1
|
Persico T, Tranquillo ML, Seracchioli R, Zuccarello D, Sorrentino U. PGT-M for Premature Ovarian Failure Related to CGG Repeat Expansion of the FMR1 Gene. Genes (Basel) 2023; 15:6. [PMID: 38275588 PMCID: PMC10815814 DOI: 10.3390/genes15010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Primary ovarian failure (POF) is caused by follicle exhaustion and is associated with menstrual irregularities and elevated gonadotropin levels, which lead to infertility before the age of 40 years. The etiology of POI is mostly unknown, but a heterogeneous genetic and familial background can be identified in a subset of cases. Abnormalities in the fragile X mental retardation 1 gene (FMR1) are among the most prevalent monogenic causes of POI. These abnormalities are caused by the expansion of an unstable CGG repeat in the 5' untranslated region of FMR1. Expansions over 200 repeats cause fragile X syndrome (FXS), whereas expansions between 55 and 200 CGG repeats, which are defined as a fragile X premutation, have been associated with premature ovarian failure type 1 (POF1) in heterozygous females. Preimplantation genetic testing for monogenic diseases (PGT-M) can be proposed when the female carries a premutation or a full mutation. In this narrative review, we aim to recapitulate the clinical and molecular features of POF1 and their implications in the context of PGT-M.
Collapse
Affiliation(s)
- Tiziana Persico
- Medically Assisted Procreation Center, Maternal and Child Department, Beauregard Hospital, Valle D’Aosta Local Public Health, 11100 Aoste, Italy
| | - Maria Lucrezia Tranquillo
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy; (M.L.T.); (R.S.)
| | - Renato Seracchioli
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy; (M.L.T.); (R.S.)
- Division of Gynaecology and Human Reproduction Physiopathology, IRCCS Azienda Ospedaliero, University of Bologna, 40138 Bologna, Italy
| | - Daniela Zuccarello
- Clinical Genetics and Epidemiology Unit, University of Padova, 35128 Padova, Italy; (D.Z.); (U.S.)
| | - Ugo Sorrentino
- Clinical Genetics and Epidemiology Unit, University of Padova, 35128 Padova, Italy; (D.Z.); (U.S.)
| |
Collapse
|
2
|
Hall DA, Robertson EE, Leehey M, McAsey A, Ouyang B, Berry-Kravis E, O’Keefe JA. Open-label pilot clinical trial of citicoline for fragile X-associated tremor/ataxia syndrome (FXTAS). PLoS One 2020; 15:e0225191. [PMID: 32053612 PMCID: PMC7018079 DOI: 10.1371/journal.pone.0225191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/29/2019] [Indexed: 12/14/2022] Open
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late onset neurodegenerative disorder that is characterized by tremor, cerebellar ataxia, frequent falls, cognitive decline, and progressive loss of motor function. There are currently no approved treatments for this disorder. The purpose of this study was to determine if citicoline was safe for the treatment of tremor and balance abnormalities and to stabilize cognitive decline in patients with FXTAS. Ten participants with diagnosed FXTAS were administered 1000 mg of citicoline once daily for 12 months. Outcome measures and neurological examination were performed at baseline, 3 months, 6 months, and 12 months. The primary outcome was the FXTAS Rating Scale score. Secondary outcomes included change in a battery of neuropsychological tests, an instrumented Timed up and go test, computerized dynamic posturography, 9-hole pegboard test, and balance confidence and psychiatric symptom questionnaires. Safety was also evaluated. Citicoline treatment resulted in minimal adverse events in all but one subject over the course of the study. There was a significant improvement in the Beck Anxiety Inventory (p = 0.03) and the Stroop Color-Word test (p = 0.03), with all other measures remaining stable over the course of 12 months. This open-label pilot trial of citicoline for individuals with FXTAS showed that it is safe and well tolerated in this population. Registration: This trial was registered at ClinicalTrials.gov. Identifier: NCT0219710.
Collapse
Affiliation(s)
- Deborah A. Hall
- Department of Neurological Sciences, Rush University, Chicago, IL, United States of America
- * E-mail:
| | - Erin E. Robertson
- Department of Communication Sciences and Disorders, Northwestern, Chicago, IL, United States of America
| | - Maureen Leehey
- University of Colorado Denver, Aurora, CO, United States of America
| | - Andrew McAsey
- Department of Cell and Molecular Medicine, Rush University, Chicago, IL United States of America
| | - Bichun Ouyang
- Department of Neurological Sciences, Rush University, Chicago, IL, United States of America
| | - Elizabeth Berry-Kravis
- Department of Neurological Sciences, Rush University, Chicago, IL, United States of America
- Department of Biochemistry, Rush University, Chicago, IL, United States of America
- Department of Pediatrics, Rush University, Chicago, IL, United States of America
| | - Joan A. O’Keefe
- Department of Neurological Sciences, Rush University, Chicago, IL, United States of America
- Department of Cell and Molecular Medicine, Rush University, Chicago, IL United States of America
| |
Collapse
|
3
|
Koon AC, Chan HYE. Drosophila melanogaster As a Model Organism to Study RNA Toxicity of Repeat Expansion-Associated Neurodegenerative and Neuromuscular Diseases. Front Cell Neurosci 2017; 11:70. [PMID: 28377694 PMCID: PMC5359753 DOI: 10.3389/fncel.2017.00070] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 02/27/2017] [Indexed: 12/14/2022] Open
Abstract
For nearly a century, the fruit fly, Drosophila melanogaster, has proven to be a valuable tool in our understanding of fundamental biological processes, and has empowered our discoveries, particularly in the field of neuroscience. In recent years, Drosophila has emerged as a model organism for human neurodegenerative and neuromuscular disorders. In this review, we highlight a number of recent studies that utilized the Drosophila model to study repeat-expansion associated diseases (READs), such as polyglutamine diseases, fragile X-associated tremor/ataxia syndrome (FXTAS), myotonic dystrophy type 1 (DM1) and type 2 (DM2), and C9ORF72-associated amyotrophic lateral sclerosis/frontotemporal dementia (C9-ALS/FTD). Discoveries regarding the possible mechanisms of RNA toxicity will be focused here. These studies demonstrate Drosophila as an excellent in vivo model system that can reveal novel mechanistic insights into human disorders, providing the foundation for translational research and therapeutic development.
