1
|
Sultana R, Kamihira M. Multifaceted Heparin: Diverse Applications beyond Anticoagulant Therapy. Pharmaceuticals (Basel) 2024; 17:1362. [PMID: 39459002 PMCID: PMC11510354 DOI: 10.3390/ph17101362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Heparin, a naturally occurring polysaccharide, has fascinated researchers and clinicians for nearly a century due to its versatile biological properties and has been used for various therapeutic purposes. Discovered in the early 20th century, heparin has been a key therapeutic anticoagulant ever since, and its use is now implemented as a life-saving pharmacological intervention in the management of thrombotic disorders and beyond. In addition to its known anticoagulant properties, heparin has been found to exhibit anti-inflammatory, antiviral, and anti-tumorigenic activities, which may lead to its widespread use in the future as an essential drug against infectious diseases such as COVID-19 and in various medical treatments. Furthermore, recent advancements in nanotechnology, including nano-drug delivery systems and nanomaterials, have significantly enhanced the intrinsic biofunctionalities of heparin. These breakthroughs have paved the way for innovative applications in medicine and therapy, expanding the potential of heparin research. Therefore, this review aims to provide a creation profile of heparin, space for its utilities in therapeutic complications, and future characteristics such as bioengineering and nanotechnology. It also discusses the challenges and opportunities in realizing the full potential of heparin to improve patient outcomes and elevate therapeutic interventions.
Collapse
Affiliation(s)
- Razia Sultana
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan;
- Department of Biotechnology and Genetic Engineering, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Masamichi Kamihira
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan;
| |
Collapse
|
2
|
Sultana R, Kamihira M. Bioengineered heparin: Advances in production technology. Biotechnol Adv 2024; 77:108456. [PMID: 39326809 DOI: 10.1016/j.biotechadv.2024.108456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
Heparin, a highly sulfated glycosaminoglycan, is considered an indispensable anticoagulant with diverse therapeutic applications and has been a mainstay in medical practice for nearly a century. Its potential extends beyond anticoagulation, showing promise in treating inflammation, cancer, and infectious diseases such as COVID-19. However, its current sourcing from animal tissues poses challenges due to variable structures and adulterations, impacting treatment efficacy and safety. Recent advancements in metabolic engineering and synthetic biology offer alternatives through bioengineered heparin production, albeit with challenges such as controlling molecular weight and sulfonation patterns. This review offers comprehensive insight into recent advancements, encompassing: (i) the metabolic engineering strategies in prokaryotic systems for heparin production; (ii) strides made in the development of bioengineered heparin; and (iii) groundbreaking approaches driving production enhancements in eukaryotic systems. Additionally, it explores the potential of recombinant Chinese hamster ovary cells in heparin synthesis, discussing recent progress, challenges, and future prospects, thereby opening up new avenues in biomedical research.
Collapse
Affiliation(s)
- Razia Sultana
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Department of Biotechnology and Genetic Engineering, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Masamichi Kamihira
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
3
|
Douaisi M, Paskaleva EE, Fu L, Grover N, McManaman CL, Varghese S, Brodfuehrer PR, Gibson JM, de Joode I, Xia K, Brier MI, Simmons TJ, Datta P, Zhang F, Onishi A, Hirakane M, Mori D, Linhardt RJ, Dordick JS. Synthesis of bioengineered heparin chemically and biologically similar to porcine-derived products and convertible to low MW heparin. Proc Natl Acad Sci U S A 2024; 121:e2315586121. [PMID: 38498726 PMCID: PMC10998570 DOI: 10.1073/pnas.2315586121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/21/2024] [Indexed: 03/20/2024] Open
Abstract
Heparins have been invaluable therapeutic anticoagulant polysaccharides for over a century, whether used as unfractionated heparin or as low molecular weight heparin (LMWH) derivatives. However, heparin production by extraction from animal tissues presents multiple challenges, including the risk of adulteration, contamination, prion and viral impurities, limited supply, insecure supply chain, and significant batch-to-batch variability. The use of animal-derived heparin also raises ethical and religious concerns, as well as carries the risk of transmitting zoonotic diseases. Chemoenzymatic synthesis of animal-free heparin products would offer several advantages, including reliable and scalable production processes, improved purity and consistency, and the ability to produce heparin polysaccharides with molecular weight, structural, and functional properties equivalent to those of the United States Pharmacopeia (USP) heparin, currently only sourced from porcine intestinal mucosa. We report a scalable process for the production of bioengineered heparin that is biologically and compositionally similar to USP heparin. This process relies on enzymes from the heparin biosynthetic pathway, immobilized on an inert support and requires a tailored N-sulfoheparosan with N-sulfo levels similar to those of porcine heparins. We also report the conversion of our bioengineered heparin into a LMWH that is biologically and compositionally similar to USP enoxaparin. Ultimately, we demonstrate major advances to a process to provide a potential clinical and sustainable alternative to porcine-derived heparin products.
Collapse
Affiliation(s)
- Marc Douaisi
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY12180
| | - Elena E. Paskaleva
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY12180
| | - Li Fu
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY12180
| | - Navdeep Grover
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY12180
| | - Charity L. McManaman
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY12180
| | - Sony Varghese
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY12180
| | - Paul R. Brodfuehrer
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY12180
| | - James M. Gibson
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY12180
| | - Ian de Joode
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY12180
| | - Ke Xia
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY12180
| | - Matthew I. Brier
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY12180
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY12180
| | - Trevor J. Simmons
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY12180
| | - Payel Datta
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY12180
| | - Fuming Zhang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY12180
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY12180
| | - Akihiro Onishi
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY12180
| | - Makoto Hirakane
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY12180
| | - Daisuke Mori
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY12180
| | - Robert J. Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY12180
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY12180
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY12180
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY12180
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY12180
| | - Jonathan S. Dordick
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY12180
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY12180
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY12180
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY12180
| |
Collapse
|
4
|
Xi X, Zhang W, Hu L, Xu R, Wang Y, Du G, Chen J, Kang Z. Enzymatic construction of a library of even- and odd-numbered heparosan oligosaccharides and their N-sulfonated derivatives. Int J Biol Macromol 2024; 264:130501. [PMID: 38442831 DOI: 10.1016/j.ijbiomac.2024.130501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/24/2024] [Accepted: 02/19/2024] [Indexed: 03/07/2024]
Abstract
Low-molecular-weight heparins (LMWHs), especially the specific-sized heparin oligosaccharides, are attractive for the therapeutic applications, while their synthesis remains challenging. In the present study, unsaturated even-numbered heparosan oligosaccharides were firstly prepared by cleaving high-molecular-weight heparosan using recombinant heparinase III (HepIII). The conversion rates of the unsaturated disaccharides, tetrasaccharides, hexasaccharides, octasaccharides, and decasaccharides were 33.9 %, 47.9 %, 78.7 %, 71.8 %, and 53.4 %, respectively. After processing the aforementioned heparosan oligosaccharides with the Δ4,5 unsaturated glycuronidase, saturated odd-numbered heparosan trisaccharides, pentasaccharides, heptasaccharides, and nonasaccharides were produced. It was observed that among them, the pentasaccharides were the smallest units of saturated odd-numbered oligosaccharides recognized by HepIII. These oligosaccharides were further catalyzed with bifunctional heparan sulfate N-deacetylase/N-sulfotransferase (NDST) under optimized reaction conditions. It was found that the tetrasaccharide was defined as the smallest recognition unit for NDST, obtaining the N-sulfonated heparosan tetrasaccharides, pentasaccharides, and hexasaccharides with a single sulfonate group, as well as N-sulfonated heparosan heptasaccharides, octasaccharides, and nonasaccharides with multiple sulfonate groups. These results provide an easy pathway for constructing a library of specific-sized N-sulfonated heparosan oligosaccharides that can be used as the substrates for the enzymatic synthesis of LMWHs and heparin oligosaccharides, shedding new light on the substrate preference of NDST.
Collapse
Affiliation(s)
- Xintong Xi
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Weijiao Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Litao Hu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Ruirui Xu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yang Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Zhen Kang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
5
|
Nakato E, Baker S, Kinoshita-Toyoda A, Knudsen C, Lu YS, Takemura M, Toyoda H, Nakato H. In vivo activities of heparan sulfate differentially modified by NDSTs during development. PROTEOGLYCAN RESEARCH 2024; 2:e17. [PMID: 38616954 PMCID: PMC11011245 DOI: 10.1002/pgr2.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/02/2024] [Indexed: 04/16/2024]
Abstract
Heparan sulfate proteoglycans (HSPGs) serve as co-receptors for growth factor signaling during development. It is well known that the level and patterns of sulfate groups of heparan sulfate (HS) chains, or HS fine structures, have a major impact on HSPG function. On the other hand, the physiological significance of other structural features of HS, including NS/NA domain organization, remains to be elucidated. A blueprint of the HS domain structures is mainly controlled by HS N-deacetylase/N-sulfotransferases (NDSTs). To analyze in vivo activities of differentially modified HS, we established two knock-in (KI) Drosophila strains with the insertion of mouse Ndst1 (mNdst1) or Ndst2 (mNdst2) in the locus of sulfateless (sfl), the only Drosophila NDST. In these KI lines, mNDSTs are expressed from the sfl locus, in the level and patterns identical to the endogenous sfl gene. Thus, phenotypes of Ndst1 KI and Ndst2KI animals reflect the ability of HS structures made by these enzymes to rescue sfl mutation. Remarkably, we found that mNdst1 completely rescued the loss of sfl. mNdst2 showed a limited rescue ability, despite a higher level of HS sulfation compared to HS in mNdst1 KI. Our study suggests that independent of sulfation levels, additional HS structural features controlled by NDSTs play key roles during tissue patterning.
