1
|
Ecochard R, Stanford JB, Fehring RJ, Schneider M, Najmabadi S, Gronfier C. Evidence that the woman's ovarian cycle is driven by an internal circamonthly timing system. SCIENCE ADVANCES 2024; 10:eadg9646. [PMID: 38598621 PMCID: PMC11006216 DOI: 10.1126/sciadv.adg9646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/06/2024] [Indexed: 04/12/2024]
Abstract
The ovarian cycle has a well-established circa-monthly rhythm, but the mechanisms involved in its regularity are unknown. Is the rhythmicity driven by an endogenous clock-like timer or by other internal or external processes? Here, using two large epidemiological datasets (26,912 cycles from 2303 European women and 4786 cycles from 721 North American women), analyzed with time series and circular statistics, we find evidence that the rhythmic characteristics of the menstrual cycle are more likely to be explained by an endogenous clock-like driving mechanism than by any other internal or external process. We also show that the menstrual cycle is weakly but significantly influenced by the 29.5-day lunar cycle and that the phase alignment between the two cycles differs between the European and the North American populations. Given the need to find efficient treatments of subfertility in women, our results should be confirmed in larger populations, and chronobiological approaches to optimize the ovulatory cycle should be evaluated.
Collapse
Affiliation(s)
- René Ecochard
- Pôle de Santé Publique, Service de Biostatistique, Hospices Civils de Lyon, Lyon 69424 Cedex 03, France
- Laboratoire Biostatistique Santé, Université Claude Bernard Lyon I, UMR CNRS 5558 UCBL, Lyon 69000, France
| | - John B. Stanford
- Office of Cooperative Reproductive Health, Division of Public Health, Department of Family and Preventive Medicine, University of Utah, Salt Lake City, 84108 UT, USA
| | - Richard J. Fehring
- College of Nursing, Marquette University, Milwaukee, P.O. Box 1881 WI, USA
| | - Marie Schneider
- College of Nursing, Marquette University, Milwaukee, P.O. Box 1881 WI, USA
- Institute for Natural Family Planning, Milwaukee, P.O. Box 1881 WI, USA
| | - Sam Najmabadi
- Office of Cooperative Reproductive Health, Division of Public Health, Department of Family and Preventive Medicine, University of Utah, Salt Lake City, 84108 UT, USA
| | - Claude Gronfier
- Centre de Recherche en Neurosciences de Lyon (CRNL), Neurocampus, Inserm U1028, CNRS UMR5292, Université de Lyon, Lyon 69500, France
| |
Collapse
|
2
|
Zhang Z, Sun D, Tang H, Ren J, Yin S, Yang K. PER2 binding to HSP90 enhances immune response against oral squamous cell carcinoma by inhibiting IKK/NF-κB pathway and PD-L1 expression. J Immunother Cancer 2023; 11:e007627. [PMID: 37914384 PMCID: PMC10626827 DOI: 10.1136/jitc-2023-007627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Programmed death-ligand 1 (PD-L1) contributes to the immune escape of tumor cells and is a critical target for antitumor immunotherapy. However, the molecular mechanisms regulating PD-L1 expression remain unclear, hindering the development of effective therapies. Here we investigate the role and molecular mechanism of the core clock gene Period2 (PER2) in regulating PD-L1 expression and its role in the combination therapy of oral squamous cell carcinoma (OSCC). METHODS Quantitative real-time PCR, western blotting or immunohistochemistry to detect expression of PER2 and PD-L1 in OSCC tissues and cells. Overexpression and knockdown of PER2 detects the function of PER2. Bioinformatics, immunoprecipitation, GST pull-down, CHX chase assay and western blot and strip to detect the mechanism of PER2 regulation for PD-L1. A humanized immune reconstitution subcutaneous xenograft mouse model was established to investigate the combination therapy efficacy. RESULTS In OSCC tissues and cells, PER2 expression was reduced and PD-L1 expression was increased, the expression of PER2 was significantly negatively correlated with PD-L1. In vitro and in vivo experiments demonstrated that PER2 inhibited PD-L1 expression and enhanced T-cell-mediated OSCC cell killing by suppressing the IKK/NF-κB pathway. Mechanistically, PER2 binds to heat shock protein 90 (HSP90) through the PAS1 domain and reduces the interaction of HSP90 with inhibitors of kappa B kinase (IKKs), promoting the ubiquitination of IKKα/β and p65 nuclear translocation to inhibit IKK/NF-κB pathway, thereby suppressing PD-L1 expression. In humanized immune reconstitution subcutaneous xenograft mouse model, it was demonstrated that PER2 targeting combined with anti-PD-L1 treatment improved the inhibition of OSCC growth by promoting CD8+ T-cell infiltration into the tumor. CONCLUSIONS Our findings reveal the role and mechanism of PD-L1 regulation by PER2 and support the potential clinical application of PER2 targeting in combination with anti-PD-L1 in OSCC immunotherapy.
