upstream regulation of AP closure. In autophagy, a cellular recycling pathway, the double-membrane autophagosome (AP) engulfs excess or damaged cargo and delivers it for degradation in the lysosome for the reuse of its building blocks. While plenty of information is currently available regarding AP formation, expansion and fusion, not much is known about the regulation of AP closure, which is required for fusion of APs with the lysosome. Here, we use yeast genetics to characterize a novel mutant phenotype, accumulation of unsealed APs, and identify a role for the Rab5-related Vps21 GTPase in this process. Rab GTPases function in modules that include upstream activators and downstream effectors. We have previously shown that the same Vps21 module that regulates endocytosis also plays a role in autophagy. Using single and double mutant analyses, we find that this module is important for AP closure. Moreover, we delineate three Rab GTPase-regulated steps in the autophagy pathway: AP formation, closure, and fusion, which are regulated by Ypt1, Vps21 and Ypt7, respectively. This study provides the first insight into the mechanism of the elusive process of AP closure.
Collapse
|
7
|
Terawaki S, Camosseto V, Prete F, Wenger T, Papadopoulos A, Rondeau C, Combes A, Rodriguez Rodrigues C, Vu Manh TP, Fallet M, English L, Santamaria R, Soares AR, Weil T, Hammad H, Desjardins M, Gorvel JP, Santos MAS, Gatti E, Pierre P. RUN and FYVE domain-containing protein 4 enhances autophagy and lysosome tethering in response to Interleukin-4. J Cell Biol 2015; 210:1133-52. [PMID: 26416964 PMCID: PMC4586740 DOI: 10.1083/jcb.201501059] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Autophagy is a key degradative pathway coordinated by external cues, including starvation, oxidative stress, or pathogen detection. Rare are the molecules known to contribute mechanistically to the regulation of autophagy and expressed specifically in particular environmental contexts or in distinct cell types. Here, we unravel the role of RUN and FYVE domain-containing protein 4 (RUFY4) as a positive molecular regulator of macroautophagy in primary dendritic cells (DCs). We show that exposure to interleukin-4 (IL-4) during DC differentiation enhances autophagy flux through mTORC1 regulation and RUFY4 induction, which in turn actively promote LC3 degradation, Syntaxin 17-positive autophagosome formation, and lysosome tethering. Enhanced autophagy boosts endogenous antigen presentation by MHC II and allows host control of Brucella abortus replication in IL-4-treated DCs and in RUFY4-expressing cells. RUFY4 is therefore the first molecule characterized to date that promotes autophagy and influences endosome dynamics in a subset of immune cells.
Collapse
Affiliation(s)
- Seigo Terawaki
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Institut National de la Santé et de la Recherche Médicale U1104, Centre National de la Recherche Scientifique UMR7280, 13288 Marseille, France
| | - Voahirana Camosseto
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Institut National de la Santé et de la Recherche Médicale U1104, Centre National de la Recherche Scientifique UMR7280, 13288 Marseille, France
| | - Francesca Prete
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Institut National de la Santé et de la Recherche Médicale U1104, Centre National de la Recherche Scientifique UMR7280, 13288 Marseille, France
| | - Till Wenger
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Institut National de la Santé et de la Recherche Médicale U1104, Centre National de la Recherche Scientifique UMR7280, 13288 Marseille, France
| | - Alexia Papadopoulos
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Institut National de la Santé et de la Recherche Médicale U1104, Centre National de la Recherche Scientifique UMR7280, 13288 Marseille, France
| | - Christiane Rondeau
- Département de pathologie et biologie cellulaire, Université de Montréal, Québec H3C 3J7, Canada
| | - Alexis Combes
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Institut National de la Santé et de la Recherche Médicale U1104, Centre National de la Recherche Scientifique UMR7280, 13288 Marseille, France
| | - Christian Rodriguez Rodrigues
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Institut National de la Santé et de la Recherche Médicale U1104, Centre National de la Recherche Scientifique UMR7280, 13288 Marseille, France
| | - Thien-Phong Vu Manh
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Institut National de la Santé et de la Recherche Médicale U1104, Centre National de la Recherche Scientifique UMR7280, 13288 Marseille, France
| | - Mathieu Fallet
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Institut National de la Santé et de la Recherche Médicale U1104, Centre National de la Recherche Scientifique UMR7280, 13288 Marseille, France
| | - Luc English
- Département de pathologie et biologie cellulaire, Université de Montréal, Québec H3C 3J7, Canada
| | - Rodrigo Santamaria
- Departamento de Informática y Automática, Universidad de Salamanca, 37008 Salamanca, Spain
| | - Ana R Soares
- RNA Biology Laboratory, Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal Institute for Research in Biomedicine (iBiMED), Aveiro Health Sciences Program, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Tobias Weil