Collapse
Affiliation(s)
- Eriko Nakato
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sarah Baker
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Collin Knudsen
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yi-Si Lu
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Hidenao Toyoda
- Faculty of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan
| | - Hiroshi Nakato
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
6
|
Xie S, Bu C, LaCava J, Chi L. MsPHep: An online application for low molecular weight heparin rapid characterization based on liquid chromatography-tandem mass spectrometry. J Chromatogr A 2023; 1705:464179. [PMID: 37419018 DOI: 10.1016/j.chroma.2023.464179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/16/2023] [Accepted: 06/24/2023] [Indexed: 07/09/2023]
Abstract
Low-molecular-weight heparins (LMWHs) are important anticoagulants widely used in clinic. Since they are comprised of complex and heterogenous glycan chains, liquid chromatography-tandem mass spectrometry (LC-MS) is commonly used for structural analysis and quality control of LMWHs to ensure their safety and efficacy. Yet, the structural complexity arising from the parent heparin macromolecules, as well as the different depolymerization methods used for preparing LMWHs, makes processing and assigning the LC-MS data of LWMHs very tedious and challenging. We therefore developed, and here report, an open-source and easy-to-use web application, MsPHep, to facilitate the LMWH analysis based on LC-MS data. MsPHep is compatible with various LMWHs and chromatographic separation methods. With the HepQual function, MsPHep is capable of annotating both the LMWH compound and its isotopic distribution from mass spectra. Moreover, the HepQuant function enables automatic quantification of LMWH compositions without prior knowledge or any database generation. To demonstrate the reliability and system stability of MsPHep, we tested various types of LMWHs that were analyzed with different chromatographic methods coupled to MS. The results show that MsPHep has its own advantages compared to another public tool GlycReSoft for LMWH analysis, and it is available online under an open-source license at https://ngrc-glycan.shinyapps.io/MsPHep.
Collapse
Affiliation(s)
- Shaoshuai Xie
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong 266237, China; European Research Institute for the Biology of Ageing, University Medical Centre Groningen, Groningen 9700AD, Netherlands
| | - Changkai Bu
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong 266237, China
| | - John LaCava
- European Research Institute for the Biology of Ageing, University Medical Centre Groningen, Groningen 9700AD, Netherlands; Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY 10065, USA
| | - Lianli Chi
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
7
|
Hao T, Xue W, Zeng Q, Liu R, Chen G. Microbial communities and biosynthetic pathways for the production of sulfated polysaccharides in the activated sludge system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157950. [PMID: 35961395 DOI: 10.1016/j.scitotenv.2022.157950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Sulfated polysaccharides (SP) are widely used as industrial additives and pharmaceutical intermediates. As SP can only be extracted from sea algae, making them scarce raw materials. Recently, SP have been detected and extracted from the waste activated sludge of a saline secondary wastewater treatment plant, suggesting that there are alternative primary producers and synthesis pathways of the SP within the biological activated sludge. This study aimed to identify the primary SP producers, the SP biosynthesis pathways as well as the SP production rates in different types of activated sludges cultivated anoxically and/or anaerobically, with and without the presence of sufficient sulfate. The results showed that alternating anaerobic/anoxic conditions in sludge effectively produced the SP by the ordinary heterotrophic organisms (OHOs). The synthesis pathways for the three most common bioactive SP viz. fucoidan, carrageen, and heparin, were identified and elucidated at both the substrate and enzymatic levels. The Western Blot analyses revealed key enzymes for the SP synthesis (e.g., GDP-L-fucose-synthetase, GDP-fucose-pyrophosphorylase, β-1,4-galactosyltransferase), when sulfate was sufficient (>170 mg S/L) under an alternating anaerobic/anoxic conditions. In contrast, the absence of sulfate suppressed the SP production during the initial step of the SP generation. The synthesis of the SP in the sulfate-reducing (anaerobic) sludge was suppressed by the enzymatic inhibition, when sulfide exceeded 160 mg S/L, due to the competition for energy between the SP synthesis and sulfide detoxification. However, in the case of the sulfide-oxidizing sludge both the organic carbon and metabolism energy deficiencies inhibited the SP production. The findings of this study expand the understandings of the SP synthesis in the activated sludge under different operating conditions, including different sulfate levels.
Collapse
Affiliation(s)
- Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau
| | - Weiqi Xue
- Research Institute of Tsinghua University in Shenzhen, Shenzhen, China.
| | - Qian Zeng
- Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Rulong Liu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China.
| | - Guanghao Chen
- Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong, China; Wastewater Treatment Laboratory, FYT Graduate School, The Hong Kong University of Science and Technology, Nansha, Guangzhou, China
| |
Collapse
|
8
|
Zappe A, Miller RL, Struwe WB, Pagel K. State-of-the-art glycosaminoglycan characterization. MASS SPECTROMETRY REVIEWS 2022; 41:1040-1071. [PMID: 34608657 DOI: 10.1002/mas.21737] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/02/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Glycosaminoglycans (GAGs) are heterogeneous acidic polysaccharides involved in a range of biological functions. They have a significant influence on the regulation of cellular processes and the development of various diseases and infections. To fully understand the functional roles that GAGs play in mammalian systems, including disease processes, it is essential to understand their structural features. Despite having a linear structure and a repetitive disaccharide backbone, their structural analysis is challenging and requires elaborate preparative and analytical techniques. In particular, the extent to which GAGs are sulfated, as well as variation in sulfate position across the entire oligosaccharide or on individual monosaccharides, represents a major obstacle. Here, we summarize the current state-of-the-art methodologies used for GAG sample preparation and analysis, discussing in detail liquid chromatograpy and mass spectrometry-based approaches, including advanced ion activation methods, ion mobility separations and infrared action spectroscopy of mass-selected species.
Collapse
Affiliation(s)
- Andreas Zappe
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Rebecca L Miller
- Department of Cellular and Molecular Medicine, Copenhagen Centre for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | | | - Kevin Pagel
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
9
|
Wang J, Xiao L, Wang W, Zhang D, Ma Y, Zhang Y, Wang X. The Auxiliary Role of Heparin in Bone Regeneration and its Application in Bone Substitute Materials. Front Bioeng Biotechnol 2022; 10:837172. [PMID: 35646879 PMCID: PMC9133562 DOI: 10.3389/fbioe.2022.837172] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/13/2022] [Indexed: 11/18/2022] Open
Abstract
Bone regeneration in large segmental defects depends on the action of osteoblasts and the ingrowth of new blood vessels. Therefore, it is important to promote the release of osteogenic/angiogenic growth factors. Since the discovery of heparin, its anticoagulant, anti-inflammatory, and anticancer functions have been extensively studied for over a century. Although the application of heparin is widely used in the orthopedic field, its auxiliary effect on bone regeneration is yet to be unveiled. Specifically, approximately one-third of the transforming growth factor (TGF) superfamily is bound to heparin and heparan sulfate, among which TGF-β1, TGF-β2, and bone morphogenetic protein (BMP) are the most common growth factors used. In addition, heparin can also improve the delivery and retention of BMP-2 in vivo promoting the healing of large bone defects at hyper physiological doses. In blood vessel formation, heparin still plays an integral part of fracture healing by cooperating with the platelet-derived growth factor (PDGF). Importantly, since heparin binds to growth factors and release components in nanomaterials, it can significantly facilitate the controlled release and retention of growth factors [such as fibroblast growth factor (FGF), BMP, and PDGF] in vivo. Consequently, the knowledge of scaffolds or delivery systems composed of heparin and different biomaterials (including organic, inorganic, metal, and natural polymers) is vital for material-guided bone regeneration research. This study systematically reviews the structural properties and auxiliary functions of heparin, with an emphasis on bone regeneration and its application in biomaterials under physiological conditions.
Collapse
Affiliation(s)
- Jing Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Lan Xiao
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia
- Australia−China Centre for Tissue Engineering and Regenerative Medicine, Brisbane, Australia
| | - Weiqun Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Dingmei Zhang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yaping Ma
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yi Zhang
- Department of Hygiene Toxicology, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Xin Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia
- Australia−China Centre for Tissue Engineering and Regenerative Medicine, Brisbane, Australia
| |
Collapse
|
10
|
Production, characteristics and applications of microbial heparinases. Biochimie 2022; 198:109-140. [DOI: 10.1016/j.biochi.2022.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/03/2022] [Accepted: 03/28/2022] [Indexed: 12/26/2022]
|
11
|
Pham SH, Pratt K, Okolicsanyi RK, Oikari LE, Yu C, Peall IW, Arif KMT, Chalmers TA, Gyimesi M, Griffiths LR, Haupt LM. Syndecan-1 and -4 influence Wnt signaling and cell migration in human breast cancers. Biochimie 2022; 198:60-75. [DOI: 10.1016/j.biochi.2022.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/30/2021] [Accepted: 01/21/2022] [Indexed: 11/16/2022]
|
12
|
Mass Spectrometric Methods for the Analysis of Heparin and Heparan Sulfate. Methods Mol Biol 2021. [PMID: 34626383 DOI: 10.1007/978-1-0716-1398-6_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Glycosaminoglycans like heparin and heparan sulfate exhibit a high degree of structural microheterogeneity. This structural heterogeneity results from the biosynthetic process that produces these linear polysaccharides in cells and tissues. Heparin and heparan sulfate play critical roles in normal physiology and pathophysiology, hence it is important to understand how their structural features may influence overall activity. Therefore, high-resolution techniques like mass spectrometry represent a key part of the suite of methodologies available to probe the fine structural details of heparin and heparan sulfate. This chapter outlines the application of techniques like LC-MS and LC-MS/MS to study the composition of these polysaccharides, and techniques like GPC-MS that allow for an analysis of oligosaccharide fragments in these mixtures.