Collapse
Affiliation(s)
- Zhiwei Zhang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Deping Sun
- Department of Otolaryngology Head and Neck Surgery, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Tang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Ren
- Department of Stomatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shilin Yin
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kai Yang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Lecour S, Du Pré BC, Bøtker HE, Brundel BJJM, Daiber A, Davidson SM, Ferdinandy P, Girao H, Gollmann-Tepeköylü C, Gyöngyösi M, Hausenloy DJ, Madonna R, Marber M, Perrino C, Pesce M, Schulz R, Sluijter JPG, Steffens S, Van Linthout S, Young ME, Van Laake LW. Circadian rhythms in ischaemic heart disease: key aspects for preclinical and translational research: position paper of the ESC working group on cellular biology of the heart. Cardiovasc Res 2022; 118:2566-2581. [PMID: 34505881 DOI: 10.1093/cvr/cvab293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/04/2021] [Accepted: 09/07/2021] [Indexed: 12/11/2022] Open
Abstract
Circadian rhythms are internal regulatory processes controlled by molecular clocks present in essentially every mammalian organ that temporally regulate major physiological functions. In the cardiovascular system, the circadian clock governs heart rate, blood pressure, cardiac metabolism, contractility, and coagulation. Recent experimental and clinical studies highlight the possible importance of circadian rhythms in the pathophysiology, outcome, or treatment success of cardiovascular disease, including ischaemic heart disease. Disturbances in circadian rhythms are associated with increased cardiovascular risk and worsen outcome. Therefore, it is important to consider circadian rhythms as a key research parameter to better understand cardiac physiology/pathology, and to improve the chances of translation and efficacy of cardiac therapies, including those for ischaemic heart disease. The aim of this Position Paper by the European Society of Cardiology Working Group Cellular Biology of the Heart is to highlight key aspects of circadian rhythms to consider for improvement of preclinical and translational studies related to ischaemic heart disease and cardioprotection. Applying these considerations to future studies may increase the potential for better translation of new treatments into successful clinical outcomes.
Collapse
Affiliation(s)
- Sandrine Lecour
- Department of Medicine, Hatter Institute for Cardiovascular Research in Africa, University of Cape Town, Cape Town, South Africa
| | - Bastiaan C Du Pré
- Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Bianca J J M Brundel
- Department of Physiology, Amsterdam UMC, Vrije Universiteit, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Andreas Daiber
- Department of Cardiology, Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, London, UK
| | - Peter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Henrique Girao
- Faculty of Medicine, Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Center for Innovative Biomedicine and Biotechnology (CIBB), Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | | | - Mariann Gyöngyösi
- Department of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090, Vienna, Austria
| | - Derek J Hausenloy
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
- National Heart Research Institute Singapore, National Heart Centre, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University Singapore, Singapore
- The Hatter Cardiovascular Institute, University College London, London, UK
- Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taichung City, Taiwan
| | - Rosalinda Madonna
- Institute of Cardiology, University of Pisa, Pisa, Italy
- Department of Internal Medicine, University of Texas Medical School in Houston, Houston, TX, USA
| | - Michael Marber
- King's College London BHF Centre, The Rayne Institute, St Thomas' Hospital, London, UK
| | - Cinzia Perrino
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Maurizio Pesce
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Joost P G Sluijter
- Department of Cardiology, Experimental Cardiology Laboratory, Regenerative Medicine Center, Circulatory Health Laboratory, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Sabine Steffens
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Sophie Van Linthout
- Berlin Institute of Health Center for Regenerative Therapies & Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité, University Medicine Berlin, Berlin 10178, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Martin E Young
