1
|
Schalbroeck R, van Hooijdonk CFM, Bos DPA, Booij J, Selten JP. Chronic social stressors and striatal dopamine functioning in humans: A systematic review of SPECT and PET studies. Mol Psychiatry 2024:10.1038/s41380-024-02581-x. [PMID: 38760501 DOI: 10.1038/s41380-024-02581-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/19/2024]
Abstract
The dopamine hypothesis of schizophrenia posits that elevated striatal dopamine functioning underlies the development of psychotic symptoms. Chronic exposure to social stressors increases psychosis risk, possibly by upregulating striatal dopamine functioning. Here we systematically review single photon emission computed tomography (SPECT) and positron emission tomography (PET) studies that examined the relationship between chronic social stress exposure and in vivo striatal dopamine functioning in humans. We searched the scientific databases PubMed and PsycINFO from inception to August 2023. The quality of the included studies was evaluated with the ten-item Observational Study Quality Evaluation (PROSPERO: CRD42022308883). Twenty-eight studies were included, which measured different aspects of striatal dopamine functioning including dopamine synthesis capacity (DSC), vesicular monoamine transporter type 2 binding, dopamine release following a pharmacological or behavioral challenge, D2/3 receptor binding, and dopamine transporter binding. We observed preliminary evidence of an association between childhood trauma and increased striatal DSC and dopamine release. However, exposure to low socioeconomic status, stressful life events, or other social stressors was not consistently associated with altered striatal dopamine functioning. The quality of available studies was generally low. In conclusion, there is insufficient evidence that chronic social stressors upregulate striatal dopamine functioning in humans. We propose avenues for future research, in particular to improve the measurement of chronic social stressors and the methodological quality of study designs.
Collapse
Affiliation(s)
- Rik Schalbroeck
- Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, The Netherlands.
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Carmen F M van Hooijdonk
- Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, The Netherlands
| | - Daniëlle P A Bos
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jan Booij
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jean-Paul Selten
- Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, The Netherlands
- Rivierduinen Institute for Mental Healthcare, Leiden, The Netherlands
| |
Collapse
|
2
|
van Hooijdonk CFM, van der Pluijm M, Bosch I, van Amelsvoort TAMJ, Booij J, de Haan L, Selten JP, Giessen EVD. The substantia nigra in the pathology of schizophrenia: A review on post-mortem and molecular imaging findings. Eur Neuropsychopharmacol 2023; 68:57-77. [PMID: 36640734 DOI: 10.1016/j.euroneuro.2022.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/14/2023]
Abstract
Dysregulation of striatal dopamine is considered to be an important driver of pathophysiological processes in schizophrenia. Despite being one of the main origins of dopaminergic input to the striatum, the (dys)functioning of the substantia nigra (SN) has been relatively understudied in schizophrenia. Hence, this paper aims to review different molecular aspects of nigral functioning in patients with schizophrenia compared to healthy controls by integrating post-mortem and molecular imaging studies. We found evidence for hyperdopaminergic functioning in the SN of patients with schizophrenia (i.e. increased AADC activity in antipsychotic-free/-naïve patients and elevated neuromelanin accumulation). Reduced GABAergic inhibition (i.e. decreased density of GABAergic synapses, lower VGAT mRNA levels and lower mRNA levels for GABAA receptor subunits), excessive glutamatergic excitation (i.e. increased NR1 and Glur5 mRNA levels and a reduced number of astrocytes), and several other disturbances implicating the SN (i.e. immune functioning and copper concentrations) could potentially underlie this nigral hyperactivity and associated striatal hyperdopaminergic functioning in schizophrenia. These results highlight the importance of the SN in schizophrenia pathology and suggest that some aspects of molecular functioning in the SN could potentially be used as treatment targets or biomarkers.
Collapse
Affiliation(s)
- Carmen F M van Hooijdonk
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), University of Maastricht, Maastricht, the Netherlands; Rivierduinen, Institute for Mental Health Care, Leiden, the Netherlands.