Collapse
|
13
|
Wang ST, Neo BH, Betts RJ. Glycosaminoglycans: Sweet as Sugar Targets for Topical Skin Anti-Aging. Clin Cosmet Investig Dermatol 2021; 14:1227-1246. [PMID: 34548803 PMCID: PMC8449875 DOI: 10.2147/ccid.s328671] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/19/2021] [Indexed: 12/23/2022]
Abstract
Glycosaminoglycans (GAGs) are long, linear polysaccharides comprised of repeating disaccharide units with pleiotropic biological functions, with the non-sulfated GAG hyaluronic acid (HA), and sulfated GAGs dermatan sulfate, chondroitin sulfate, heparan sulfate, keratan sulfate, and to a lesser extent heparin all being expressed in skin. Their ability to regulate keratinocyte proliferation and differentiation, inflammatory processes and extracellular matrix composition and quality demonstrates their critical role in regulating skin physiology. Similarly, the water-binding properties of GAGs and structural qualities, particularly for HA, are crucial for maintaining proper skin form and hydration. The biological importance of GAGs, as well as extensive evidence that their properties and functions are altered in both chronological and extrinsic skin aging, makes them highly promising targets to improve cosmetic skin quality. Within the present review, we examine the cutaneous biological activity of GAGs alongside the protein complexes they form called proteoglycans and summarize the age-related changes of these molecules in skin. We also examine current topical interventional approaches to modulate GAGs for improved skin quality such as direct exogenous administration of GAGs, with a particular interest in strategies targeted at potentiating GAG levels in skin through either attenuating GAG degradation or increasing GAG production.
Collapse
Affiliation(s)
- Siew Tein Wang
- L'Oréal Research & Innovation, L'Oréal Singapore, Singapore
| | - Boon Hoe Neo
- L'Oréal Research & Innovation, L'Oréal Singapore, Singapore
| | | |
Collapse
|
14
|
Techniques for Detection of Clinical Used Heparins. Int J Anal Chem 2021; 2021:5543460. [PMID: 34040644 PMCID: PMC8121598 DOI: 10.1155/2021/5543460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/16/2021] [Accepted: 04/29/2021] [Indexed: 01/21/2023] Open
Abstract
Heparins and sulfated polysaccharides have been recognized as effective clinical anticoagulants for several decades. Heparins exhibit heterogeneity depending on the sources. Meanwhile, the adverse effect in the clinical uses and the adulteration of oversulfated chondroitin sulfate (OSCS) in heparins develop additional attention to analyze the purity of heparins. This review starts with the description of the classification, anticoagulant mechanism, clinical application of heparins and focuses on the existing methods of heparin analysis and detection including traditional detection methods, as well as new methods using fluorescence or gold nanomaterials as probes. The in-depth understanding of these techniques for the analysis of heparins will lay a foundation for the further development of novel methods for the detection of heparins.
Collapse
|
15
|
Metabolic engineering of non-pathogenic Escherichia coli strains for the controlled production of low molecular weight heparosan and size-specific heparosan oligosaccharides. Biochim Biophys Acta Gen Subj 2020; 1865:129765. [PMID: 33069832 DOI: 10.1016/j.bbagen.2020.129765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Heparin, a lifesaving blood thinner used in over 100 million surgical procedures worldwide annually, is currently isolated from over 700 million pigs and ~200 million cattle in slaughterhouses worldwide. Though animal-derived heparin has been in use over eight decades, it is a complex mixture that poses a risk for chemical adulteration, and its availability is highly vulnerable. Therefore, there is an urgent need in devising bioengineering approaches for the production of heparin polymers, especially low molecular weight heparin (LMWH), and thus, relying less on animal sources. One of the main challenges, however, is the rapid, cost-effective production of low molecular weight heparosan, a precursor of LMWH and size-defined heparosan oligosaccharides. Another challenge is N-sulfation of N-acetyl heparosan oligosaccharides efficiently, an essential modification required for subsequent enzymatic modifications, though chemical and enzymatic N-sulfation is effectively performed at the polymer level. METHODS To devise a strategy to produce low molecular weight heparosan and heparosan oligosaccharides, several non-pathogenic E. coli strains are engineered by transforming the essential heparosan biosynthetic genes with or without the eliminase gene (elmA) from pathogenic E. coli K5. RESULTS The metabolically engineered non-pathogenic strains are shown to produce ~5 kDa heparosan, a precursor for low molecular weight heparin, for the first time. Additionally, heparosan oligosaccharides of specific sizes ranging from tetrasaccharide to dodecasaccharide are directly generated, in a single step, from the recombinant bacterial strains that carry both heparosan biosynthetic genes and the eliminase gene. Various modifications, such as chemical N-sulfation of N-acetyl heparosan hexasaccharide following the selective protection of reducing end GlcNAc residue, enzymatic C5-epimerization of N-sulfo heparosan tetrasaccharide and complete 6-O sulfation of N-sulfo heparosan hexasaccharide, are shown to be feasible. CONCLUSIONS We engineered non-pathogenic E. coli strains to produce low molecular weight heparosan and a range of size-specific heparosan oligosaccharides in a controlled manner through modulating culture conditions. We have also shown various chemical and enzymatic modifications of heparosan oligosaccharides. GENERAL SIGNIFICANCE Heparosan is a precursor of heparin and the methods to produce low molecular weight heparosan is widely awaited. The methods described herein are promising and will pave the way for potential large scale production of low molecular weight heparin anticoagulants and bioactive heparin oligosaccharides in the coming decade.
Collapse
|
16
|
Neufurth M, Wang X, Tolba E, Lieberwirth I, Wang S, Schröder HC, Müller WEG. The inorganic polymer, polyphosphate, blocks binding of SARS-CoV-2 spike protein to ACE2 receptor at physiological concentrations. Biochem Pharmacol 2020; 182:114215. [PMID: 32905794 PMCID: PMC7474874 DOI: 10.1016/j.bcp.2020.114215] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/13/2020] [Accepted: 09/03/2020] [Indexed: 12/16/2022]
Abstract
Inorganic polyphosphate (polyP) is a morphogenetically active and metabolic energy-delivering physiological polymer that is released from blood platelets. Here, we show that polyP efficiently inhibits the binding of the envelope spike (S)-protein of the coronavirus SARS-CoV-2, the causative agent of COVID-19, to its host cell receptor ACE2 (angiotensin-converting enzyme 2). To stabilize polyP against the polyP-degrading alkaline phosphatase, the soluble polymer was encapsulated in silica/polyP nanoparticles. Applying a binding assay, soluble Na-polyP (sizes of 40 Pi and of 3 Pi units) as well as silica-nanoparticle-associated polyP significantly inhibit the interaction of the S-protein with ACE2 at a concentration of 1 µg/mL, close to the level present in blood. This inhibition is attributed to an interaction of polyP with a basic amino acid stretch on the surface of the receptor binding domain of S-protein. PolyP retains its activity in a flushing solution, opening a new strategy for the prevention and treatment of SARS-CoV-2 infection in the oropharyngeal cavity. The data suggest that supplementation of polyP might contribute to a strengthening of the human innate immunity system in compromised, thrombocytopenic COVID-19 patients.