- RNA Biology Laboratory, Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Hamida Hammad
- Laboratory of Immunoregulation and Mucosal Immunology, Department for Molecular Biomedical Research, VIB, Ghent 9050, Belgium
| | - Michel Desjardins
- Département de pathologie et biologie cellulaire, Université de Montréal, Québec H3C 3J7, Canada Département de microbiologie, infectiologie, et immunologie, Université de Montréal, Québec H3C 3J7, Canada
| | - Jean-Pierre Gorvel
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Institut National de la Santé et de la Recherche Médicale U1104, Centre National de la Recherche Scientifique UMR7280, 13288 Marseille, France
| | - Manuel A S Santos
- RNA Biology Laboratory, Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal Institute for Research in Biomedicine (iBiMED), Aveiro Health Sciences Program, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Evelina Gatti
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Institut National de la Santé et de la Recherche Médicale U1104, Centre National de la Recherche Scientifique UMR7280, 13288 Marseille, France Institute for Research in Biomedicine (iBiMED), Aveiro Health Sciences Program, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Philippe Pierre
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Institut National de la Santé et de la Recherche Médicale U1104, Centre National de la Recherche Scientifique UMR7280, 13288 Marseille, France Institute for Research in Biomedicine (iBiMED), Aveiro Health Sciences Program, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
8
|
Lu N, Zhou Z. Membrane trafficking and phagosome maturation during the clearance of apoptotic cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 293:269-309. [PMID: 22251564 PMCID: PMC3551535 DOI: 10.1016/b978-0-12-394304-0.00013-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Apoptosis is a cellular suicide process that quietly and efficiently eliminates unwanted or damaged cells. In metazoans, cells that undergo apoptosis are swiftly internalized by phagocytes and subsequently degraded inside phagosomes through phagosome maturation, a process that involves the fusion between phagosomes and multiple kinds of intracellular organelles and the gradual acidification of phagosomal lumen. In recent years, rapid progress has been made, in particular, through studies conducted in the model organism, the nematode Caenorhabditis elegans, in understanding the membrane trafficking events and molecular mechanisms that govern the degradation of apoptotic cells through phagosome maturation. These studies revealed the novel and essential functions of a large number of proteins, including the large GTPase dynamin, multiple Rab small GTPases and their regulatory proteins, the lipid second messenger PtdIns(3)P and its effectors, and unexpectedly, the phagosomal receptors for apoptotic cells, in promoting phagosome maturation. Further, novel signaling pathways essential for phagosome maturation have been delineated. Here, we discuss these exciting new findings, which have significantly deepened and broadened our understanding of the mechanisms that regulate the interaction between intracellular organelles and phagosomes.
Collapse
Affiliation(s)
- Nan Lu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | | |
Collapse
|
9
|
Lu N, Shen Q, Mahoney TR, Liu X, Zhou Z. Three sorting nexins drive the degradation of apoptotic cells in response to PtdIns(3)P signaling. Mol Biol Cell 2011; 22:354-74. [PMID: 21148288 PMCID: PMC3031466 DOI: 10.1091/mbc.e10-09-0756] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
LST-4/SNX9, SNX-1, and SNX-6 together drive the degradation of apoptotic cells, as PtdIns(3)P effectors, during Caenorhabditis elegans development. By inducing regional membrane curvature and maintaining RAB-7 GTPase on phagosomes, these three sorting nexins stimulate the fusion of endocytic organelles with phagosomes. Apoptotic cells are swiftly engulfed by phagocytes and degraded inside phagosomes. Phagosome maturation requires phosphatidylinositol 3-phosphate [PtdIns(3)P], yet how PtdIns(3)P triggers phagosome maturation remains largely unknown. Through a genome-wide PtdIns(3)P effector screen in the nematode Caenorhabditis elegans, we identified LST-4/SNX9, SNX-1, and SNX-6, three BAR domain-containing sorting nexins, that act in two parallel pathways to drive PtdIns(3)P-mediated degradation of apoptotic cells. We found that these proteins were enriched on phagosomal surfaces through association with PtdIns(3)P and through specific protein–protein interaction, and they promoted the fusion of early endosomes and lysosomes to phagosomes, events essential for phagosome maturation. Specifically, LST-4 interacts with DYN-1 (dynamin), an essential phagosome maturation initiator, to strengthen DYN-1’s association to phagosomal surfaces, and facilitates the maintenance of the RAB-7 GTPase on phagosomal surfaces. Furthermore, both LST-4 and SNX-1 promote the extension of phagosomal tubules to facilitate the docking and fusion of intracellular vesicles. Our findings identify the critical and differential functions of two groups of sorting nexins in phagosome maturation and reveal a signaling cascade initiated by phagocytic receptor CED-1, mediated by PtdIns(3)P, and executed through these sorting nexins to degrade apoptotic cells.