Collapse
Affiliation(s)
- Alex C Koon
- Laboratory of Drosophila ResearchHong Kong, Hong Kong; Biochemistry ProgramHong Kong, Hong Kong
| | - Ho Yin Edwin Chan
- Laboratory of Drosophila ResearchHong Kong, Hong Kong; Biochemistry ProgramHong Kong, Hong Kong; Cell and Molecular Biology ProgramHong Kong, Hong Kong; Molecular Biotechnology Program, Faculty of Science, School of Life SciencesHong Kong, Hong Kong; School of Life Sciences, Gerald Choa Neuroscience Centre, The Chinese University of Hong KongHong Kong, Hong Kong
| |
Collapse
|
4
|
Robertson EE, Hall DA, McAsey AR, O'Keefe JA. Fragile X-associated tremor/ataxia syndrome: phenotypic comparisons with other movement disorders. Clin Neuropsychol 2016; 30:849-900. [PMID: 27414076 PMCID: PMC7336900 DOI: 10.1080/13854046.2016.1202239] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 06/12/2016] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The purpose of this paper is to review the typical cognitive and motor impairments seen in fragile X-associated tremor/ataxia syndrome (FXTAS), essential tremor (ET), Parkinson disease (PD), spinocerebellar ataxias (SCAs), multiple system atrophy (MSA), and progressive supranuclear palsy (PSP) in order to enhance diagnosis of FXTAS patients. METHODS We compared the cognitive and motor phenotypes of FXTAS with each of these other movement disorders. Relevant neuropathological and neuroimaging findings are also reviewed. Finally, we describe the differences in age of onset, disease severity, progression rates, and average lifespan in FXTAS compared to ET, PD, SCAs, MSA, and PSP. We conclude with a flow chart algorithm to guide the clinician in the differential diagnosis of FXTAS. RESULTS By comparing the cognitive and motor phenotypes of FXTAS with the phenotypes of ET, PD, SCAs, MSA, and PSP we have clarified potential symptom overlap while elucidating factors that make these disorders unique from one another. In summary, the clinician should consider a FXTAS diagnosis and testing for the Fragile X mental retardation 1 (FMR1) gene premutation if a patient over the age of 50 (1) presents with cerebellar ataxia and/or intention tremor with mild parkinsonism, (2) has the middle cerebellar peduncle (MCP) sign, global cerebellar and cerebral atrophy, and/or subcortical white matter lesions on MRI, or (3) has a family history of fragile X related disorders, intellectual disability, autism, premature ovarian failure and has neurological signs consistent with FXTAS. Peripheral neuropathy, executive function deficits, anxiety, or depression are supportive of the diagnosis. CONCLUSIONS Distinct profiles in the cognitive and motor domains between these movement disorders may guide practitioners in the differential diagnosis process and ultimately lead to better medical management of FXTAS patients.
Collapse
Affiliation(s)
- Erin E Robertson
- a Department of Anatomy and Cell Biology , Rush University , Chicago , IL , USA
| | - Deborah A Hall
- b Department of Neurological Sciences , Rush University , Chicago , IL , USA
| | - Andrew R McAsey
- a Department of Anatomy and Cell Biology , Rush University , Chicago , IL , USA
| | - Joan A O'Keefe
- a Department of Anatomy and Cell Biology , Rush University , Chicago , IL , USA
- b Department of Neurological Sciences , Rush University , Chicago , IL , USA
| |
Collapse
|
5
|
Abstract
Tremor is a frequent patient complaint in the neurologist's office. Nevertheless, despite the routine nature of this office presentation, misdiagnosis of common tremors is not an infrequent practice. In addition, there are less common causes of tremor that can be missed if the clinician is not aware of key features. An organized and methodical history and neurologic examination are essential in developing the differential diagnosis in tremor patients and ultimately in achieving the correct diagnosis. Awareness of key historical features associated with tremor and knowledge of the movement disorders examination will improve tremor assessment.