Collapse
Affiliation(s)
- Meik Neufurth
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany.
| | - Emad Tolba
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | - Ingo Lieberwirth
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Shunfeng Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | - Heinz C Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | - Werner E G Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany.
| |
Collapse
|
17
|
A Genome-Wide CRISPR-Cas9 Screen Reveals the Requirement of Host Cell Sulfation for Schmallenberg Virus Infection. J Virol 2020; 94:JVI.00752-20. [PMID: 32522852 DOI: 10.1128/jvi.00752-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023] Open
Abstract
Schmallenberg virus (SBV) is an insect-transmitted orthobunyavirus that can cause abortions and congenital malformations in the offspring of ruminants. Even though the two viral surface glycoproteins Gn and Gc are involved in host cell entry, the specific cellular receptors of SBV are currently unknown. Using genome-wide CRISPR-Cas9 forward screening, we identified 3'-phosphoadenosine 5'-phosphosulfate (PAPS) transporter 1 (PAPST1) as an essential factor for SBV infection. PAPST1 is a sulfotransferase involved in heparan sulfate proteoglycan synthesis encoded by the solute carrier family 35 member B2 gene (SLC35B2). SBV cell surface attachment and entry were largely reduced upon the knockout of SLC35B2, whereas the reconstitution of SLC35B2 in these cells fully restored their susceptibility to SBV infection. Furthermore, treatment of cells with heparinase diminished infection with SBV, confirming that heparan sulfate plays an important role in cell attachment and entry, although to various degrees, heparan sulfate was also found to be important to initiate infection by two other bunyaviruses, La Crosse virus and Rift Valley fever virus. Thus, PAPST1-triggered synthesis of cell surface heparan sulfate is required for the efficient replication of SBV and other bunyaviruses.IMPORTANCE SBV is a newly emerging orthobunyavirus (family Peribunyaviridae) that has spread rapidly across Europe since 2011, resulting in substantial economic losses in livestock farming. In this study, we performed unbiased genome-wide CRISPR-Cas9 screening and identified PAPST1, a sulfotransferase encoded by SLC35B2, as a host entry factor for SBV. Consistent with its role in the synthesis of heparan sulfate, we show that this activity is required for efficient infection by SBV. A comparable dependency on heparan sulfate was also observed for La Crosse virus and Rift Valley fever virus, highlighting the importance of heparan sulfate for host cell infection by bunyaviruses. Thus, the present work provides crucial insights into virus-host interactions of important animal and human pathogens.
Collapse
|
18
|
Atallah J, Khachfe HH, Berro J, Assi HI. The use of heparin and heparin-like molecules in cancer treatment: a review. Cancer Treat Res Commun 2020; 24:100192. [PMID: 32673846 DOI: 10.1016/j.ctarc.2020.100192] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Heparin and heparin-like molecules have shown some promise in the treatment of several cancers. These molecules have roles in angiogenesis, cell proliferation, immune system modulation, cell migration, and cellular invasion. The pathways and mechanisms used by these molecules to inhibit the proliferation of cancer cells aid in understanding the utilization of these molecules in potential treatments. Our aim is to review the use of heparin and heparin-like molecules in cancer treatment, explore the results, and discuss their potential downfalls. METHODS Publications on heparin and heparin-like molecules and compounds were collected from the PubMed and EMBASE databases. Boolean operators and MeSH terms related to heparin, heparin-like molecules, and cancer were used to conduct this search. The articles were reviewed by the authors. RESULTS Several heparin mimetics are showing promise in cancer treatment. Various studies using mimetics alone or in combination with chemotherapy have been conducted and have yielded mixed results. They work on multiple target molecules, mostly receptors such as fibroblast growth factor and endothelial growth factor. The main types of cancers targeted by these drugs are multiple myeloma, pancreatic cancer, hepatocellular carcinoma (HCC), and other solid tumors. CONCLUSION Although limited clinical evidence of efficacy and potential pitfalls are present, heparin and heparin-like molecules have shown potential in the management of cancer patients. Additional research is required to fully understand the biological mechanisms utilized by these molecules in cancer treatment.
Collapse
Affiliation(s)
- Johnny Atallah
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hussein H Khachfe
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | - Juliett Berro
- Department of Internal Medicine, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, Beirut, Lebanon
| | - Hazem I Assi
- Department of Internal Medicine, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, Beirut, Lebanon.
| |
Collapse
|
19
|
Melhuish Beaupre LM, Gonçalves VF, Zai CC, Tiwari AK, Harripaul RS, Herbert D, Freeman N, Müller DJ, Kennedy JL. Genome-Wide Association Study of Sleep Disturbances in Depressive Disorders. MOLECULAR NEUROPSYCHIATRY 2020; 5:34-43. [PMID: 32399468 DOI: 10.1159/000505804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 12/21/2019] [Indexed: 11/19/2022]
Abstract
Sleep disturbance affects about 75% of depressed individuals and is associated with poorer patient outcomes. The genetics in this field is an emerging area of research. Thus far, only core circadian genes have been examined in this context. We expanded on this by performing a genome-wide association study (GWAS) followed by a preplanned hypothesis-driven analysis with 27 genes associated with the biology of sleep. All participants were diagnosed by their referring physician, completed the Beck Depression Inventory (BDI), and the Udvalg for Kliniske Undersogelser Side Effect Rating Scale at baseline. Our phenotype consisted of replies to 3 questions from these questionnaires. From standard GWAS chip data, imputations were performed. Baseline total BDI scores (n = 364) differed significantly between those with and those without sleep problems. We were unable to find any significant GWAS hits although our top hit was for changes in sleep and an intergenic marker near SNX18 (p = 1.06 × 10<sup>-6</sup>). None of the markers in our hypothesis-driven analysis remained significant after applying Bonferroni corrections. Our top finding among these genes was for rs13019460 of Neuronal PAS Domain Protein 2 with changes in sleep (p = 0.0009). Overall, both analyses were unable to detect any significant associations in our modest sample though we did find some interesting preliminary associations worth further exploration.
Collapse
Affiliation(s)
- Lindsay M Melhuish Beaupre
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.,Molecular Brain Science Research Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Vanessa F Gonçalves
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Molecular Brain Science Research Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Clement C Zai
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Molecular Brain Science Research Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Arun K Tiwari
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Molecular Brain Science Research Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Ricardo S Harripaul
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.,Molecular Neuropsychiatry and Development Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Deanna Herbert
- Molecular Brain Science Research Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Natalie Freeman
- Molecular Brain Science Research Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Daniel J Müller
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Pharmacogenetics Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - James L Kennedy
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Molecular Brain Science Research Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| |
Collapse
|
20
|
Sankaranarayanan NV, Bi Y, Kuberan B, Desai UR. Combinatorial virtual library screening analysis of antithrombin binding oligosaccharide motif generation by heparan sulfate 3- O-Sulfotransferase 1. Comput Struct Biotechnol J 2020; 18:933-941. [PMID: 32346466 PMCID: PMC7183009 DOI: 10.1016/j.csbj.2020.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/07/2020] [Accepted: 03/08/2020] [Indexed: 12/31/2022] Open
Abstract
Pharmaceutical heparin's activity arises from a key high affinity and high selectivity antithrombin binding motif, which forms the basis for its use as an anticoagulant. The current problems with the supply of pig heparin raises the emphasis of understanding heparin biosynthesis so as to control and advance recombinantly expressed agent that could bypass the need for animals. Unfortunately, much remains to be understood about the generation of the antithrombin-binding motif by the key enzyme involved in its biosynthesis, 3-O-sulfotransferase-1 (3OST-1). In this work, we present a novel computational approach to understand recognition of oligosaccharide sequences by 3OST-1. Application of combinatorial virtual library screening (CVLS) algorithm on hundreds of tetrasaccharide and hexasaccharide sequences shows that 3OST-1 belongs to the growing number of proteins that recognize glycosaminoglycans with very high selectivity. It prefers very well defined pentasaccharide sequences carrying distinct groups in each of the five residues to generate the antithrombin binding motif. CVLS also identifies key residues including His271, Arg72, Arg197 and Lys173, which interact with 6-sulfate, 5-COO¯, 2-/6-sulfates and 2-sulfate at the -2, -1, +2, and +1 positions of the precursor pentasaccharide, respectively. Additionally, uncharged residues, especially Gln163 and Asn167, were also identified as playing important roles in recognition. Overall, the success of CVLS in predicting 3OST-1 recognition characteristics that help engineer selectivity lead to the expectation that recombinant enzymes could be designed to help resolve the current problems in the supply of anticoagulant heparin.
Collapse
Affiliation(s)
- Nehru Viji Sankaranarayanan
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, United States
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, United States
| | - Yiling Bi
- Departments of Biology, Bioengineering & Medicinal Chemistry and Interdepartmental Program in Neurosciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Balagurunathan Kuberan
- Departments of Biology, Bioengineering & Medicinal Chemistry and Interdepartmental Program in Neurosciences, University of Utah, Salt Lake City, UT 84112, USA
- Interdepartmental Program in Neurosciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Umesh R. Desai
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, United States
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
21
|
Affiliation(s)
| | - Raghavendra Kikkeri
- Indian Institute of Science Education and Research; Dr. Homi Bhabha Road 411008 Pune India
| |
Collapse
|
22
|
Petkowski JJ, Bains W, Seager S. An Apparent Binary Choice in Biochemistry: Mutual Reactivity Implies Life Chooses Thiols or Nitrogen-Sulfur Bonds, but Not Both. ASTROBIOLOGY 2019; 19:579-613. [PMID: 30431334 DOI: 10.1089/ast.2018.1831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A fundamental goal of biology is to understand the rules behind life's use of chemical space. Established work focuses on why life uses the chemistry that it does. Given the enormous scope of possible chemical space, we postulate that it is equally important to ask why life largely avoids certain areas of chemical space. The nitrogen-sulfur bond is a prime example, as it rarely appears in natural molecules, despite the very rich N-S bond chemistry applied in various branches of industry (e.g., industrial materials, agrochemicals, pharmaceuticals). We find that, out of more than 200,000 known, unique compounds made by life, only about 100 contain N-S bonds. Furthermore, the limited number of N-S bond-containing molecules that life produces appears to fall into a few very distinctive structural groups. One may think that industrial processes are unrelated to biochemistry because of a greater possibility of solvents, catalysts, and temperatures available to industry than to the cellular environment. However, the fact that life does rarely make N-S bonds, from the plentiful precursors available, and has evolved the ability to do so independently several times, suggests that the restriction on life's use of N-S chemistry is not in its synthesis. We present a hypothesis to explain life's extremely limited usage of the N-S bond: that the N-S bond chemistry is incompatible with essential segments of biochemistry, specifically with thiols. We support our hypothesis by (1) a quantitative analysis of the occurrence of N-S bond-containing natural products and (2) reactivity experiments between selected N-S compounds and key biological molecules. This work provides an example of a reason why life nearly excludes a distinct region of chemical space. Combined with future examples, this potentially new field of research may provide fresh insight into life's evolution through chemical space and its origin and early evolution.