Collapse
Affiliation(s)
- Nan Lu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
10
|
Yonamine I, Bamba T, Nirala NK, Jesmin N, Kosakowska-Cholody T, Nagashima K, Fukusaki E, Acharya JK, Acharya U. Sphingosine kinases and their metabolites modulate endolysosomal trafficking in photoreceptors. ACTA ACUST UNITED AC 2011; 192:557-67. [PMID: 21321100 PMCID: PMC3044112 DOI: 10.1083/jcb.201004098] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Alterations in sphingosine kinase activity change the degradation rates of Rhodopsin and the transient receptor potential (TRP) channel by lysosomes and can result in retinal degeneration. Internalized membrane proteins are either transported to late endosomes and lysosomes for degradation or recycled to the plasma membrane. Although proteins involved in trafficking and sorting have been well studied, far less is known about the lipid molecules that regulate the intracellular trafficking of membrane proteins. We studied the function of sphingosine kinases and their metabolites in endosomal trafficking using Drosophila melanogaster photoreceptors as a model system. Gain- and loss-of-function analyses show that sphingosine kinases affect trafficking of the G protein–coupled receptor Rhodopsin and the light-sensitive transient receptor potential (TRP) channel by modulating the levels of dihydrosphingosine 1 phosphate (DHS1P) and sphingosine 1 phosphate (S1P). An increase in DHS1P levels relative to S1P leads to the enhanced lysosomal degradation of Rhodopsin and TRP and retinal degeneration in wild-type photoreceptors. Our results suggest that sphingosine kinases and their metabolites modulate photoreceptor homeostasis by influencing endolysosomal trafficking of Rhodopsin and TRP.
Collapse
Affiliation(s)
- Ikuko Yonamine
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Stenmark H. The Sir Hans Krebs Lecture. How a lipid mediates tumour suppression. Delivered on 29 June 2010 at the 35th FEBS Congress in Gothenburg, Sweden. FEBS J 2010; 277:4837-48. [PMID: 20977678 PMCID: PMC3015057 DOI: 10.1111/j.1742-4658.2010.07900.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Phosphorylated derivatives of the membrane lipid phosphatidylinositol (PtdIns), known as phosphoinositides (PIs), regulate membrane-proximal cellular processes by recruiting specific protein effectors involved in cell signalling, membrane trafficking and cytoskeletal dynamics. Two PIs that are generated through the activities of distinct PI 3-kinases (PI3Ks) are of special interest in cancer research. PtdIns(3,4,5)P₃, generated by class I PI3Ks, functions as tumour promotor by recruiting effectors involved in cell survival, proliferation, growth and motility. Conversely, there is evidence that PtdIns3P, generated by class III PI3K, functions in tumour suppression. Three subunits of the class III PI3K complex (Beclin 1, UVRAG and BIF-1) have been independently identified as tumour suppressors in mice and humans, and their mechanism of action in this context has been proposed to entail activation of autophagy, a catabolic pathway that is considered to mediate tumour suppression by scavenging damaged organelles that would otherwise cause DNA instability through the production of reactive oxygen species. Recent studies have revealed two additional functions of PtdIns3P that might contribute to its tumour suppressor activity. The first involves endosomal sorting and lysosomal downregulation of mitogenic receptors. The second involves regulation of cytokinesis, which is the final stage of cell division. Further elucidation of the mechanisms of tumour suppression mediated by class III PI3K and PtdIns3P will identify novel Achilles' heels of the cell's defence against tumourigenesis and will be useful in the search for prognostic and diagnostic biomarkers in cancer.
Collapse
Affiliation(s)
- Harald Stenmark
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Norway.
| |
Collapse
|
12
|
Abstract
Phosphoinositide 3-kinases (PI3Ks) function early in intracellular signal transduction pathways and affect many biological functions. A further level of complexity derives from the existence of eight PI3K isoforms, which are divided into class I, class II and class III PI3Ks. PI3K signalling has been implicated in metabolic control, immunity, angiogenesis and cardiovascular homeostasis, and is one of the most frequently deregulated pathways in cancer. PI3K inhibitors have recently entered clinical trials in oncology. A better understanding of how the different PI3K isoforms are regulated and control signalling could uncover their roles in pathology and reveal in which disease contexts their blockade could be most beneficial.
Collapse
|
13
|
Sagona AP, Nezis IP, Pedersen NM, Liestøl K, Poulton J, Rusten TE, Skotheim RI, Raiborg C, Stenmark H. PtdIns(3)P controls cytokinesis through KIF13A-mediated recruitment of FYVE-CENT to the midbody. Nat Cell Biol 2010; 12:362-71. [PMID: 20208530 DOI: 10.1038/ncb2036] [Citation(s) in RCA: 184] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Accepted: 02/15/2010] [Indexed: 12/15/2022]
Abstract
Several subunits of the class III phosphatidylinositol-3-OH kinase (PI(3)K-III) complex are known as tumour suppressors. Here we uncover a function for this complex and its catalytic product phosphatidylinositol-3-phosphate (PtdIns(3)P) in cytokinesis. We show that PtdIns(3)P localizes to the midbody during cytokinesis and recruits a centrosomal protein, FYVE-CENT (ZFYVE26), and its binding partner TTC19, which in turn interacts with CHMP4B, an endosomal sorting complex required for transport (ESCRT)-III subunit implicated in the abscission step of cytokinesis. Translocation of FYVE-CENT and TTC19 from the centrosome to the midbody requires another FYVE-CENT-interacting protein, the microtubule motor KIF13A. Depletion of the VPS34 or Beclin 1 subunits of PI(3)K-III causes cytokinesis arrest and an increased number of binucleate and multinucleate cells, in a similar manner to the depletion of FYVE-CENT, KIF13A or TTC19. These results provide a mechanism for the translocation and docking of a cytokinesis regulatory machinery at the midbody.