Collapse
Affiliation(s)
- Vicki L Shanker
- Neurology, Icahn School of Medicine at Mount Sinai, 10 Union Square East, Suite 5H, New York, NY 10003, USA.
| |
Collapse
|
6
|
Carriage of One or Two FMR1 Premutation Alleles Seems to Have No Effect on Illness Severity in a FXTAS Female with an Autozygous FMR1 Premutation Allele. THE CEREBELLUM 2016; 15:570-7. [PMID: 27315125 DOI: 10.1007/s12311-016-0783-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder that occurs in FMR1 premutation carriers. The prevalence of FMR1 premutation carriers in the general population is relatively high, and although rare, a premutation in both X chromosomes may occur in females inheriting a premutation allele from each of both parent carriers. Here, we report the first female with an autozygous (homozygous by descendent) FMR1 premutation allele, who fulfills neurological and radiological FXTAS findings/criteria. Molecular characterization included CGG repeat length, AGG interruption pattern, FMR1 messenger RNA (mRNA), fragile X mental retardation protein (FMRP) level quantification, and single-nucleotide polymorphism (SNP) microarray. Neuroradiological assessment of 3-T magnetic resonance imaging and neurological and cognitive/neuropsychological evaluations were performed. Neurological and neuroradiological examination of the female with the same FMR1 allele in the premutation range (77 CGGs) demonstrated FXTAS features. Further familial evaluation showed a similar neuropsychiatric profile, with impairments in cognitive flexibility and visuospatial function, mainly. A unique family with an autozygous FMR1 premutation female is presented. Neurological/cognitive and neuroradiological examinations revealed FXTAS-specific findings in the female with the autozygous FMR1 premutation allele. The consistent molecular and cognitive/psychiatric phenotype in family members suggests that carrying one or two FMR1 premutation alleles has no effect on illness severity.
Collapse
|
7
|
Ariza J, Steward C, Rueckert F, Widdison M, Coffman R, Afjei A, Noctor SC, Hagerman R, Hagerman P, Martínez-Cerdeño V. Dysregulated iron metabolism in the choroid plexus in fragile X-associated tremor/ataxia syndrome. Brain Res 2015; 1598:88-96. [PMID: 25498860 PMCID: PMC4340768 DOI: 10.1016/j.brainres.2014.11.058] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 09/25/2014] [Accepted: 11/27/2014] [Indexed: 11/30/2022]
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder associated with premutation alleles of the FMR1 gene that is characterized by progressive action tremor, gait ataxia, and cognitive decline. Recent studies of mitochondrial dysfunction in FXTAS have suggested that iron dysregulation may be one component of disease pathogenesis. We tested the hypothesis that iron dysregulation is part of the pathogenic process in FXTAS. We analyzed postmortem choroid plexus from FXTAS and control subjects, and found that in FXTAS iron accumulated in the stroma, transferrin levels were decreased in the epithelial cells, and transferrin receptor 1 distribution was shifted from the basolateral membrane (control) to a predominantly intracellular location (FXTAS). In addition, ferroportin and ceruloplasmin were markedly decreased within the epithelial cells. These alterations have implications not only for understanding the pathophysiology of FXTAS, but also for the development of new clinical treatments that may incorporate selective iron chelation.
Collapse
Affiliation(s)
- Jeanelle Ariza
- Institute for Pediatric Regenerative Medicine, Shriners Hospital of Northern California, University of California, Davis, 2425 Stockton Blvd, Sacramento, CA 95817, USA; Department of Pathology and Laboratory Medicine, University of California, Davis 4400 V Street, Sacramento, CA 95817, USA
| | - Craig Steward
- Institute for Pediatric Regenerative Medicine, Shriners Hospital of Northern California, University of California, Davis, 2425 Stockton Blvd, Sacramento, CA 95817, USA
| | - Flora Rueckert
- Institute for Pediatric Regenerative Medicine, Shriners Hospital of Northern California, University of California, Davis, 2425 Stockton Blvd, Sacramento, CA 95817, USA
| | - Matt Widdison
- Institute for Pediatric Regenerative Medicine, Shriners Hospital of Northern California, University of California, Davis, 2425 Stockton Blvd, Sacramento, CA 95817, USA
| | - Robert Coffman
- Institute for Pediatric Regenerative Medicine, Shriners Hospital of Northern California, University of California, Davis, 2425 Stockton Blvd, Sacramento, CA 95817, USA
| | - Atiyeh Afjei
- Institute for Pediatric Regenerative Medicine, Shriners Hospital of Northern California, University of California, Davis, 2425 Stockton Blvd, Sacramento, CA 95817, USA
| | - Stephen C Noctor
- Department of Psychiatry, University of California, Davis, 2805 50th St., Sacramento, CA 95817, USA; MIND Institute, University of California, Davis, 2825 50th Street, Sacramento, CA 95817, USA
| | - Randi Hagerman
- MIND Institute, University of California, Davis, 2825 50th Street, Sacramento, CA 95817, USA; Department of Pediatrics, University of California, Davis, 2825 50th Street, Sacramento, CA 95817, USA
| | - Paul Hagerman
- MIND Institute, University of California, Davis, 2825 50th Street, Sacramento, CA 95817, USA; Department of Biochemistry and Molecular Medicine, University of California, Davis, One Shields Avenue, CA 95616, USA
| | - Verónica Martínez-Cerdeño
- Institute for Pediatric Regenerative Medicine, Shriners Hospital of Northern California, University of California, Davis, 2425 Stockton Blvd, Sacramento, CA 95817, USA; Department of Pathology and Laboratory Medicine, University of California, Davis 4400 V Street, Sacramento, CA 95817, USA; MIND Institute, University of California, Davis, 2825 50th Street, Sacramento, CA 95817, USA.