Collapse
Affiliation(s)
- Janusz J Petkowski
- 1 Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology , Cambridge, Massachusetts, USA
| | | | - Sara Seager
- 1 Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology , Cambridge, Massachusetts, USA
- 3 Department of Physics, Massachusetts Institute of Technology , Cambridge, Massachusetts, USA
| |
Collapse
|
23
|
Sobczak AIS, Pitt SJ, Stewart AJ. Glycosaminoglycan Neutralization in Coagulation Control. Arterioscler Thromb Vasc Biol 2018; 38:1258-1270. [PMID: 29674476 PMCID: PMC5965931 DOI: 10.1161/atvbaha.118.311102] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 04/05/2018] [Indexed: 01/22/2023]
Abstract
The glycosaminoglycans (GAGs) heparan sulfate, dermatan sulfate, and heparin are important anticoagulants that inhibit clot formation through interactions with antithrombin and heparin cofactor II. Unfractionated heparin, low-molecular-weight heparin, and heparin-derived drugs are often the main treatments used clinically to handle coagulatory disorders. A wide range of proteins have been reported to bind and neutralize these GAGs to promote clot formation. Such neutralizing proteins are involved in a variety of other physiological processes, including inflammation, transport, and signaling. It is clear that these interactions are important for the control of normal coagulation and influence the efficacy of heparin and heparin-based therapeutics. In addition to neutralization, the anticoagulant activities of GAGs may also be regulated through reduced synthesis or by degradation. In this review, we describe GAG neutralization, the proteins involved, and the molecular processes that contribute to the regulation of anticoagulant GAG activity.
Collapse
Affiliation(s)
- Amélie I S Sobczak
- From the School of Medicine, University of St Andrews, Fife, United Kingdom
| | - Samantha J Pitt
- From the School of Medicine, University of St Andrews, Fife, United Kingdom
| | - Alan J Stewart
- From the School of Medicine, University of St Andrews, Fife, United Kingdom.
| |
Collapse
|
24
|
Rudd TR, Preston MD, Yates EA. The nature of the conserved basic amino acid sequences found among 437 heparin binding proteins determined by network analysis. MOLECULAR BIOSYSTEMS 2018; 13:852-865. [PMID: 28317949 DOI: 10.1039/c6mb00857g] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In multicellular organisms, a large number of proteins interact with the polyanionic polysaccharides heparan sulphate (HS) and heparin. These interactions are usually assumed to be dominated by charge-charge interactions between the anionic carboxylate and/or sulfate groups of the polysaccharide and cationic amino acids of the protein. A major question is whether there exist conserved amino acid sequences for HS/heparin binding among these diverse proteins. Potentially conserved HS/heparin binding sequences were sought amongst 437 HS/heparin binding proteins. Amino acid sequences were extracted and compared using a Levenshtein distance metric. The resultant similarity matrices were visualised as graphs, enabling extraction of strongly conserved sequences from highly variable primary sequences while excluding short, core regions. This approach did not reveal extensive, conserved HS/heparin binding sequences, rather a number of shorter, more widely spaced sequences that may work in unison to form heparin-binding sites on protein surfaces, arguing for convergent evolution. Thus, it is the three-dimensional arrangement of these conserved motifs on the protein surface, rather than the primary sequence per se, which are the evolutionary elements.
Collapse
Affiliation(s)
- Timothy R Rudd
- The National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK.
| | | | | |
Collapse
|
25
|
Chan WK, Price DJ, Pratt T. FGF8 morphogen gradients are differentially regulated by heparan sulphotransferases Hs2st and Hs6st1 in the developing brain. Biol Open 2017; 6:1933-1942. [PMID: 29158323 PMCID: PMC5769653 DOI: 10.1242/bio.028605] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/10/2017] [Indexed: 01/02/2023] Open
Abstract
Fibroblast growth factor (FGF) morphogen signalling through the evolutionarily ancient extracellular signalling-regulated kinase/mitogen activated protein kinase (ERK/MAPK) pathway recurs in many neural and non-neural developmental contexts, and understanding the mechanisms that regulate FGF/ERK function are correspondingly important. The glycosaminoglycan heparan sulphate (HS) binds to FGFs and exists in an enormous number of differentially sulphated forms produced by the action of HS modifying enzymes, and so has the potential to present an extremely large amount of information in FGF/ERK signalling. Although there have been many studies demonstrating that HS is an important regulator of FGF function, experimental evidence on the role of the different HS modifying enzymes on FGF gradient formation has been lacking until now. We challenged ex vivo developing mouse neural tissue, in which HS had either been enzymatically removed by heparanase treatment or lacking either the HS modifying enzymes Hs2st (Hs2st-/- tissue) or Hs6st1 (Hs6st1-/- tissue), with exogenous Fgf8 to gain insight on how HS and the function of these two HS modifying enzymes impacts on Fgf8 gradient formation from an exogenously supplied source of Fgf8 protein. We discover that two different HS modifying enzymes, Hs2st and Hs6st1, indeed differentially modulate the properties of emerging Fgf8 protein concentration gradients and the Erk signalling output in response to Fgf8 in living tissue in ex vivo cultures. Both Hs2st and Hs6st1 are required for stable Fgf8 gradients to form as rapidly as they do in wild-type tissue while only Hs6st1 has a significant effect on suppressing the levels of Fgf8 protein in the gradient compared to wild type. Next we show that Hs2st and Hs6st1 act to antagonise and agonise the Erk signalling in response to Fgf8 protein, respectively, in ex vivo cultures of living tissue. Examination of endogenous Fgf8 protein and Erk signalling outputs in Hs2st-/- and Hs6st1-/- embryos suggests that our ex vivo findings have physiological relevance in vivo Our discovery identifies a new class of mechanism to tune Fgf8 function by regulated expression of Hs2st and Hs6st1 that is likely to have broader application to the >200 other signalling proteins that interact with HS and their function in neural development and disease.
Collapse
Affiliation(s)
- Wai-Kit Chan
- Centre for Integrative Physiology, Edinburgh Medical School Biomedical Sciences, The University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - David J Price
- Centre for Integrative Physiology, Edinburgh Medical School Biomedical Sciences, The University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Thomas Pratt
- Centre for Integrative Physiology, Edinburgh Medical School Biomedical Sciences, The University of Edinburgh, Edinburgh, EH8 9XD, UK
| |
Collapse
|
26
|
Fu L, Li K, Mori D, Hirakane M, Lin L, Grover N, Datta P, Yu Y, Zhao J, Zhang F, Yalcin M, Mousa SA, Dordick JS, Linhardt RJ. Enzymatic Generation of Highly Anticoagulant Bovine Intestinal Heparin. J Med Chem 2017; 60:8673-8679. [DOI: 10.1021/acs.jmedchem.7b01269] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Murat Yalcin
- The Pharmaceutical
Research Institute, Albany College of Pharmacy, Rensselaer, New York 12144, United States
- Department
of Physiology, Veterinary Medicine Faculty, Uludag University, Gorukle 16059, Bursa, Turkey
| | - Shaker A. Mousa
- The Pharmaceutical
Research Institute, Albany College of Pharmacy, Rensselaer, New York 12144, United States
| | | | | |
Collapse
|
27
|
Mulloy B, Lever R, Page CP. Mast cell glycosaminoglycans. Glycoconj J 2016; 34:351-361. [PMID: 27900574 PMCID: PMC5487770 DOI: 10.1007/s10719-016-9749-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/07/2016] [Accepted: 11/07/2016] [Indexed: 12/01/2022]
Abstract
Mast cells contain granules packed with a mixture of proteins that are released on degranulation. The proteoglycan serglycin carries an array of glycosaminoglycan (GAG) side chains, sometimes heparin, sometimes chondroitin or dermatan sulphate. Tight packing of granule proteins is dependent on the presence of serglycin carrying these GAGs. The GAGs of mast cells were most intensively studied in the 1970s and 1980s, and though something is known about the fine structure of chondroitin sulphate and dermatan sulphate in mast cells, little is understood about the composition of the heparin/heparan sulphate chains. Recent emphasis on the analysis of mast cell heparin from different species and tissues, arising from the use of this GAG in medicine, lead to the question of whether variations within heparin structures between mast cell populations are as significant as variations in the mix of chondroitins and heparins.