| | - Marieke van der Pluijm
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Iris Bosch
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Therese A M J van Amelsvoort
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), University of Maastricht, Maastricht, the Netherlands
| | - Jan Booij
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Lieuwe de Haan
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Jean-Paul Selten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), University of Maastricht, Maastricht, the Netherlands; Rivierduinen, Institute for Mental Health Care, Leiden, the Netherlands
| | - Elsmarieke van de Giessen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, the Netherlands
| |
Collapse
|
3
|
Sahlholm K, Ielacqua GD, Xu J, Jones LA, Schlegel F, Mach RH, Rudin M, Schroeter A. The role of beta-arrestin2 in shaping fMRI BOLD responses to dopaminergic stimulation. Psychopharmacology (Berl) 2017; 234:2019-2030. [PMID: 28382543 PMCID: PMC5486931 DOI: 10.1007/s00213-017-4609-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 03/18/2017] [Indexed: 01/11/2023]
Abstract
RATIONALE The dopamine D2 receptor (D2R) couples to inhibitory Gi/o proteins and is targeted by antipsychotic and antiparkinsonian drugs. Beta-arrestin2 binds to the intracellular regions of the agonist-occupied D2R to terminate G protein activation and promote internalization, but also to initiate downstream signaling cascades which have been implicated in psychosis. Functional magnetic resonance imaging (fMRI) has proven valuable for measuring dopamine receptor-mediated changes in neuronal activity, and might enable beta-arrestin2 function to be studied in vivo. OBJECTIVES The present study examined fMRI blood oxygenation level dependent (BOLD) signal changes elicited by a dopamine agonist in wild-type (WT) and beta-arrestin2 knockout (KO) mice, to investigate whether genetic deletion of beta-arrestin2 prolongs or otherwise modifies D2R-dependent responses. METHODS fMRI BOLD data were acquired on a 9.4 T system. During scans, animals received 0.2 mg/kg apomorphine, i.v. In a subset of experiments, animals were pretreated with 2 mg/kg of the D2R antagonist, eticlopride. RESULTS Following apomorphine administration, BOLD signal decreases were observed in caudate/putamen of WT and KO animals. The time course of response decay in caudate/putamen was significantly slower in KO vs. WT animals. In cingulate cortex, an initial BOLD signal decrease was followed by a positive response component in WT but not in KO animals. Eticlopride pretreatment significantly reduced apomorphine-induced BOLD signal changes. CONCLUSIONS The prolonged striatal response decay rates in KO animals might reflect impaired D2R desensitization, consistent with the known function of beta-arrestin2. Furthermore, the apomorphine-induced positive response component in cingulate cortex may depend on beta-arrestin2 signaling downstream of D2R.
Collapse
Affiliation(s)
- Kristoffer Sahlholm
- Institute for Biomedical Engineering, University and ETH Zurich, Wolfgang-Pauli-Str. 27, 8093, Zurich, Switzerland. .,Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO, 63110, USA. .,Department of Neuroscience, Karolinska Institutet, Retzius väg 8, SE-171 77, Stockholm, Sweden.
| | - Giovanna D. Ielacqua
- 0000 0001 2156 2780grid.5801.cInstitute for Biomedical Engineering, University and ETH Zurich, Wolfgang-Pauli-Str. 27, 8093 Zurich, Switzerland
| | - Jinbin Xu
- 0000 0001 2355 7002grid.4367.6Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110 USA
| | - Lynne A. Jones
- 0000 0001 2355 7002grid.4367.6Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110 USA
| | - Felix Schlegel
- 0000 0001 2156 2780grid.5801.cInstitute for Biomedical Engineering, University and ETH Zurich, Wolfgang-Pauli-Str. 27, 8093 Zurich, Switzerland
| | - Robert H. Mach
- 0000 0004 1936 8972grid.25879.31Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 231 S. 34th St, Philadelphia, PA 19104 USA
| | - Markus Rudin
- 0000 0001 2156 2780grid.5801.cInstitute for Biomedical Engineering, University and ETH Zurich, Wolfgang-Pauli-Str. 27, 8093 Zurich, Switzerland ,0000 0001 2156 2780grid.5801.cNeuroscience Center Zurich, University and ETH Zurich, Winterthurer-Str. 190, 8057 Zurich, Switzerland ,0000 0004 1937 0650grid.7400.3Institute of Pharmacology and Toxicology, University of Zurich, Winterthurer-Str. 190, 8057 Zurich, Switzerland
| | - Aileen Schroeter
- 0000 0001 2156 2780grid.5801.cInstitute for Biomedical Engineering, University and ETH Zurich, Wolfgang-Pauli-Str. 27, 8093 Zurich, Switzerland ,0000 0001 2156 2780grid.5801.cNeuroscience Center Zurich, University and ETH Zurich, Winterthurer-Str. 190, 8057 Zurich, Switzerland
| |
Collapse
|
4
|
Kida S, Kato T. Microendophenotypes of psychiatric disorders: phenotypes of psychiatric disorders at the level of molecular dynamics, synapses, neurons, and neural circuits. Curr Mol Med 2015; 15:111-8. [PMID: 25732153 PMCID: PMC4460283 DOI: 10.2174/1566524015666150303002128] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 12/20/2014] [Accepted: 01/18/2015] [Indexed: 01/31/2023]
Abstract
Psychiatric disorders are caused not only by genetic factors but also by complicated factors such as environmental ones. Moreover, environmental factors are rarely quantitated as biological and biochemical indicators, making it extremely difficult to understand the pathological conditions of psychiatric disorders as
well as their underlying pathogenic mechanisms. Additionally, we have actually no other option but to perform biological studies on postmortem human brains that display features of psychiatric disorders, thereby resulting in a lack of experimental materials to characterize the basic biology of these disorders. From these
backgrounds, animal, tissue, or cell models that can be used in basic research are indispensable to understand biologically the pathogenic mechanisms of psychiatric disorders. In this review, we discuss the importance of microendophenotypes of psychiatric disorders, i.e., phenotypes at the level of molecular
dynamics, neurons, synapses, and neural circuits, as targets of basic research on these disorders.