| |
Collapse
|
8
|
Usdin K, Hayward BE, Kumari D, Lokanga RA, Sciascia N, Zhao XN. Repeat-mediated genetic and epigenetic changes at the FMR1 locus in the Fragile X-related disorders. Front Genet 2014; 5:226. [PMID: 25101111 PMCID: PMC4101883 DOI: 10.3389/fgene.2014.00226] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 06/29/2014] [Indexed: 01/01/2023] Open
Abstract
The Fragile X-related disorders are a group of genetic conditions that include the neurodegenerative disorder, Fragile X-associated tremor/ataxia syndrome (FXTAS), the fertility disorder, Fragile X-associated primary ovarian insufficiency (FXPOI) and the intellectual disability, Fragile X syndrome (FXS). The pathology in all these diseases is related to the number of CGG/CCG-repeats in the 5′ UTR of the Fragile X mental retardation 1 (FMR1) gene. The repeats are prone to continuous expansion and the increase in repeat number has paradoxical effects on gene expression increasing transcription on mid-sized alleles and decreasing it on longer ones. In some cases the repeats can simultaneously both increase FMR1 mRNA production and decrease the levels of the FMR1 gene product, Fragile X mental retardation 1 protein (FMRP). Since FXTAS and FXPOI result from the deleterious consequences of the expression of elevated levels of FMR1 mRNA and FXS is caused by an FMRP deficiency, the clinical picture is turning out to be more complex than once appreciated. Added complications result from the fact that increasing repeat numbers make the alleles somatically unstable. Thus many individuals have a complex mixture of different sized alleles in different cells. Furthermore, it has become apparent that the eponymous fragile site, once thought to be no more than a useful diagnostic criterion, may have clinical consequences for females who inherit chromosomes that express this site. This review will cover what is currently known about the mechanisms responsible for repeat instability, for the repeat-mediated epigenetic changes that affect expression of the FMR1 gene, and for chromosome fragility. It will also touch on what current and future options are for ameliorating some of these effects.
Collapse
Affiliation(s)
- Karen Usdin
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda MD, USA
| | - Bruce E Hayward
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda MD, USA
| | - Daman Kumari
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda MD, USA
| | - Rachel A Lokanga
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda MD, USA
| | - Nicholas Sciascia
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda MD, USA
| | - Xiao-Nan Zhao
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda MD, USA
| |
Collapse
|
9
|
Careaga M, Rose D, Tassone F, Berman RF, Hagerman R, Ashwood P. Immune dysregulation as a cause of autoinflammation in fragile X premutation carriers: link between FMRI CGG repeat number and decreased cytokine responses. PLoS One 2014; 9:e94475. [PMID: 24718368 PMCID: PMC3981824 DOI: 10.1371/journal.pone.0094475] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 03/16/2014] [Indexed: 12/31/2022] Open
Abstract
Background Increased rates of autoinflammatory and autoimmune disorders have been observed in female premutation carriers of CGG repeat expansion alleles of between 55–200 repeats in the fragile X mental retardation 1 (FMR1) gene. To determine whether an abnormal immune profile was present at a cellular level that may predispose female carriers to autoinflammatory conditions, we investigated dynamic cytokine production following stimulation of blood cells. In addition, splenocyte responses were examined in an FMR1 CGG knock-in mouse model of the fragile X premutation. Methods Human monocyte and peripheral blood leukocytes (PBLs) were isolated from the blood of 36 female FMR1 premutation carriers and 15 age-matched controls. Cells were cultured with media alone, LPS or PHA. In the animal model, splenocytes were isolated from 32 CGG knock-in mice and 32 wild type littermates. Splenocytes were cultured with media alone or LPS or PMA/Ionomycin. Concentrations of cytokines (GM-CSF, IL-1β, IL-6, IL-10, IL-13, IL-17, IFNγ, TNFα, and MCP-1) were determined from the supernatants of cellular cultures via Luminex multiplex assay. Additionally, phenotypic cellular markers were assessed on cells isolated from human subjects via flow cytometry. Results We found decreases in cytokine production in human premutation carriers as well as in the FMR1 knock-in mice when compared with controls. Levels of cytokines were found to be associated with CGG repeat length in both human and mouse. Furthermore, T cells from human premutation carriers showed decreases in cell surface markers of activation when compared with controls. Conclusions In this study, FMR1 CGG repeat expansions are associated with decreased immune responses and immune dysregulation in both humans and mice. Deficits in immune responses in female premutation carriers may lead to increased susceptibility to autoimmunity and further research is warranted to determine the link between FMR1 CGG repeat lengths and onset of autoinflammatory conditions.