Collapse
Affiliation(s)
- B Mulloy
- Sackler Institute of Pulmonary Pharmacology, Institute for Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford St, London, SE1 9NN, UK.
| | - R Lever
- 1 UCL School of Pharmacy, Brunswick Square, London, WC1N 1AX, UK
| | - C P Page
- Sackler Institute of Pulmonary Pharmacology, Institute for Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford St, London, SE1 9NN, UK
| |
Collapse
|
28
|
Tangso KJ, C D da Cunha PH, Spicer P, Li J, Boyd BJ. Antimicrobial Activity from Colistin-Heparin Lamellar-Phase Complexes for the Coating of Biomedical Devices. ACS APPLIED MATERIALS & INTERFACES 2016; 8:31321-31329. [PMID: 27750410 DOI: 10.1021/acsami.6b10027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Infections arising in hospitalized patients, particularly those who have undergone surgery and are reliant on receiving treatment through biomedical devices, continue to be a rising concern. It is well-known that aqueous mixtures of oppositely charged surfactant and polymer molecules can self-assemble to form liquid crystalline structures, primarily via electrostatically driven interactions that have demonstrated great potential as tailored-release nanomaterials. Colistin is a re-emerging antibiotic used against multidrug-resistant Gram-negative bacteria. Its amphiphilic structure allows it to form micellar aggregates in solution. Thus, the aim of this study was to determine whether structured complexes form between colistin and negatively charged biopolymers, such as the highly sulfated anticoagulant, heparin. Cross-polarized light microscopy and synchrotron small-angle X-ray scattering were employed to visualize the appearance of birefringent structures and identify liquid crystalline structures, respectively, formed across the interface between solutions of colistin and heparin. A lamellar phase with a lattice parameter of ∼40 Å was formed upon contact between the oppositely charged solutions of colistin and heparin. In addition, in vitro release studies showed a slow release of colistin from the lamellar-phase gel complexes into the bulk media, and disk diffusion bioassays revealed antimicrobial activity against Pseudomonas aeruginosa. This system provides a novel, cost-effective, and simple approach to reducing the risk of infections by potentially applying the formulation as a coating for biomedical implants or tubing.
Collapse
Affiliation(s)
| | - Paulo Henrique C D da Cunha
- Universidade Estadual de Londrina , Rodovia Celso Garcia Cid, Pr 455 Km 380, Campus Universitário, Londrina, Paraná, Brazil
| | - Patrick Spicer
- School of Chemical Engineering, University of New South Wales , Sydney, NSW 2052, Australia
| | | | | |
Collapse
|
29
|
Mulloy B, Hogwood J, Gray E, Lever R, Page CP. Pharmacology of Heparin and Related Drugs. Pharmacol Rev 2016; 68:76-141. [PMID: 26672027 DOI: 10.1124/pr.115.011247] [Citation(s) in RCA: 227] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Heparin has been recognized as a valuable anticoagulant and antithrombotic for several decades and is still widely used in clinical practice for a variety of indications. The anticoagulant activity of heparin is mainly attributable to the action of a specific pentasaccharide sequence that acts in concert with antithrombin, a plasma coagulation factor inhibitor. This observation has led to the development of synthetic heparin mimetics for clinical use. However, it is increasingly recognized that heparin has many other pharmacological properties, including but not limited to antiviral, anti-inflammatory, and antimetastatic actions. Many of these activities are independent of its anticoagulant activity, although the mechanisms of these other activities are currently less well defined. Nonetheless, heparin is being exploited for clinical uses beyond anticoagulation and developed for a wide range of clinical disorders. This article provides a "state of the art" review of our current understanding of the pharmacology of heparin and related drugs and an overview of the status of development of such drugs.
Collapse
Affiliation(s)
- Barbara Mulloy
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - John Hogwood
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - Elaine Gray
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - Rebecca Lever
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| |
Collapse
|
30
|
Deligny A, Dierker T, Dagälv A, Lundequist A, Eriksson I, Nairn AV, Moremen KW, Merry CLR, Kjellén L. NDST2 (N-Deacetylase/N-Sulfotransferase-2) Enzyme Regulates Heparan Sulfate Chain Length. J Biol Chem 2016; 291:18600-18607. [PMID: 27387504 DOI: 10.1074/jbc.m116.744433] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Indexed: 01/09/2023] Open
Abstract
Analysis of heparan sulfate synthesized by HEK 293 cells overexpressing murine NDST1 and/or NDST2 demonstrated that the amount of heparan sulfate was increased in NDST2- but not in NDST1-overexpressing cells. Altered transcript expression of genes encoding other biosynthetic enzymes or proteoglycan core proteins could not account for the observed changes. However, the role of NDST2 in regulating the amount of heparan sulfate synthesized was confirmed by analyzing heparan sulfate content in tissues isolated from Ndst2(-/-) mice, which contained reduced levels of the polysaccharide. Detailed disaccharide composition analysis showed no major structural difference between heparan sulfate from control and Ndst2(-/-) tissues, with the exception of heparan sulfate from spleen where the relative amount of trisulfated disaccharides was lowered in the absence of NDST2. In vivo transcript expression levels of the heparan sulfate-polymerizing enzymes Ext1 and Ext2 were also largely unaffected by NDST2 levels, pointing to a mode of regulation other than increased gene transcription. Size estimation of heparan sulfate polysaccharide chains indicated that increased chain lengths in NDST2-overexpressing cells alone could explain the increased heparan sulfate content. A model is discussed where NDST2-specific substrate modification stimulates elongation resulting in increased heparan sulfate chain length.
Collapse
Affiliation(s)
- Audrey Deligny
- From the Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden and
| | - Tabea Dierker
- From the Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden and
| | - Anders Dagälv
- From the Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden and
| | - Anders Lundequist
- From the Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden and
| | - Inger Eriksson
- From the Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden and
| | - Alison V Nairn
- the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Kelley W Moremen
- the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Catherine L R Merry
- From the Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden and
| | - Lena Kjellén
- From the Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden and
| |
Collapse
|
31
|
Chandarajoti K, Liu J, Pawlinski R. The design and synthesis of new synthetic low-molecular-weight heparins. J Thromb Haemost 2016; 14:1135-45. [PMID: 26990516 PMCID: PMC4907857 DOI: 10.1111/jth.13312] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 03/01/2016] [Indexed: 12/13/2022]
Abstract
Low-molecular-weight heparin (LMWH) has remained the most favorable form of heparin in clinics since the 1990s owing to its predictable pharmacokinetic properties. However, LMWH is mainly eliminated through the kidney, which limits its use in renal-impaired patients. In addition, the anticoagulant activity of LMWH is only partially neutralized by protamine. LMWH is obtained from a full-length, highly sulfated polysaccharide harvested from porcine mucosal tissue. The depolymerization involved in LMWH production generates a broad distribution of LMWH fragments (6-22 sugar residues). This, combined with the various methods used to produce commercial LMWHs, results in variable pharmacological and pharmacokinetic properties. An alternative chemoenzymatic approach offers a method for the synthesis of LMWH that has the potential to overcome the limitations of current LMWHs. This review summarizes the application of a chemoenzymatic approach to generate LMWH and the rationale for development of a synthetic LMWH.
Collapse
Affiliation(s)
- K Chandarajoti
- Division of Hematology and Oncology, McAllister Heart Institute, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - J Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - R Pawlinski
- Division of Hematology and Oncology, McAllister Heart Institute, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
32
|
Thorsheim K, Siegbahn A, Johnsson RE, Stålbrand H, Manner S, Widmalm G, Ellervik U. Chemistry of xylopyranosides. Carbohydr Res 2015; 418:65-88. [PMID: 26580709 DOI: 10.1016/j.carres.2015.10.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/09/2015] [Accepted: 10/10/2015] [Indexed: 12/22/2022]
Abstract
Xylose is one of the few monosaccharidic building blocks that are used by mammalian cells. In comparison with other monosaccharides, xylose is rather unusual and, so far, only found in two different mammalian structures, i.e. in the Notch receptor and as the linker between protein and glycosaminoglycan (GAG) chains in proteoglycans. Interestingly, simple soluble xylopyranosides can not only initiate the biosynthesis of soluble GAG chains but also function as inhibitors of important enzymes in the biosynthesis of proteoglycans. Furthermore, xylose is a major constituent of hemicellulosic xylans and thus one of the most abundant carbohydrates on Earth. Altogether, this has spurred a strong interest in xylose chemistry. The scope of this review is to describe synthesis of xylopyranosyl donors, as well as protective group chemistry, modifications, and conformational analysis of xylose.