Collapse
Affiliation(s)
- Antonia P Sagona
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, N-0310 Oslo, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Di Fiore PP. Endocytosis, signaling and cancer, much more than meets the eye. Preface. Mol Oncol 2009; 3:273-9. [PMID: 19628439 DOI: 10.1016/j.molonc.2009.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 06/12/2009] [Indexed: 11/24/2022] Open
Affiliation(s)
- Pier Paolo Di Fiore
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare at IFOM-IEO Campus, 20139 Milan, Italy.
| |
Collapse
|
15
|
|
16
|
Dove SK, Michell RH. Inositol lipid-dependent functions in Saccharomyces cerevisiae: analysis of phosphatidylinositol phosphates. Methods Mol Biol 2009; 462:59-74. [PMID: 19160661 DOI: 10.1007/978-1-60327-115-8_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Inositol phospholipids regulate many cellular processes, including cell survival, membrane trafficking, and actin polymerization. Quantification of inositol lipids is one of the essential techniques needed for studies that aim to decipher inositol lipid-dependent cellular functions. The study of phosphoinositides in most organisms is hampered by a lack of facile genetic tools. However, the essential elements of most inositol lipid signaling pathways appear to be conserved across eukaryote phylogeny. They can therefore readily be elucidated (both genetically and biochemically) in the budding yeast Saccharomyces cerevisiae. Because of the low abundance of polyphosphoinositides in cells, many analytical methods start by radioactively labeling intact cells and then extracting the lipids with chloroform/methanol/ water mixtures based on those first devised half a century ago. Yeast present special extraction problems because the cell wall must be broken in order to facilitate solvent access and maximize lipid yield. Once lipids have been extracted, fatty acids are removed and the resulting water-soluble glycerophosphoinositol phosphates are analysed by anion-exchange HPLC. This chapter describes how to extract and quantify the inositol lipids of S. cerevisiae cells that have been radiolabeled to isotopic equilibrium with [3H]myo-inositol.
Collapse
Affiliation(s)
- Stephen K Dove
- Phosphoinositide Lab, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK.
| | | |
Collapse
|
17
|
Zhou Z, Yu X. Phagosome maturation during the removal of apoptotic cells: receptors lead the way. Trends Cell Biol 2008; 18:474-85. [PMID: 18774293 DOI: 10.1016/j.tcb.2008.08.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 08/04/2008] [Accepted: 08/05/2008] [Indexed: 01/08/2023]
Abstract
In metazoan organisms, cells undergoing apoptosis are rapidly engulfed and degraded by phagocytes. Defects in apoptotic-cell clearance result in inflammatory and autoimmune responses. However, little is known about how apoptotic-cell degradation is initiated and regulated and how different phagocytic targets induce different immune responses from their phagocytes. Recent studies in mammalian systems and invertebrate model organisms have led to major progress in identifying new factors involved in the maturation of phagosomes containing apoptotic cells. These studies have delineated signaling pathways that promote the sequential incorporation of intracellular organelles to phagosomes and have also discovered that phagocytic receptors produce the signals that initiate phagosome maturation. Here, we discuss these exciting new findings, focusing on the mechanisms that regulate the interactions between intracellular organelles and phagosomes.
Collapse
Affiliation(s)
- Zheng Zhou
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | | |
Collapse
|
18
|
Blatner NR, Wilson MI, Lei C, Hong W, Murray D, Williams RL, Cho W. The structural basis of novel endosome anchoring activity of KIF16B kinesin. EMBO J 2007; 26:3709-19. [PMID: 17641687 PMCID: PMC1949010 DOI: 10.1038/sj.emboj.7601800] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Accepted: 06/26/2007] [Indexed: 12/26/2022] Open
Abstract
KIF16B is a newly identified kinesin that regulates the intracellular motility of early endosomes. KIF16B is unique among kinesins in that its cargo binding is mediated primarily by the strong interaction of its PX domain with endosomal lipids. To elucidate the structural basis of this unique endosomal anchoring activity of KIF16B-PX, we determined the crystal structure of the PX domain and performed in vitro and cellular membrane binding measurements for KIF16B-PX and mutants. The most salient structural feature of KIF16B-PX is that two neighboring residues, L1248 and F1249, on the membrane-binding surface form a protruding hydrophobic stalk with a large solvent-accessible surface area. This unique structure, arising from the complementary stacking of the two side chains and the local conformation, allows strong hydrophobic membrane interactions and endosome tethering. The presence of similar hydrophobic pairs in the amino-acid sequences of other membrane-binding domains and proteins suggests that the same structural motif may be shared by other membrane-binding proteins, whose physiological functions depend on strong hydrophobic membrane interactions.