Collapse
Affiliation(s)
- Milo Careaga
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, California, United States of America
- The M.I.N.D. Institute, University of California Davis, Davis, California, United States of America
| | - Destanie Rose
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, California, United States of America
- The M.I.N.D. Institute, University of California Davis, Davis, California, United States of America
| | - Flora Tassone
- The M.I.N.D. Institute, University of California Davis, Davis, California, United States of America
- Department of Biochemistry and Molecular Medicine, University of California Davis, Davis, California, United States of America
| | - Robert F. Berman
- The M.I.N.D. Institute, University of California Davis, Davis, California, United States of America
- Department of Neurological Surgery, University of California Davis, Davis, California, United States of America
| | - Randi Hagerman
- The M.I.N.D. Institute, University of California Davis, Davis, California, United States of America
- Department of Pediatrics University of California Davis, Davis, California, United States of America
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, California, United States of America
- The M.I.N.D. Institute, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
10
|
Kraan CM, Hocking DR, Georgiou-Karistianis N, Metcalfe SA, Archibald AD, Fielding J, Trollor J, Bradshaw JL, Cohen J, Cornish KM. Age and CGG-repeat length are associated with neuromotor impairments in at-risk females with the FMR1 premutation. Neurobiol Aging 2014; 35:2179.e7-13. [PMID: 24814676 DOI: 10.1016/j.neurobiolaging.2014.03.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 03/10/2014] [Accepted: 03/14/2014] [Indexed: 01/11/2023]
Abstract
Recent studies report a higher risk of dementia and motor symptoms in females with the fragile X mental retardation 1 premutation (PM-carriers) than has hitherto been appreciated. Here, we use dual-task gait paradigms to identify potential markers of cognitive and motor decline in female PM-carriers. Spatiotemporal gait characteristics and variability of gait were assessed during single- and dual-task conditions in 28 female PM-carriers (mean age 41.32 ± 8.03 years) and 31 female controls with normal fragile X mental retardation 1 alleles (mean age 41.61 ± 8.30 years). Despite comparable gait characteristics at baseline, gait performance was significantly poorer for PM-carriers when performing concurrent working memory tasks (counting backwards by 3's or 7's) when compared with controls. Correlational analyses showed that low working memory capacity was significantly associated with dual-task interference for the gait domains of pace (speed, step length) and variability (step time, swing time) in PM-carriers. Multiple regression analyses further showed that the interaction between age and CGG repeat length was strongly predictive of gait variability during dual-task performance. These findings indicate for the first time that vulnerability in specific domains of gait control may act as sensitive surrogate markers of future decline in female PM-carriers.
Collapse
Affiliation(s)
- Claudine M Kraan
- Faculty of Medicine, Nursing and Health Sciences, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
| | - Darren R Hocking
- Olga Tennison Research Centre, School of Psychological Science, La Trobe University, Bundoora, Victoria, Australia
| | - Nellie Georgiou-Karistianis
- Faculty of Medicine, Nursing and Health Sciences, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
| | - Sylvia A Metcalfe
- Genetics Education and Health Research, Murdoch Childrens Research Institute, Parkville, Victoria, Australia; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Alison D Archibald
- Genetics Education and Health Research, Murdoch Childrens Research Institute, Parkville, Victoria, Australia; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia; Victorian Clinical Genetics Services, Parkville, Victoria, Australia
| | - Joanne Fielding
- Faculty of Medicine, Nursing and Health Sciences, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
| | - Julian Trollor
- Department of Developmental Disability Neuropsychiatry, School of Psychiatry, University of New South Wales, Sydney, Australia; Centre for Health Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - John L Bradshaw
- Faculty of Medicine, Nursing and Health Sciences, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
| | - Jonathan Cohen
- Genetics Education and Health Research, Murdoch Childrens Research Institute, Parkville, Victoria, Australia; Centre for Developmental Disability Health Victoria, Monash University, Clayton, Victoria, Australia; Fragile X Alliance Inc (Clinic and Resource Centre), North Caufield, Victoria, Australia
| | - Kim M Cornish
- Faculty of Medicine, Nursing and Health Sciences, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
11
|
Goodwin M, Swanson MS. RNA-binding protein misregulation in microsatellite expansion disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 825:353-88. [PMID: 25201111 PMCID: PMC4483269 DOI: 10.1007/978-1-4939-1221-6_10] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RNA-binding proteins (RBPs) play pivotal roles in multiple cellular pathways from transcription to RNA turnover by interacting with RNA sequence and/or structural elements to form distinct RNA-protein complexes. Since these complexes are required for the normal regulation of gene expression, mutations that alter RBP functions may result in a cascade of deleterious events that lead to severe disease. Here, we focus on a group of hereditary disorders, the microsatellite expansion diseases, which alter RBP activities and result in abnormal neurological and neuromuscular phenotypes. While many of these diseases are classified as adult-onset disorders, mounting evidence indicates that disruption of normal RNA-protein interaction networks during embryogenesis modifies developmental pathways, which ultimately leads to disease manifestations later in life. Efforts to understand the molecular basis of these disorders has already uncovered novel pathogenic mechanisms, including RNA toxicity and repeat-associated non-ATG (RAN) translation, and current studies suggest that additional surprising insights into cellular regulatory pathways will emerge in the future.