Collapse
Affiliation(s)
- Karin Thorsheim
- Centre for Analysis and Synthesis, Centre for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Anna Siegbahn
- Centre for Analysis and Synthesis, Centre for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Richard E Johnsson
- Centre for Analysis and Synthesis, Centre for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Henrik Stålbrand
- Centre for Molecular Protein Science, Centre for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Sophie Manner
- Centre for Analysis and Synthesis, Centre for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Ulf Ellervik
- Centre for Analysis and Synthesis, Centre for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.
| |
Collapse
|
33
|
Fernández-Vega I, García-Suárez O, García B, Crespo A, Astudillo A, Quirós LM. Heparan sulfate proteoglycans undergo differential expression alterations in right sided colorectal cancer, depending on their metastatic character. BMC Cancer 2015; 15:742. [PMID: 26482785 PMCID: PMC4617710 DOI: 10.1186/s12885-015-1724-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 10/08/2015] [Indexed: 12/22/2022] Open
Abstract
Background Heparan sulfate proteoglycans (HSPGs) are complex molecules involved in the growth, invasion and metastatic properties of cancerous cells. This study analyses the alterations in the expression patterns of these molecules in right sided colorectal cancer (CRC), both metastatic and non-metastatic. Methods Twenty right sided CRCs were studied. A transcriptomic approach was used, employing qPCR to analyze both the expression of the enzymes involved in heparan sulfate (HS) chains biosynthesis, as well as the proteoglycan core proteins. Since some of these proteoglycans can also carry chondroitin sulfate (CS) chains, we include the study of the genes involved in the biosynthesis of these glycosaminoglycans. Immunohistochemical techniques were also used to analyze tissue expression of particular genes showing significant expression differences, of potential interest. Results Changes in proteoglycan core proteins differ depending on their location; those located intracellularly or in the extracellular matrix show very similar alteration patterns, while those located on the cell surface vary greatly depending on the nature of the tumor: glypicans 1, 3, 6 and betaglycan are affected in the non-metastatic tumors, whereas in the metastatic, only glypican-1 and syndecan-1 are modified, the latter showing opposing alterations in levels of RNA and of protein, suggesting post-transcriptional regulation in these tumors. Furthermore, in non-metastatic tumors, polymerization of glycosaminoglycan chains is modified, particularly affecting the synthesis of the tetrasaccharide linker and the initiation and elongation of CS chains, HS chains being less affected. Regarding the enzymes responsible for the modificaton of the HS chains, alterations were only found in non-metastatic tumors, affecting N-sulfation and the isoforms HS6ST1, HS3ST3B and HS3ST5. In contrast, synthesis of the CS chains suggests changes in epimerization and sulfation of the C4 and C2 in both types of tumor. Conclusions Right sided CRCs show alterations in the expression of HSPGs, including the expression of the cell surface core proteins, many glycosiltransferases and some enzymes that modify the HS chains depending on the metastatic nature of the tumor, resulting more affected in non-metastatic ones. However, matrix proteoglycans and enzymes involved in CS fine structure synthesis are extensively modified independetly of the presence of lymph node metastasis. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1724-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Iván Fernández-Vega
- Servicio de Patología. Hospital Universitario de Araba, Álava, 01009, Spain.
| | - Olivia García-Suárez
- Department of Morphology and Cell Biology, University of Oviedo, 33006, Oviedo, Spain.
| | - Beatriz García
- University Institute of Oncology of Asturias, Oviedo, Spain. .,Department of Functional Biology, University of Oviedo, 33006, Oviedo, Spain.
| | - Ainara Crespo
- Department of Biotechnology, Neiker-Tecnalia Arkaute, 01080, Vitoria-Gasteiz, Spain.
| | - Aurora Astudillo
- University Institute of Oncology of Asturias, Oviedo, Spain. .,Department of Pathology, Hospital, Universitario Central de Asturias, 33006, Oviedo, Spain.
| | - Luis M Quirós
- University Institute of Oncology of Asturias, Oviedo, Spain. .,Department of Functional Biology, University of Oviedo, 33006, Oviedo, Spain.
| |
Collapse
|
34
|
Mulloy B, Heath A, Shriver Z, Jameison F, Al Hakim A, Morris TS, Szajek AY. USP compendial methods for analysis of heparin: chromatographic determination of molecular weight distributions for heparin sodium. Anal Bioanal Chem 2015; 406:4815-23. [PMID: 24958344 DOI: 10.1007/s00216-014-7940-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Barbara Mulloy
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, EN6 3QG, UK,
| | | | | | | | | | | | | |
Collapse
|
35
|
Boothello RS, Sarkar A, Tran VM, Nguyen TKN, Sankaranarayanan NV, Mehta AY, Alabbas A, Brown S, Rossi A, Joice AC, Mencio CP, Quintero MV, Kuberan B, Desai UR. Chemoenzymatically prepared heparan sulfate containing rare 2-O-sulfonated glucuronic acid residues. ACS Chem Biol 2015; 10:1485-94. [PMID: 25742429 DOI: 10.1021/acschembio.5b00071] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The structural diversity of natural sulfated glycosaminoglycans (GAGs) presents major promise for discovery of chemical biology tools or therapeutic agents. Yet, few GAGs have been identified so far to exhibit this promise. We reasoned that a simple approach to identify such GAGs is to explore sequences containing rare residues, for example, 2-O-sulfonated glucuronic acid (GlcAp2S). Genetic algorithm-based computational docking and filtering suggested that GlcAp2S containing heparan sulfate (HS) may exhibit highly selective recognition of antithrombin, a key plasma clot regulator. HS containing only GlcAp2S and 2-N-sulfonated glucosamine residues, labeled as HS2S2S, was chemoenzymatically synthesized in just two steps and was found to preferentially bind antithrombin over heparin cofactor II, a closely related serpin. Likewise, HS2S2S directly inhibited thrombin but not factor Xa, a closely related protease. The results show that a HS containing rare GlcAp2S residues exhibits the unusual property of selective antithrombin activation and direct thrombin inhibition. More importantly, HS2S2S is also the first molecule to activate antithrombin nearly as well as the heparin pentasaccharide although being completely devoid of the critical 3-O-sulfonate group. Thus, this work shows that novel functions and mechanisms may be uncovered by studying rare GAG residues/sequences.
Collapse
Affiliation(s)
- Rio S. Boothello
- Institute for Structural Biology & Drug Discovery and Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Aurijit Sarkar
- Institute for Structural Biology & Drug Discovery and Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | | | | | - Nehru Viji Sankaranarayanan
- Institute for Structural Biology & Drug Discovery and Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Akul Y. Mehta
- Institute for Structural Biology & Drug Discovery and Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - AlHumaidi Alabbas
- Institute for Structural Biology & Drug Discovery and Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | | | | | | | | | | | | | - Umesh R. Desai
- Institute for Structural Biology & Drug Discovery and Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| |
Collapse
|
36
|
Chan WK, Howe K, Clegg JM, Guimond SE, Price DJ, Turnbull JE, Pratt T. 2-O Heparan Sulfate Sulfation by Hs2st Is Required for Erk/Mapk Signalling Activation at the Mid-Gestational Mouse Telencephalic Midline. PLoS One 2015; 10:e0130147. [PMID: 26075383 PMCID: PMC4468130 DOI: 10.1371/journal.pone.0130147] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 05/18/2015] [Indexed: 11/19/2022] Open
Abstract
Heparan sulfate (HS) is a linear carbohydrate composed of polymerized uronate-glucosamine disaccharide units that decorates cell surface and secreted glycoproteins in the extracellular matrix. In mammals HS is subjected to differential sulfation by fifteen different heparan sulfotransferase (HST) enzymes of which Hs2st uniquely catalyzes the sulfation of the 2-O position of the uronate in HS. HS sulfation is postulated to be important for regulation of signaling pathways by facilitating the interaction of HS with signaling proteins including those of the Fibroblast Growth Factor (Fgf) family which signal through phosphorylation of extracellular signal-regulated kinases Erk1/2. In the developing mouse telencephalon Fgf2 signaling regulates proliferation and neurogenesis. Loss of Hs2st function phenocopies the thinned cerebral cortex of mutant mice in which Fgf2 or Erk1/2 function are abrogated, suggesting the hypothesis that 2-O-sulfated HS structures play a specific role in Fgf2/Erk signaling pathway in this context in vivo. This study investigated the molecular role of 2-O sulfation in Fgf2/Erk signaling in the developing telencephalic midline midway through mouse embryogenesis at E12.5. We examined the expression of Hs2st, Fgf2, and Erk1/2 activity in wild-type and Hs2st-/- mice. We found that Hs2st is expressed at high levels at the midline correlating with high levels of Erk1/2 activation and Erk1/2 activation was drastically reduced in the Hs2st-/- mutant at the rostral telencephalic midline. We also found that 2-O sulfation is specifically required for the binding of Fgf2 protein to Fgfr1, its major cell-surface receptor at the rostral telencephalic midline. We conclude that 2-O sulfated HS structures generated by Hs2st are needed to form productive signaling complexes between HS, Fgf2 and Fgfr1 that activate Erk1/2 at the midline. Overall, our data suggest the interesting possibility that differential expression of Hs2st targets the rostral telencephalic midline for high levels of Erk signaling by increasing the sensitivity of cells to an Fgf2 signal that is rather more widespread.
Collapse
Affiliation(s)
- Wai Kit Chan
- Centre for Integrative Physiology, The University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
| | - Katherine Howe
- Centre for Integrative Physiology, The University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
| | - James M. Clegg
- Centre for Integrative Physiology, The University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
| | - Scott E. Guimond
- Centre for Glycobiology, Department of Biochemistry, Institute of Integrative Biology, The University of Liverpool, Liverpool, L69 7ZB, United Kingdom
| | - David J. Price
- Centre for Integrative Physiology, The University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
| | - Jeremy E. Turnbull
- Centre for Glycobiology, Department of Biochemistry, Institute of Integrative Biology, The University of Liverpool, Liverpool, L69 7ZB, United Kingdom
| | - Thomas Pratt
- Centre for Integrative Physiology, The University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
- * E-mail:
| |
Collapse
|
37
|
Casu B, Naggi A, Torri G. Re-visiting the structure of heparin. Carbohydr Res 2014; 403:60-8. [PMID: 25088334 DOI: 10.1016/j.carres.2014.06.023] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 06/22/2014] [Indexed: 01/12/2023]
Abstract
The sulfated polysaccharide heparin has been used as a life-saving anticoagulant in clinics well before its detailed structure was known. This mini-review is a survey of the evolution in the discovery of the primary and secondary structure of heparin. Highlights in this history include elucidation and synthesis of the specific sequence that binds to antithrombin, the development of low-molecular-weight heparins currently used as antithrombotic drugs, and the most promising start of chemo-enzymatic synthesis. Special emphasis is given to peculiar conformational properties contributing to interaction with proteins that modulate different biological properties.