Collapse
Affiliation(s)
- Nichole R Blatner
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Cai Lei
- Membrane Biology Laboratory, Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Wanjin Hong
- Membrane Biology Laboratory, Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Diana Murray
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA
| | | | - Wonhwa Cho
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA
- Department of Chemistry (M/C 111), University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL 60607, USA. Tel.: +1 312 996 4883; Fax: +1 312 996 0431; E-mail:
| |
Collapse
|
19
|
Amela I, Cedano J, Querol E. Pathogen proteins eliciting antibodies do not share epitopes with host proteins: a bioinformatics approach. PLoS One 2007; 2:e512. [PMID: 17551592 PMCID: PMC1885212 DOI: 10.1371/journal.pone.0000512] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Accepted: 05/04/2007] [Indexed: 12/20/2022] Open
Abstract
The best way to prevent diseases caused by pathogens is by the use of vaccines. The advent of genomics enables genome-wide searches of new vaccine candidates, called reverse vaccinology. The most common strategy to apply reverse vaccinology is by designing subunit recombinant vaccines, which usually generate an humoral immune response due to B-cell epitopes in proteins. A major problem for this strategy is the identification of protective immunogenic proteins from the surfome of the pathogen. Epitope mimicry may lead to auto-immune phenomena related to several human diseases. A sequence-based computational analysis has been carried out applying the BLASTP algorithm. Therefore, two huge databases have been created, one with the most complete and current linear B-cell epitopes, and the other one with the surface-protein sequences of the main human respiratory bacterial pathogens. We found that none of the 7353 linear B-cell epitopes analysed shares any sequence identity region with human proteins capable of generating antibodies, and that only 1% of the 2175 exposed proteins analysed contain a stretch of shared sequence with the human proteome. These findings suggest the existence of a mechanism to avoid autoimmunity. We also propose a strategy for corroborating or warning about the viability of a protein linear B-cell epitope as a putative vaccine candidate in a reverse vaccinology study; so, epitopes without any sequence identity with human proteins should be very good vaccine candidates, and the other way around.
Collapse
Affiliation(s)
- Isaac Amela
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Juan Cedano
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Enrique Querol
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
20
|
Gauthier NC, Monzo P, Gonzalez T, Doye A, Oldani A, Gounon P, Ricci V, Cormont M, Boquet P. Early endosomes associated with dynamic F-actin structures are required for late trafficking of H. pylori VacA toxin. ACTA ACUST UNITED AC 2007; 177:343-54. [PMID: 17438076 PMCID: PMC2064141 DOI: 10.1083/jcb.200609061] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Glycosylphosphatidylinositol-anchored proteins (GPI-APs) are endocytosed by a clathrin- independent pathway into vesicles named GPI-AP–enriched early endosomal compartments (GEECs). We recently showed that the vacuolating toxin VacA secreted by Helicobacter pylori is endocytosed into the GEECs (Gauthier, N.C., P. Monzo, V. Kaddai, A. Doye, V. Ricci, and P. Boquet. 2005. Mol. Biol. Cell. 16:4852–4866). Unlike GPI-APs that are mostly recycled back to the plasma membrane, VacA reaches early endosomes (EEs) and then late endosomes (LEs), where vacuolation occurs. In this study, we used VacA to study the trafficking pathway between GEECs and LEs. We found that VacA routing from GEECs to LEs required polymerized actin. During this trafficking, VacA was transferred from GEECs to EEs associated with polymerized actin structures. The CD2-associated protein (CD2AP), a docking protein implicated in intracellular trafficking, bridged the filamentous actin (F-actin) structures with EEs containing VacA. CD2AP regulated those F-actin structures and was required to transfer VacA from GEECs to LEs. These results demonstrate that sorting from GEECs to LEs requires dynamic F-actin structures on EEs.
Collapse
Affiliation(s)
- Nils C Gauthier
- Unité 627 and 2Unité 568, Institut National de la Santé et de la Recherche Medicale, Faculty of Medicine, 06107 Nice, Cedex 02, France
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Skånland SS, Wälchli S, Utskarpen A, Wandinger-Ness A, Sandvig K. Phosphoinositide-Regulated Retrograde Transport of Ricin: Crosstalk Between hVps34 and Sorting Nexins. Traffic 2006; 8:297-309. [PMID: 17319803 DOI: 10.1111/j.1600-0854.2006.00527.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The plant toxin ricin is transported from the plasma membrane via early endosomes and the Golgi apparatus to the endoplasmic reticulum. From this compartment, it enters the cytosol and inhibits protein synthesis. Lipid phosphorylation is an important regulator of vesicular transport, and in the present study we have investigated the role of the phosphatidylinositol (PI) 3-kinase hVps34 in retrograde transport of ricin. Our data demonstrate that transport of ricin from endosomes to the Golgi apparatus in human embryonic kidney cells (HEK 293) is dependent on PI(3)P. By using PI 3-kinase inhibitors, by sequestering the hVps34 product PI(3)P and by expressing mutants of hVps34 or small interfering RNA targeted against its messenger RNA, we show that hVps34 and its product PI(3)P are involved in transport of ricin from endosome to Golgi apparatus. Furthermore, we identify two effector proteins in the hVps34-dependent pathway, namely sorting nexin (SNX) 2 and SNX4. Knockdown of SNX2 or SNX4 inhibits ricin transport to the Golgi apparatus to the same extent as when hVps34 is perturbed. Furthermore, inhibition or knockdown of hVps34 redistributes these proteins. Interestingly, knocking down both SNX2 and SNX4 results in a better inhibition than knocking down only one of them, suggesting that they may act on separate pathways.