Collapse
Affiliation(s)
- Marianne Goodwin
- Department of Molecular Genetics and Microbiology, University of Florida, College of Medicine, Cancer Genetics Research Complex, 2033 Mowry Road, Gainesville, FL, 32610-3610, USA
| | | |
Collapse
|
12
|
Hunsaker MR. Neurocognitive endophenotypes in CGG KI and Fmr1 KO mouse models of Fragile X-Associated disorders: an analysis of the state of the field. F1000Res 2013; 2:287. [PMID: 24627796 PMCID: PMC3945770 DOI: 10.12688/f1000research.2-287.v1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/23/2013] [Indexed: 12/31/2022] Open
Abstract
It has become increasingly important that the field of behavioral genetics identifies not only the gross behavioral phenotypes associated with a given mutation, but also the behavioral endophenotypes that scale with the dosage of the particular mutation being studied. Over the past few years, studies evaluating the effects of the polymorphic CGG trinucleotide repeat on the
FMR1 gene underlying Fragile X-Associated Disorders have reported preliminary evidence for a behavioral endophenotype in human Fragile X Premutation carrier populations as well as the CGG knock-in (KI) mouse model. More recently, the behavioral experiments used to test the CGG KI mouse model have been extended to the
Fmr1 knock-out (KO) mouse model. When combined, these data provide compelling evidence for a clear neurocognitive endophenotype in the mouse models of Fragile X-Associated Disorders such that behavioral deficits scale predictably with genetic dosage. Similarly, it appears that the CGG KI mouse effectively models the histopathology in Fragile X-Associated Disorders across CGG repeats well into the full mutation range, resulting in a reliable histopathological endophenotype. These endophenotypes may influence future research directions into treatment strategies for not only Fragile X Syndrome, but also the Fragile X Premutation and Fragile X-Associated Tremor/Ataxia Syndrome (FXTAS).
Collapse
Affiliation(s)
- Michael R Hunsaker
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
13
|
Sánchez-Jiménez F, Sánchez-Margalet V. Role of Sam68 in post-transcriptional gene regulation. Int J Mol Sci 2013; 14:23402-19. [PMID: 24287914 PMCID: PMC3876053 DOI: 10.3390/ijms141223402] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 11/11/2013] [Accepted: 11/13/2013] [Indexed: 01/10/2023] Open
Abstract
The STAR family of proteins links signaling pathways to various aspects of post-transcriptional regulation and processing of RNAs. Sam68 belongs to this class of heteronuclear ribonucleoprotein particle K (hnRNP K) homology (KH) single domain-containing family of RNA-binding proteins that also contains some domains predicted to bind critical components in signal transduction pathways. In response to phosphorylation and other post-transcriptional modifications, Sam68 has been shown to have the ability to link signal transduction pathways to downstream effects regulating RNA metabolism, including transcription, alternative splicing or RNA transport. In addition to its function as a docking protein in some signaling pathways, this prototypic STAR protein has been identified to have a nuclear localization and to take part in the formation of both nuclear and cytosolic multi-molecular complexes such as Sam68 nuclear bodies and stress granules. Coupling with other proteins and RNA targets, Sam68 may play a role in the regulation of differential expression and mRNA processing and translation according to internal and external signals, thus mediating important physiological functions, such as cell death, proliferation or cell differentiation.
Collapse
Affiliation(s)
- Flora Sánchez-Jiménez
- Department of Medical Biochemistry and Molecular Biology and Immunology, UGC Clinical Biochemistry, Virgen Macarena University Hospital, Avenue. Sánchez Pizjuan 4, Medical School, University of Seville, Seville 41009, Spain.
| | | |
Collapse
|
14
|
Cook D, Nuro E, Murai KK. Increasing our understanding of human cognition through the study of Fragile X Syndrome. Dev Neurobiol 2013; 74:147-77. [PMID: 23723176 PMCID: PMC4216185 DOI: 10.1002/dneu.22096] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 05/17/2013] [Indexed: 12/16/2022]
Abstract
Fragile X Syndrome (FXS) is considered the most common form of inherited intellectual disability. It is caused by reductions in the expression level or function of a single protein, the Fragile X Mental Retardation Protein (FMRP), a translational regulator which binds to approximately 4% of brain messenger RNAs. Accumulating evidence suggests that FXS is a complex disorder of cognition, involving interactions between genetic and environmental influences, leading to difficulties in acquiring key life skills including motor skills, language, and proper social behaviors. Since many FXS patients also present with one or more features of autism spectrum disorders (ASDs), insights gained from studying the monogenic basis of FXS could pave the way to a greater understanding of underlying features of multigenic ASDs. Here we present an overview of the FXS and FMRP field with the goal of demonstrating how loss of a single protein involved in translational control affects multiple stages of brain development and leads to debilitating consequences on human cognition. We also focus on studies which have rescued or improved FXS symptoms in mice using genetic or therapeutic approaches to reduce protein expression. We end with a brief description of how deficits in translational control are implicated in FXS and certain cases of ASDs, with many recent studies demonstrating that ASDs are likely caused by increases or decreases in the levels of certain key synaptic proteins. The study of FXS and its underlying single genetic cause offers an invaluable opportunity to study how a single gene influences brain development and behavior.