Collapse
Affiliation(s)
- Benito Casu
- G. Ronzoni Institute for Chemical and Biochemical Research, via G. Colombo, 81 20133 Milan, Italy.
| | - Annamaria Naggi
- G. Ronzoni Institute for Chemical and Biochemical Research, via G. Colombo, 81 20133 Milan, Italy
| | - Giangiacomo Torri
- G. Ronzoni Institute for Chemical and Biochemical Research, via G. Colombo, 81 20133 Milan, Italy
| |
Collapse
|
38
|
Abstract
Numerous proteins, including cytokines and chemokines, enzymes and enzyme inhibitors, extracellular matrix proteins, and membrane receptors, bind heparin. Although they are traditionally classified as heparin-binding proteins, under normal physiological conditions these proteins actually interact with the heparan sulfate chains of one or more membrane or extracellular proteoglycans. Thus, they are more appropriately classified as heparan sulfate-binding proteins (HSBPs). This review provides an overview of the various modes of interaction between heparan sulfate and HSBPs, emphasizing biochemical and structural insights that improve our understanding of the many biological functions of heparan sulfate.
Collapse
Affiliation(s)
- Ding Xu
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California 92093; ,
| | | |
Collapse
|
39
|
Datta P, Yang B, Linhardt RJ, Sharfstein ST. Modulation of heparan sulfate biosynthesis by sodium butyrate in recombinant CHO cells. Cytotechnology 2014; 67:223-35. [PMID: 24468831 DOI: 10.1007/s10616-013-9677-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 12/14/2013] [Indexed: 12/19/2022] Open
Abstract
Sodium butyrate, a histone deacetylase inhibitor, has been used to improve transgene expression in Chinese hamster ovary (CHO) cells. The current study explores the impact of butyrate treatment on heparan sulfate (HS) biosynthesis and structural composition in a recombinant CHO-S cell line expressing enzymes in the heparin (HP)/(HS) biosynthetic pathway (Dual-10 stably expressing NDST2 and HS3st1). Flow cytometric analysis showed that antithrombin binding was increased in Dual-10 cells and basic fibroblast growth factor binding was decreased in response to sodium butyrate treatment. The results were in agreement with the AMAC-LCMS (2-aminoacridine-tagged HS/HP analysis by liquid chromatography mass spectrometry) data that showed that there was an increase in heparan sulfate tri-sulfated disaccharides and a decrease in N-sulfated disaccharides in the butyrate-treated cells. However, we could not detect any changes in the chondroitin sulfate pathway in Dual-10 cells treated with butyrate. The current study is the first to report the effect of butyrate on glycosaminoglycan profiles.
Collapse
Affiliation(s)
- Payel Datta
- Department of Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Avenue, Troy, NY, 12180, USA
| | | | | | | |
Collapse
|
40
|
Datta P, Li G, Yang B, Zhao X, Baik JY, Gemmill TR, Sharfstein ST, Linhardt RJ. Bioengineered Chinese hamster ovary cells with Golgi-targeted 3-O-sulfotransferase-1 biosynthesize heparan sulfate with an antithrombin-binding site. J Biol Chem 2013; 288:37308-18. [PMID: 24247246 DOI: 10.1074/jbc.m113.519033] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HS3st1 (heparan sulfate 3-O-sulfotransferase isoform-1) is a critical enzyme involved in the biosynthesis of the antithrombin III (AT)-binding site in the biopharmaceutical drug heparin. Heparin is a highly sulfated glycosaminoglycan that shares a common biosynthetic pathway with heparan sulfate (HS). Although only granulated cells, such as mast cells, biosynthesize heparin, all animal cells are capable of biosynthesizing HS. As part of an effort to bioengineer CHO cells to produce heparin, we previously showed that the introduction of both HS3st1 and NDST2 (N-deacetylase/N-sulfotransferase isoform-2) afforded HS with a very low level of anticoagulant activity. This study demonstrated that untargeted HS3st1 is broadly distributed throughout CHO cells and forms no detectable AT-binding sites, whereas Golgi-targeted HS3st1 localizes in the Golgi and results in the formation of a single type of AT-binding site and high anti-factor Xa activity (137 ± 36 units/mg). Moreover, stable overexpression of HS3st1 also results in up-regulation of 2-O-, 6-O-, and N-sulfo group-containing disaccharides, further emphasizing a previously unknown concerted interplay between the HS biosynthetic enzymes and suggesting the need to control the expression level of all of the biosynthetic enzymes to produce heparin in CHO cells.
Collapse
|
41
|
Huang R, Liu J, Sharp JS. An approach for separation and complete structural sequencing of heparin/heparan sulfate-like oligosaccharides. Anal Chem 2013; 85:5787-95. [PMID: 23659663 PMCID: PMC3725598 DOI: 10.1021/ac400439a] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
As members of the glycosaminoglycan (GAG) family, heparin and heparan sulfate (HS) are responsible for mediation of a wide range of essential biological actions, most of which are mediated by specific patterns of modifications of regions of these polysaccharides. To fully understand the regulation of HS modification and the biological function of HS through its interactions with protein ligands, it is essential to know the specific HS sequences present. However, the sequencing of mixtures of HS oligosaccharides presents major challenges due to the lability of the sulfate modifications, as well as difficulties in separating isomeric HS chains. Here, we apply a sequential chemical derivatization strategy involving permethylation, desulfation, and trideuteroperacetylation to label original sulfation sites with stable and hydrophobic trideuteroacetyl groups. The derivatization chemistry differentiates between all possible heparin/HS sequences solely by glycosidic bond cleavages, without the need to generate cross-ring cleavages. This derivatization strategy combined with LC-MS/MS analysis has been used to separate and sequence five synthetic HS-like oligosaccharides of sizes up to dodecasaccharide, as well as a highly sulfated Arixtra-like heptamer. This strategy offers a unique capability for the sequencing of microgram quantities of HS oligosaccharide mixtures by LC-MS/MS.
Collapse
Affiliation(s)
- Rongrong Huang
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, USA
| | | | | |
Collapse
|
42
|
Wang Y, Mortimer JC, Davis J, Dupree P, Keegstra K. Identification of an additional protein involved in mannan biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:105-17. [PMID: 22966747 PMCID: PMC3558879 DOI: 10.1111/tpj.12019] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 08/24/2012] [Accepted: 09/07/2012] [Indexed: 05/18/2023]
Abstract
Galactomannans comprise a β-1,4-mannan backbone substituted with α-1,6-galactosyl residues. Genes encoding the enzymes that are primarily responsible for backbone synthesis and side-chain addition of galactomannans were previously identified and characterized. To identify additional genes involved in galactomannan biosynthesis, we previously performed deep EST profiling of fenugreek (Trigonella foenum-graecum L.) seed endosperm, which accumulates large quantities of galactomannans as a reserve carbohydrate during seed development. One of the candidate genes encodes a protein that is likely to be a glycosyltransferase. Because this protein is involved in mannan biosynthesis, we named it 'mannan synthesis-related' (MSR). Here, we report the characterization of a fenugreek MSR gene (TfMSR) and its two Arabidopsis homologs, AtMSR1 and AtMSR2. TfMSR was highly and specifically expressed in the endosperm. TfMSR, AtMSR1 and AtMSR2 proteins were all determined to be localized to the Golgi by fluorescence confocal microscopy. The level of mannosyl residues in stem glucomannans decreased by approximately 40% for Arabidopsis msr1 single T-DNA insertion mutants and by more than 50% for msr1 msr2 double mutants, but remained unchanged for msr2 single mutants. In addition, in vitro mannan synthase activity from the stems of msr1 single and msr1 msr2 double mutants also decreased. Expression of AtMSR1 or AtMSR2 in the msr1 msr2 double mutant completely or partially restored mannosyl levels. From these results, we conclude that the MSR protein is important for mannan biosynthesis, and offer some ideas about its role.
Collapse
Affiliation(s)
- Yan Wang
- Great Lakes Bioenergy Research Center, Michigan State UniversityEast Lansing, MI, 48824, USA
- Department of Energy Plant Research Laboratory, Michigan State UniversityEast Lansing, MI, 48824, USA
| | | | - Jonathan Davis
- Department of Energy Plant Research Laboratory, Michigan State UniversityEast Lansing, MI, 48824, USA
- Department of Plant Biology, Michigan State UniversityEast Lansing, MI, 48824, USA
| | - Paul Dupree
- Department of Biochemistry, University of CambridgeCambridge, CB2 1QW, UK
| | - Kenneth Keegstra
- Great Lakes Bioenergy Research Center, Michigan State UniversityEast Lansing, MI, 48824, USA
- Department of Energy Plant Research Laboratory, Michigan State UniversityEast Lansing, MI, 48824, USA
- Department of Plant Biology, Michigan State UniversityEast Lansing, MI, 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State UniversityEast Lansing, MI, 48824, USA
- *For correspondence (e-mail )
| |
Collapse
|