- Division of Cardiovascular Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Linda W Van Laake
- Cardiology and UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
4
|
Understanding the oncostatic actions displayed by melatonin in colorectal cancer therapy. Future Med Chem 2020; 12:1201-1204. [PMID: 32466682 DOI: 10.4155/fmc-2020-0086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
5
|
Analysis of the Circadian Regulation of Cancer Hallmarks by a Cross-Platform Study of Colorectal Cancer Time-Series Data Reveals an Association with Genes Involved in Huntington's Disease. Cancers (Basel) 2020; 12:cancers12040963. [PMID: 32295075 PMCID: PMC7226183 DOI: 10.3390/cancers12040963] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/07/2020] [Accepted: 04/10/2020] [Indexed: 02/06/2023] Open
Abstract
Accumulating evidence points to a link between circadian clock dysfunction and the molecular events that drive tumorigenesis. Here, we investigated the connection between the circadian clock and the hallmarks of cancer in an in vitro model of colorectal cancer (CRC). We used a cross-platform data normalization method to concatenate and compare available microarray and RNA-sequencing time series data of CRC cell lines derived from the same patient at different disease stages. Our data analysis suggests differential regulation of molecular pathways between the CRC cells and identifies several of the circadian and likely clock-controlled genes (CCGs) as cancer hallmarks and circadian drug targets. Notably, we found links of the CCGs to Huntington’s disease (HD) in the metastasis-derived cells. We then investigated the impact of perturbations of our candidate genes in a cohort of 439 patients with colon adenocarcinoma retrieved from the Cancer Genome Atlas (TCGA). The analysis revealed a correlation of the differential expression levels of the candidate genes with the survival of patients. Thus, our study provides a bioinformatics workflow that allows for a comprehensive analysis of circadian properties at different stages of colorectal cancer, and identifies a new association between cancer and HD.
Collapse
|
6
|
Gu F, Farrugia MK, Duncan WD, Feng Y, Hutson AD, Schlecht NF, Repasky EA, Antoch MP, Miller A, Platek A, Platek ME, Iovoli AJ, Singh AK. Daily Time of Radiation Treatment Is Associated with Subsequent Oral Mucositis Severity during Radiotherapy in Head and Neck Cancer Patients. Cancer Epidemiol Biomarkers Prev 2020; 29:949-955. [PMID: 32098893 DOI: 10.1158/1055-9965.epi-19-0961] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/25/2019] [Accepted: 02/20/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Limited treatment options are available for oral mucositis, a common, debilitating complication of cancer therapy. We examined the association between daily delivery time of radiotherapy and the severity of oral mucositis in patients with head and neck cancer. METHODS We used electronic medical records of 190 patients with head and neck squamous cell carcinoma who completed radiotherapy, with or without concurrent chemotherapy, at Roswell Park Comprehensive Cancer Center (Buffalo, NY) between 2015 and 2017. Throughout a 7-week treatment course, patient mouth and throat soreness (MTS) was self-reported weekly using a validated oral mucositis questionnaire, with responses 0 (no) to 4 (extreme). Average treatment times from day 1 until the day before each mucositis survey were categorized into seven groups. Multivariable-adjusted marginal average scores (LSmeans) were estimated for the repeated- and maximum-MTS, using a linear-mixed model and generalized-linear model, respectively. RESULTS Radiation treatment time was significantly associated with oral mucositis severity using both repeated-MTS (n = 1,156; P = 0.02) and maximum-MTS (n = 190; P = 0.04), with consistent patterns. The severity was lowest for patients treated during 8:30 to <9:30 am (LSmeans for maximum-MTS = 2.24; SE = 0.15), increased at later treatment times and peaked at early afternoon (11:30 am to <3:00 pm, LSmeans = 2.66-2.71; SEs = 0.16/0.17), and then decreased substantially after 3 pm. CONCLUSIONS We report a significant association between radiation treatment time and oral mucositis severity in patients with head and neck cancer. IMPACT Although additional studies are needed, these data suggest a potential simple treatment time solution to limit severity of oral mucositis during radiotherapy without increasing cost.