Collapse
Affiliation(s)
- Sigrid S Skånland
- Department of Biochemistry, Institute for Cancer Research, University of Oslo, Faculty Department The Norwegian Radium Hospital, Montebello, N-0310 Oslo, Norway
| | | | | | | | | |
Collapse
|
22
|
Zhang X, He X, Fu XY, Chang Z. Varp is a Rab21 guanine nucleotide exchange factor and regulates endosome dynamics. J Cell Sci 2006; 119:1053-62. [PMID: 16525121 DOI: 10.1242/jcs.02810] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The small GTPases Rab5 and Rab21 are closely related, and play essential roles in endocytic trafficking. Rab5 is regulated by VPS9-domain-containing guanine nucleotide exchange factors. Here, we describe a new VPS9-domain protein with ankyrin repeats, the VPS9-ankyrin-repeat protein (Varp). Varp interacts preferentially with GDP-bound Rab21 and has a much stronger guanine nucleotide exchange activity towards Rab21 than Rab5. Furthermore, RNAi-mediated depletion of endogenous Varp significantly disrupts the activity of Rab21 in HeLa cells. Ectopically expressed Varp mainly localizes to early endosomes and causes enlargement of early endosomes and giant late endosomes. Both the VPS9 domain and ankyrin-repeats are required for the endosomal localization and the activity of Varp in vivo. These results suggest that Varp is a potential Rab21 guanine nucleotide exchange factor and might regulate endosome dynamics in vivo.
Collapse
Affiliation(s)
- Xinjun Zhang
- Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing (100084), China
| | | | | | | |
Collapse
|
23
|
Kapp-Barnea Y, Ninio-Many L, Hirschberg K, Fukuda M, Jeromin A, Sagi-Eisenberg R. Neuronal calcium sensor-1 and phosphatidylinositol 4-kinase beta stimulate extracellular signal-regulated kinase 1/2 signaling by accelerating recycling through the endocytic recycling compartment. Mol Biol Cell 2006; 17:4130-41. [PMID: 16837555 PMCID: PMC1593177 DOI: 10.1091/mbc.e05-11-1014] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We demonstrate that recycling through the endocytic recycling compartment (ERC) is an essential step in Fc epsilonRI-induced activation of extracellular signal-regulated kinase (ERK)1/2. We show that ERK1/2 acquires perinuclear localization and colocalizes with Rab 11 and internalized transferrin in Fc epsilonRI-activated cells. Moreover, a close correlation exists between the amount of ERC-localized ERK1/2 and the amount of phospho-ERK1/2 that resides in the nucleus. We further show that by activating phosphatidylinositol 4-kinase beta (PI4Kbeta) and increasing the cellular level of phosphatidylinositol(4) phosphate, neuronal calcium sensor-1 (NCS-1), a calmodulin-related protein, stimulates recycling and thereby enhances Fc epsilonRI-triggered activation and nuclear translocation of ERK1/2. Conversely, NCS-1 short hairpin RNA, a kinase dead (KD) mutant of PI4Kbeta (KD-PI4Kbeta), the pleckstrin homology (PH) domain of FAPP1 as well as RNA interference of synaptotagmin IX or monensin, which inhibit export from the ERC, abrogate Fc epsilonRI-induced activation of ERK1/2. Consistently, NCS-1 also enhances, whereas both KD-PI4Kbeta and FAPP1-PH domain inhibit, Fc epsilonRI-induced release of arachidonic acid/metabolites, a downstream target of ERK1/2 in mast cells. Together, our results demonstrate a novel role for NCS-1 and PI4Kbeta in regulating ERK1/2 signaling and inflammatory reactions in mast cells. Our results further identify the ERC as a crucial determinant in controlling ERK1/2 signaling.