Collapse
Affiliation(s)
- S Kida
- Department of Bioscience, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan.
| | | |
Collapse
|
5
|
Verachai V, Rukngan W, Chawanakrasaesin K, Nilaban S, Suwanmajo S, Thanateerabunjong R, Kaewkungwal J, Kalayasiri R. Treatment of methamphetamine-induced psychosis: a double-blind randomized controlled trial comparing haloperidol and quetiapine. Psychopharmacology (Berl) 2014; 231:3099-108. [PMID: 24535654 DOI: 10.1007/s00213-014-3485-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 02/01/2014] [Indexed: 11/26/2022]
Abstract
RATIONALE To our knowledge, only a few double-blind randomized controlled trials with antipsychotic drugs have been conducted to examine the treatment of methamphetamine-induced psychosis (MAP). OBJECTIVES The aims of this study are to compare the antipsychotic and adverse events of quetiapine, an atypical antipsychotic drug, to haloperidol, a standard treatment for primary psychotic disorder, in individuals with MAP. METHODS Eighty individuals with MAP were randomly assigned into two groups, i.e. treatment with quetiapine (n = 36) and haloperidol (n = 44). Sixty-eight patients (85 %) completed the study protocol, i.e. treatment with quetiapine at least 100 mg per day or haloperidol at least 2 mg per day orally once a day for 4 weeks. The doses were increased every 5 days until no psychotic symptom was observed from the Positive and Negative Syndrome Scale (PANSS). Data were analysed by survival analysis with Cox's proportional regression analysis, general estimating equations and log-rank tests. RESULTS Thirty-two (89 %) subjects from the quetiapine group and 37 subjects (84 %) from the haloperidol group met the remission criteria at the end of the study. Baseline PANSS total scores of quetiapine and haloperidol groups were 82.4 ± 16.6 and 90.0 ± 18.4, respectively (mean ± SD; p = 0.06). The change-from-baseline scores were -47.8 for the quetiapine group and -53.2 for the haloperidol group. There were no significant differences between the antipsychotic effects (coefficient value = -2.6, p = 0.32, 95%CI = -7.6, 2.5) and the adverse effects of quetiapine and haloperidol. CONCLUSIONS Quetiapine may be used as an antipsychotic treatment for MAP with comparable therapeutic effects and adverse events to treatment with classical antipsychotic drugs.
Collapse
Affiliation(s)
- Viroj Verachai
- Thanyarak Institute on Drug Abuse, Thailand Ministry of Public Health, Pathumthani, Thailand
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Molecular imaging represents a bridge between basic and clinical neuroscience observations and provides many opportunities for translation and identifying mechanisms that may inform prevention and intervention strategies in late-life depression (LLD). Substantial advances in instrumentation and radiotracer chemistry have resulted in improved sensitivity and spatial resolution and the ability to study in vivo an increasing number of neurotransmitters, neuromodulators, and, importantly, neuropathological processes. Molecular brain imaging studies in LLD will be reviewed, with a primary focus on positron emission tomography. Future directions for the field of molecular imaging in LLD will be discussed, including integrating molecular imaging with genetic, neuropsychiatric, and cognitive outcomes and multimodality neuroimaging.
Collapse
Affiliation(s)
- Kentaro Hirao
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| | - Gwenn S. Smith
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
7
|
Agonist high- and low-affinity states of dopamine D₂ receptors: methods of detection and clinical implications. Naunyn Schmiedebergs Arch Pharmacol 2012; 386:135-54. [PMID: 23224422 DOI: 10.1007/s00210-012-0817-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 11/22/2012] [Indexed: 01/10/2023]
Abstract
Dopamine D(2) receptors, similar to other G-protein-coupled receptors, exist in a high- and low-affinity state for agonists. Based upon a review of the methods for detecting D(2) receptor agonist high-affinity states, we discuss alterations of such states in animal models of disease and the implications of such alterations for their labelling with positron emission tomography (PET) and single-photon emission computed tomography (SPECT) tracers. The classic approach of detecting agonist high-affinity states compares agonist competition for antagonist radioligands, in most cases using [(3)H]-spiperone as the radioligand; alternative approaches and radioligands have been proposed, but their claimed advantages have not been substantiated by other investigators. In view of the advantages and disadvantages of various techniques, we critically have reviewed reported findings on the detection of D(2) receptor agonist high-affinity states in a variety of animal models. These data are compared to the less numerous findings from human in vivo studies based on PET and SPECT tracers; they are interpreted in light of the finding that D(2) receptor agonist high-affinity states under control conditions may differ between rodent and human brain. The potential advantages of agonist ligands in studies of pathophysiology and as diagnostics are being discussed.
Collapse
|