Collapse
Affiliation(s)
- Fangyi Gu
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, New York.
| | - Mark K Farrugia
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - William D Duncan
- University at Buffalo, The State University of New York, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York
| | - Yingdong Feng
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Alan D Hutson
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Nicolas F Schlecht
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Elizabeth A Repasky
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Marina P Antoch
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Austin Miller
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Alexis Platek
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
- University at Buffalo, The State University of New York, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York
| | - Mary E Platek
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, New York
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
- D'Youville College, Buffalo, New York
| | - Austin J Iovoli
- University at Buffalo, The State University of New York, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York
| | - Anurag K Singh
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York.
| |
Collapse
|
7
|
De Nobrega AK, Luz KV, Lyons LC. Resetting the Aging Clock: Implications for Managing Age-Related Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1260:193-265. [PMID: 32304036 DOI: 10.1007/978-3-030-42667-5_9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Worldwide, individuals are living longer due to medical and scientific advances, increased availability of medical care and changes in public health policies. Consequently, increasing attention has been focused on managing chronic conditions and age-related diseases to ensure healthy aging. The endogenous circadian system regulates molecular, physiological and behavioral rhythms orchestrating functional coordination and processes across tissues and organs. Circadian disruption or desynchronization of circadian oscillators increases disease risk and appears to accelerate aging. Reciprocally, aging weakens circadian function aggravating age-related diseases and pathologies. In this review, we summarize the molecular composition and structural organization of the circadian system in mammals and humans, and evaluate the technological and societal factors contributing to the increasing incidence of circadian disorders. Furthermore, we discuss the adverse effects of circadian dysfunction on aging and longevity and the bidirectional interactions through which aging affects circadian function using examples from mammalian research models and humans. Additionally, we review promising methods for managing healthy aging through behavioral and pharmacological reinforcement of the circadian system. Understanding age-related changes in the circadian clock and minimizing circadian dysfunction may be crucial components to promote healthy aging.
Collapse
Affiliation(s)
- Aliza K De Nobrega
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Kristine V Luz
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Lisa C Lyons
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
8
|
Gnocchi D, Custodero C, Sabbà C, Mazzocca A. Circadian rhythms: a possible new player in non-alcoholic fatty liver disease pathophysiology. J Mol Med (Berl) 2019; 97:741-759. [PMID: 30953079 DOI: 10.1007/s00109-019-01780-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/10/2019] [Accepted: 03/13/2019] [Indexed: 12/16/2022]
Abstract
Over the last decades, a better knowledge of the molecular machinery supervising the regulation of circadian clocks has been achieved, and numerous findings have helped in unravelling the outstanding significance of the molecular clock for the proper regulation of our physiologic and metabolic homeostasis. Non-alcoholic fatty liver disease (NAFLD) is currently considered as one of the emerging liver pathologies in the Western countries due to the modification of eating habits and lifestyle. Although NAFLD is considered a pretty benign condition, it can progress towards non-alcoholic steatohepatitis (NASH) and eventually hepatocellular carcinoma (HCC). The pathogenic mechanisms involved in NAFLD development are complex, since this disease is a multifactorial condition. Major metabolic deregulations along with a genetic background are believed to take part in this process. In this light, the aim of this review is to give a comprehensive description of how our circadian machinery is regulated and to describe to what extent our internal clock is involved in the regulation of hormonal and metabolic homeostasis, and by extension in the development and progression of NAFLD/NASH and eventually in the onset of HCC.
Collapse
Affiliation(s)
- Davide Gnocchi
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11, 70124, Bari, Italy
| | - Carlo Custodero
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11, 70124, Bari, Italy
| | - Carlo Sabbà
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11, 70124, Bari, Italy
| | - Antonio Mazzocca
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11, 70124, Bari, Italy.
| |
Collapse
|
9
|
Gil-Martín E, Egea J, Reiter RJ, Romero A. The emergence of melatonin in oncology: Focus on colorectal cancer. Med Res Rev 2019; 39:2239-2285. [PMID: 30950095 DOI: 10.1002/med.21582] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/04/2019] [Accepted: 03/16/2019] [Indexed: 12/17/2022]
Abstract
Within the last few decades, melatonin has increasingly emerged in clinical oncology as a naturally occurring bioactive molecule with substantial anticancer properties and a pharmacological profile optimal for joining the currently available pharmacopeia. In addition, extensive experimental data shows that this chronobiotic agent exerts oncostatic effects throughout all stages of tumor growth, from initial cell transformation to mitigation of malignant progression and metastasis; additionally, melatonin alleviates the side effects and improves the welfare of radio/chemotherapy-treated patients. Thus, the support of clinicians and oncologists for the use of melatonin in both the treatment and proactive prevention of cancer is gaining strength. Because of its epidemiological importance and symptomatic debut in advanced stages of difficult clinical management, colorectal cancer (CRC) is a preferential target for testing new therapies. In this regard, the development of effective forms of clinical intervention for the improvement of CRC outcome, specifically metastatic CRC, is urgent. At the same time, the need to reduce the costs of conventional anti-CRC therapy results is also imperative. In light of this status quo, the therapeutic potential of melatonin, and the direct and indirect critical processes of CRC malignancy it modulates, have aroused much interest. To illuminate the imminent future on CRC research, we focused our attention on the molecular mechanisms underlying the multiple oncostatic actions displayed by melatonin in the onset and evolution of CRC and summarized epidemiological evidence, as well as in vitro, in vivo and clinical findings that support the broadly protective potential demonstrated by melatonin.