Collapse
Affiliation(s)
| | | | - Koret Hirschberg
- Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Mitsunori Fukuda
- Department of Developmental Biology and Neurosciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan; and
| | - Andreas Jeromin
- Center for Learning and Memory, University of Texas at Austin, Austin, TX 78712
| | | |
Collapse
|
24
|
Powell RR, Welter BH, Hwu R, Bowersox B, Attaway C, Temesvari LA. Entamoeba histolytica: FYVE-finger domains, phosphatidylinositol 3-phosphate biosensors, associate with phagosomes but not fluid filled endosomes. Exp Parasitol 2006; 112:221-31. [PMID: 16387299 DOI: 10.1016/j.exppara.2005.11.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 11/09/2005] [Accepted: 11/10/2005] [Indexed: 11/24/2022]
Abstract
Endocytosis is an important virulence function for Entamoeba histolytica, the causative agent of amoebic dysentery. Although a number of E. histolytica proteins that regulate this process have been identified, less is known about the role of lipids. In other systems, phosphatidylinositol 3-phosphate (PI3P), a product of phosphatidylinositol 3-kinase (PI 3-kinase), has been shown to be required for endocytosis. FYVE-finger domains are protein motifs that bind specifically to PI3P. Using a PI3P biosensor consisting of glutathione-S-transferase (GST) fused to two tandem FYVE-finger domains, we have localized PI3P to phagosomes but not fluid-phase pinosomes in E. histolytica, suggesting a role for PI3P in phagocytosis. Treatment of cells with PI 3-kinase inhibitors impaired GST-2 x FYVE-phagosome association supporting the authenticity of the biosensor staining. However, treatment with PI 3-kinase inhibitors did not inhibit E. histolytica-particle interaction, indicating that PI3P is not required for the initial step, but is required for subsequent steps of phagocytosis.
Collapse
Affiliation(s)
- R R Powell
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | | | | | | | | | | |
Collapse
|
25
|
Kunz S, Oberholzer M, Seebeck T. A FYVE-containing unusual cyclic nucleotide phosphodiesterase from Trypanosoma cruzi. FEBS J 2006; 272:6412-22. [PMID: 16336277 DOI: 10.1111/j.1742-4658.2005.05039.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cyclic-nucleotide-specific phosphodiesterases (PDEs) are key players in the intracellular signaling pathways of the important human pathogen Trypanosoma cruzi. We report herein the identification of an unusual PDE from this protozoal organism. This enzyme, TcrPDEC, is a member of the class I PDEs, as determined from the presence of a characteristic signature sequence and from the conservation of a number of functionally important amino acid residues within its catalytic domain. Class I PDEs include a large number of PDEs from eukaryotes, among them all 11 human PDE families. Unusually for an enzyme of this class, TcrPDEC contains a FYVE-type domain in its N-terminal region, followed by two closely spaced coiled-coil domains. Its catalytic domain is located in the middle of the polypeptide chain, whereas all other class I enzymes contain their catalytic domains in their C-terminal parts. TcrPDEC can complement a PDE-deficient yeast strain. Unexpectedly for a kinetoplastid PDE, TcrPDEC is a dual-specificity PDE that accepts both cAMP and cGMP as its substrates.
Collapse
Affiliation(s)
- Stefan Kunz
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | | | | |
Collapse
|
26
|
Kunz S, Beavo JA, D'Angelo MA, Flawia MM, Francis SH, Johner A, Laxman S, Oberholzer M, Rascon A, Shakur Y, Wentzinger L, Zoraghi R, Seebeck T. Cyclic nucleotide specific phosphodiesterases of the kinetoplastida: a unified nomenclature. Mol Biochem Parasitol 2005; 145:133-5. [PMID: 16280178 DOI: 10.1016/j.molbiopara.2005.09.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Revised: 09/22/2005] [Accepted: 09/27/2005] [Indexed: 01/26/2023]
Affiliation(s)
- Stefan Kunz
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012 Bern, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Yates RM, Hermetter A, Russell DG. The Kinetics of Phagosome Maturation as a Function of Phagosome/Lysosome Fusion and Acquisition of Hydrolytic Activity. Traffic 2005; 6:413-20. [PMID: 15813751 DOI: 10.1111/j.1600-0854.2005.00284.x] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Professional phagocytes function at the hinge of innate and acquired immune responses by internalizing particulate material that is digested and sampled within the phagosome of the cell. Despite intense interest, assays to measure phagosome maturation remain insensitive and few in number. In this current study, we describe three novel assays that quantify important biological properties of the phagosome as it matures. One assay exploits fluorescence resonance energy transfer to quantify mixing of phagocytosed particles carrying a donor fluor with an acceptor fluor loaded previously into the lysosomes as a fluid phase marker. Two additional assays describe the functional maturation of the phagosome as a hydrolytic compartment following the degradation of specifically designed peptide and triglyceride fluorogenic substrates. The peptide substrate is preferentially cleaved by cysteine proteinases, and its degradation reflects proteinase delivery and activation within the acidifying phagosome. The fluorescence emission of the triglyceride analogue profiles the kinetics of triglyceride lipase activity within the phagosome. The fluorescence profiles of all three assays are modulated by known inhibitors of phagosome maturation, demonstrating the veracity, sensitivity and versatility of the assays.