Collapse
Affiliation(s)
- Denise Cook
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada
| | | | | |
Collapse
|
15
|
Cognitive-motor interference during postural control indicates at-risk cerebellar profiles in females with the FMR1 premutation. Behav Brain Res 2013; 253:329-36. [PMID: 23896050 DOI: 10.1016/j.bbr.2013.07.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/16/2013] [Accepted: 07/20/2013] [Indexed: 11/22/2022]
Abstract
Recent investigations report a higher risk of motor symptoms in females with the FMR1 premutation (PM-carriers) than has hitherto been appreciated. Here we examined basic sensorimotor and postural control under different sensory and attentional dual-task demands. Physiological performance and postural sway measures from the Physiological Profile Assessment (Lord et al., 2003 [39]) were conducted in 28 female PM-carriers (mean age: 41.32±8.03) and 31 female controls with normal FMR1 alleles (mean age: 41.61±8.3). Multiple regression analyses were conducted to examine the moderating role of CGG-repeat length on the relation between age and postural sway under dual-task interference. In female PM-carriers, our results showed significantly poorer proprioceptive awareness, slower reaction time, and greater postural displacement when performing a concurrent verbal fluency task. Significantly, these findings showed age- and genetically-modulated changes in dual-task postural displacement in the medio-lateral direction in female PM-carriers. These findings highlight the sensitivity of postural control paradigms in identifying early cerebellar postural changes that may act as surrogate markers of future decline in female PM-carriers.
Collapse
|
16
|
Fragile X-associated tremor/ataxia syndrome (FXTAS): pathology and mechanisms. Acta Neuropathol 2013; 126:1-19. [PMID: 23793382 DOI: 10.1007/s00401-013-1138-1] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 05/30/2013] [Indexed: 12/17/2022]
Abstract
Since its discovery in 2001, our understanding of fragile X-associated tremor/ataxia syndrome (FXTAS) has undergone a remarkable transformation. Initially characterized rather narrowly as an adult-onset movement disorder, the definition of FXTAS is broadening; moreover, the disorder is now recognized as only one facet of a much broader clinical pleiotropy among children and adults who carry premutation alleles of the FMR1 gene. Furthermore, the intranuclear inclusions of FXTAS, once thought to be a CNS-specific marker of the disorder, are now known to be widely distributed in multiple non-CNS tissues; this observation fundamentally changes our concept of the disease, and may provide the basis for understanding the diverse medical problems associated with the premutation. Recent work on the pathogenic mechanisms underlying FXTAS indicates that the origins of the late-onset neurodegenerative disorder actually lie in early development, raising the likelihood that all forms of clinical involvement among premutation carriers have a common underlying mechanistic basis. There has also been great progress in our understanding of the triggering event(s) in FXTAS pathogenesis, which is now thought to involve sequestration of one or more nuclear proteins involved with microRNA biogenesis. Moreover, there is mounting evidence that mitochondrial dysregulation contributes to the decreased cell function and loss of viability, evident in mice even during the neonatal period. Taken together, these recent findings offer hope for early interventions for FXTAS, well before the onset of overt disease, and for the treatment of other forms of clinical involvement among premutation carriers.
Collapse
|
17
|
Pretto DI, Hunsaker MR, Cunningham CL, Greco CM, Hagerman RJ, Noctor SC, Hall DA, Hagerman PJ, Tassone F. Intranuclear inclusions in a fragile X mosaic male. Transl Neurodegener 2013; 2:10. [PMID: 23692864 PMCID: PMC3668897 DOI: 10.1186/2047-9158-2-10] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 05/17/2013] [Indexed: 11/13/2022] Open
Abstract
Lack of the fragile X mental retardation protein leads to Fragile X syndrome (FXS) while increased levels of FMR1 mRNA, as those observed in premutation carriers can lead to Fragile X- associated tremor ataxia syndrome (FXTAS). Until recently, FXTAS had been observed only in carriers of an FMR1 premutation (55–200 CGG repeats); however the disorder has now been described in individuals carriers of an intermediate allele (45–54 CGG repeats) as well as in a subject with a full mutation with mosaicism. Here, we report on molecular and clinical data of a male FMR1 mosaic individual with full and premutation alleles. Molecular analysis of FMR1 and FMRP expression in this subject is consistent with a FXS phenotype. We observed reduced expression of FMRP in both peripheral blood and brain leading to the FXS diagnosis. In addition, a dramatic 90% depletion of both FMR1 mRNA and FMRP levels was observed in the blood, as normally observed in FXS cases, and an even greater depletion in the brain. A clinical report of this patient, at age 71, described neurodegenerative signs of parkinsonism that were likely, in retrospect, part of a FXTAS scenario as post-mortem examination shows the presence of intranuclear inclusions, the hallmark pathology of FXTAS. The findings presented in this study indicate co-morbidity for both FXS and FXTAS in this individual carrying both full and premutation FMR1 alleles. In addition, based on symptoms and pathological and molecular evidence, this report suggests the need to redefine the diagnostic criteria of FXTAS.