Collapse
Affiliation(s)
- Emilio Gil-Martín
- Department of Biochemistry, Genetics and Immunology, Biomedical Research Center (CINBIO, 'Centro Singular de Investigación de Galicia'), University of Vigo, Vigo, Spain
| | - Javier Egea
- Molecular Neuroinflammation and Neuronal Plasticity Laboratory, Research Unit, Hospital Universitario Santa Cristina, Madrid, Spain.,Servicio de Farmacología Clínica, Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Madrid, Spain.,Departamento de Farmacología y Terapéutica, Instituto-Fundación Teófilo Hernando, Universidad Autónoma de Madrid, Madrid, Spain
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, Texas, USA
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
10
|
Stéphanou A, Fanchon E, Innominato PF, Ballesta A. Systems Biology, Systems Medicine, Systems Pharmacology: The What and The Why. Acta Biotheor 2018; 66:345-365. [PMID: 29744615 DOI: 10.1007/s10441-018-9330-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/05/2018] [Indexed: 12/22/2022]
Abstract
Systems biology is today such a widespread discipline that it becomes difficult to propose a clear definition of what it really is. For some, it remains restricted to the genomic field. For many, it designates the integrated approach or the corpus of computational methods employed to handle the vast amount of biological or medical data and investigate the complexity of the living. Although defining systems biology might be difficult, on the other hand its purpose is clear: systems biology, with its emerging subfields systems medicine and systems pharmacology, clearly aims at making sense of complex observations/experimental and clinical datasets to improve our understanding of diseases and their treatments without putting aside the context in which they appear and develop. In this short review, we aim to specifically focus on these new subfields with the new theoretical tools and approaches that were developed in the context of cancer. Systems pharmacology and medicine now give hope for major improvements in cancer therapy, making personalized medicine closer to reality. As we will see, the current challenge is to be able to improve the clinical practice according to the paradigm shift of systems sciences.
Collapse
Affiliation(s)
- Angélique Stéphanou
- Université Grenoble Alpes, CNRS, TIMC-IMAG/DyCTIM2, 38000, Grenoble, France.
| | - Eric Fanchon
- Université Grenoble Alpes, CNRS, TIMC-IMAG/DyCTIM2, 38000, Grenoble, France
| | - Pasquale F Innominato
- North Wales Cancer Centre, Betsi Cadwaladr University Health Board, Bangor, Denbighshire, UK
- INSERM and Université Paris 11 Unit 935, Villejuif, France
- University of Warwick, Coventry, UK
| | - Annabelle Ballesta
- INSERM and Université Paris 11 Unit 935, Villejuif, France
- University of Warwick, Coventry, UK
| |
Collapse
|
11
|
Mteyrek A, Filipski E, Guettier C, Okyar A, Lévi F. Clock gene Per2 as a controller of liver carcinogenesis. Oncotarget 2018; 7:85832-85847. [PMID: 27494874 PMCID: PMC5349878 DOI: 10.18632/oncotarget.11037] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/13/2016] [Indexed: 01/01/2023] Open
Abstract
Environmental disruption of molecular clocks promoted liver carcinogenesis and accelerated cancer progression in rodents. We investigated the specific role of clock gene Period 2 (Per2) for liver carcinogenesis and clock-controlled cellular proliferation, genomic instability and inflammation. We assessed liver histopathology, and determined molecular and physiology circadian patterns in mice on chronic diethylnitrosamine (DEN) exposure according to constitutive Per2 mutation. First, we found that Per2m/m liver displayed profound alterations in proliferation gene expression, including c-Myc derepression, phase-advanced Wee1, and arrhythmic Ccnb1 and K-ras mRNA expressions, as well as deregulated inflammation, through arrhythmic liver IL-6 protein concentration, in the absence of any DEN exposure. These changes could then make Per2m/m mice more prone to subsequently develop liver cancers on DEN. Indeed, primary liver cancers were nearly fourfold as frequent in Per2m/m mice as compared to wild-type (WT), 4 months after DEN exposure. The liver molecular clock was severely disrupted throughout the whole carcinogenesis process, including the initiation stage, i.e. within the initial 17 days on DEN. Per2m/m further exhibited increased c-Myc and Ccnb1 mean 24h expressions, lack of P53 response, and arrhythmic ATM, Wee1 and Ccnb1 expressions. DEN-induced tumor related inflammation was further promoted through increased protein concentrations of liver IL-6 and TNF-α as compared to WT during carcinogenesis initiation. Per2 mutation severely deregulated liver gene or protein expressions related to three cancer hallmarks, including uncontrolled proliferation, genomic instability, and tumor promoting inflammation, and accelerated liver carcinogenesis several-fold. Clock gene Per2 acted here as a liver tumor suppressor from initiation to progression.