Collapse
Affiliation(s)
- Robin M Yates
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|
28
|
Shepherd PR. Mechanisms regulating phosphoinositide 3-kinase signalling in insulin-sensitive tissues. ACTA ACUST UNITED AC 2005; 183:3-12. [PMID: 15654916 DOI: 10.1111/j.1365-201x.2004.01382.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A great deal of evidence has accumulated indicating that the activity of PI 3-kinase is necessary, and in some cases sufficient, for a wide range of insulin's actions in the cell. Most biochemical, genetic and pharmacological studies have focused on identifying potential roles for the class-Ia PI 3-kinases which are rapidly activated following insulin stimulation. However, recent evidence indicates the alpha isoform of class-II PI 3-kinase (PI3K-C2alpha) may also play a role as insulin causes a very rapid activation of this as well. The basic mechanisms by which insulin activates the various members of the PI 3-kinase family are increasingly well understood and these studies reveal multiple mechanisms for modulating the activity and functionality of PI 3-kinase and for down regulating the signals they generate. These include inhibitory phosphorylation events, lipid phosphatases such as PTEN and SHIP2 and inhibitor proteins of the suppressors of cytokine signalling (SOCS) family. The current review will focus on these mechanisms and how defects in these might contribute to the development of insulin resistance.
Collapse
Affiliation(s)
- P R Shepherd
- Department of Biochemistry and Molecular Biology, University College London, Gower St, London WC1E 6BT, UK
| |
Collapse
|
29
|
Kelley VA, Schorey JS. Modulation of cellular Phosphatidylinositol 3-phosphate levels in primary macrophages affects heat-killed but not viable Mycobacterium avium's transport through the phagosome maturation process. Cell Microbiol 2004; 6:973-85. [PMID: 15339272 DOI: 10.1111/j.1462-5822.2004.00415.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Most disease causing mycobacteria are intramacrophage pathogens which replicate within nonacidified phagosomes that can interact with the early endosomal network but fail to mature to a phagolysosome. The mycobacterial phagosome retain some proteins required for fusion with endocytic vesicles including Rab5 but lack others such as early endosomal autoantigen 1 (EEA1). As the membrane lipid phosphatidylinositol 3-phosphate (PtdIns-3-P) is required for EEA1 membrane association and phagosome maturation, it may be a potential target of pathogenic mycobacteria. To test this hypothesis, macrophage cellular levels of PtdIns-3-P were altered by retroviral introduction of the type III Phosphoinositide 3-Kinase (VPS34) and the PtdIns-3-P phosphatase myotubularin 1 (MTM1). By utilizing the PtdIns-3-P-specific probes FYVE and PX coupled to EGFP (EGFP-2-FYVE and EGFP-PX, respectively), the expression of PtdIns-3-P on the mycobacterial phagosome was addressed. All phagosomes containing viable Mycobacterium avium stained positive for EGFP-2-FYVE and EGFP-PX despite obvious differences in PtdIns-3-P concentrations in cells expressing MTM1 or VPS34. Altering PtdIns-3-P cellular concentrations did not affect trafficking of live bacilli. However, a significant increase in the transport of killed bacilli to a late endosomal/lysosomal compartment was observed in VPS34-compared to MTM1-transduced macrophages. Therefore, although overexpression of PdtIns-3-P in macrophages can facilitate phagosome maturation, its effect on phagosomes containing viable M. avium was negligible.
Collapse
Affiliation(s)
- Victoria A Kelley
- Department of Biological Sciences, Center for Tropical Disease Research and Training, University of Notre Dame, Notre Dame, IN 46556, USA
| | | |
Collapse
|
30
|
Wenk MR, De Camilli P. Protein-lipid interactions and phosphoinositide metabolism in membrane traffic: insights from vesicle recycling in nerve terminals. Proc Natl Acad Sci U S A 2004; 101:8262-9. [PMID: 15146067 PMCID: PMC420382 DOI: 10.1073/pnas.0401874101] [Citation(s) in RCA: 242] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Great progress has been made in the elucidation of the function of proteins in membrane traffic. Less is known about the regulatory role of lipids in membrane dynamics. Studies of nerve terminals, compartments highly specialized for the recycling of synaptic vesicles, have converged with studies from other systems to reveal mechanisms in protein-lipid interactions that affect membrane shape as well as the fusion and fission of vesicles. Phosphoinositides have emerged as major regulators of the binding of cytosolic proteins to the bilayer. Phosphorylation on different positions of the inositol ring generates different isomers that are heterogeneously distributed on cell membranes and that together with membrane proteins generate a "dual keys" code for the recruitment of cytosolic proteins. This code helps controlling vectoriality of membrane transport. Powerful methods for the detection of lipids are rapidly advancing this field, thus complementing the broad range of information about biological systems that can be obtained from genomic and proteomic approaches.
Collapse
Affiliation(s)
- Markus R Wenk
- Howard Hughes Medical Institute and Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06511, USA
| | | |
Collapse
|