Collapse
Affiliation(s)
- Dalyir I Pretto
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Wang JY, Hagerman RJ, Rivera SM. A multimodal imaging analysis of subcortical gray matter in fragile X premutation carriers. Mov Disord 2013; 28:1278-84. [PMID: 23649693 DOI: 10.1002/mds.25473] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 03/11/2013] [Accepted: 03/14/2013] [Indexed: 01/09/2023] Open
Abstract
Approximately 40% of males with the fragile X premutation develop fragile X-associated tremor/ataxia syndrome after age 50. Although the thalamus and basal ganglia play a crucial role in movement disorders, their involvement in fragile X premutation carriers has not been systematically investigated. The current study characterized structural abnormalities associated with fragile X premutation carriers (with and without fragile X-associated tremor/ataxia syndrome) in the thalamus, caudate nucleus, putamen, and globus pallidus using T1-weighted and diffusion tensor imaging. Male premutation carriers with fragile X-associated tremor/ataxia syndrome showed significant volume atrophy and diffusion-weighted signal loss in all 4 structures compared with the control group. They also exhibited volume atrophy and diffusion-weighted signal loss in the thalamus and striatum compared with the premutation carriers without fragile X-associated tremor/ataxia syndrome. Importantly, many of the measurements exhibited robust correlations with symptom severity, with volume and diffusion-weighted imaging measurements displaying negative correlations and fractional anisotropy measurements displaying positive correlations. The current study demonstrated involvement of all 4 subcortical gray matter structures in fragile X-associated tremor/ataxia syndrome, with significant volume atrophy, and possible iron deposition indicated by the diffusion-weighted signal loss. The significant correlation between the subcortical measurements and symptom severity suggests the benefits of tracking structural changes in subcortical gray matter in future longitudinal studies for early detection and disease monitoring. © 2013 Movement Disorder Society.
Collapse
Affiliation(s)
- Jun Yi Wang
- University of California-Davis, Davis, CA, USA
| | | | | |
Collapse
|
19
|
Neurobehavioural evidence for the involvement of the FMR1 gene in female carriers of fragile X syndrome. Neurosci Biobehav Rev 2013; 37:522-47. [DOI: 10.1016/j.neubiorev.2013.01.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Revised: 12/11/2012] [Accepted: 01/06/2013] [Indexed: 12/19/2022]
|
20
|
Conde V, Palomar FJ, Lama MJ, Martínez R, Carrillo F, Pintado E, Mir P. Abnormal GABA-mediated and cerebellar inhibition in women with the fragile X premutation. J Neurophysiol 2012; 109:1315-22. [PMID: 23236003 DOI: 10.1152/jn.00730.2012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The fragile X syndrome is a mutation-driven developmental disorder caused by a repetition over 200 times of the CGG trinucleotide situated in the 5'-untranslated region of the fragile X mental retardation 1 gene (FMR1). The interval between 55 and 199 CGG repeats, which is over the normal range but below full mutation, is named fragile X premutation. Recent studies have focused on the asymptomatic state of fragile X premutation carriers and their potentially relevant preclinical features. However, the underlying neurological mechanisms leading to altered functions in fragile X premutation carriers are still poorly understood. In this study, we wanted to test the hypothesis that asymptomatic women who carry the fragile X premutation present GABAergic and cerebellar abnormalities compared with healthy women without the premutation. We performed noninvasive brain stimulation protocols on both asymptomatic fragile X premutation carriers and controls comprising of measures of GABAA- and GABAB-mediated intracortical inhibition, afferent inhibition, and cerebello-motor functional interactions. Premutation carriers presented an absence of cerebellar inhibition over primary motor cortex as well as a reduced GABAA-mediated intracortical and afferent inhibition compared with healthy nonpremutated controls. These alterations are most probably dependent on a dysfunctional GABAergic mechanism associated with the fragile X premutation condition as previously found in CGG-repeat animal models. Furthermore, the lack of cerebello-motor inhibition could be related to the cerebellar structural abnormalities previously found in carriers of the premutation.
Collapse
Affiliation(s)
- Virginia Conde
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiolgía Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Seville, Spain
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
OBJECTIVE To describe the health and economic burden experienced by caregivers of individuals with fragile X syndrome (FXS) and test the assumption that burden is associated with specific dimensions of problem behavior. METHODS Three hundred fifty caregivers rated their son or daughter's problem behavior and reported the use of medical services, caregiving time, impact on employment, financial burden, caregiver injuries, caregiver mental health, and prescription drug use. RESULTS The son's FXS posed a significant burden for caregivers in a number of areas. Visits to medical specialists were common for both males (5.4 per year) and females (5.1 per year). Caregivers reported 9.2 hours per day of family caregiving for males with FXS and an additional 5.5 hours of paid help. Most families reported that FXS had at least some financial impact on the family, and caregivers had to take an average of 19.4 hours from work each month to care for their child's needs. Almost one third of the caregivers had been injured by their child at least once in the past year; when injuries occurred, the frequency was high (14.7 per year), of which 2.7 required medical care. Approximately one third of the caregivers had seen a professional for anxiety, stress, or depression during the past year, and one fourth were taking medication to help with these symptoms. Caregiver burden was highly associated with problem behavior, most commonly irritability. CONCLUSION Problem behavior is a strong contributor to burden experienced by caregivers of children and adults with FXS. Clinicians should be aware of the role problem behavior plays in family adaptation and help families access appropriate medical and social support services.
Collapse
|