Collapse
Affiliation(s)
- Ali Mteyrek
- INSERM and Paris Sud University, UMRS 995, Team « Cancer Chronotherapy and Postoperative Liver », Campus CNRS, Villejuif F-94807, France
| | - Elisabeth Filipski
- INSERM and Paris Sud University, UMRS 995, Team « Cancer Chronotherapy and Postoperative Liver », Campus CNRS, Villejuif F-94807, France
| | - Catherine Guettier
- Assistance Publique-Hopitaux de Paris, Department of Medical Oncology and Laboratory of Anatomy and Pathologic Cytology, Hôpital Paul Brousse, Villejuif F-94800, France
| | - Alper Okyar
- Istanbul University Faculty of Pharmacy, Department of Pharmacology, Beyazit TR-34116, Istanbul, Turkey
| | - Francis Lévi
- INSERM and Paris Sud University, UMRS 995, Team « Cancer Chronotherapy and Postoperative Liver », Campus CNRS, Villejuif F-94807, France.,Assistance Publique-Hopitaux de Paris, Department of Medical Oncology and Laboratory of Anatomy and Pathologic Cytology, Hôpital Paul Brousse, Villejuif F-94800, France.,Warwick Medical School, Cancer Chronotherapy Unit, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
12
|
Chakraborty C, Sharma AR, Sharma G, Sarkar BK, Lee SS. The novel strategies for next-generation cancer treatment: miRNA combined with chemotherapeutic agents for the treatment of cancer. Oncotarget 2018; 9:10164-10174. [PMID: 29515800 PMCID: PMC5839381 DOI: 10.18632/oncotarget.24309] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/11/2017] [Indexed: 12/19/2022] Open
Abstract
Medical practitioners are recommending combination therapy in cancer for its various advantages. Combination therapy increases the efficacy of treatment due to its synergistic effects in cancer treatment. In this post-genomic era, microRNAs (miRNAs) are receiving attention for their role in human disease and disease therapy. In this review, we discuss the combination of miRNAs and chemotherapeutic agents for cancer treatment. Moreover, we attempted to portray the role of miRNAs in cancer therapy; outline combination therapy, especially chemo-combination therapy, and discuss the basis for miRNA-based chemo-combination therapies and chemo-combination therapy with miRNA for cancer treatment.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon 24252, Republic of Korea
- Department of Bioinformatics, School of Computer Sciences, Galgotias University, Greater Noida 203201, Uttar Pradesh, India
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon 24252, Republic of Korea
| | - Garima Sharma
- Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon 24252, Republic of Korea
| | - Bimal Kumar Sarkar
- Department of Physics, School of Basic and Applied Science, Galgotias University, Greater Noida 203201, Uttar Pradesh, India
| | - Sang-Soo Lee
- Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon 24252, Republic of Korea
| |
Collapse
|
13
|
Neonatal rat cardiomyocytes as an in vitro model for circadian rhythms in the heart. J Mol Cell Cardiol 2017; 112:58-63. [DOI: 10.1016/j.yjmcc.2017.08.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/13/2017] [Accepted: 08/16/2017] [Indexed: 02/03/2023]
|
14
|
Abstract
Chronotherapeutics aim at treating illnesses according to the endogenous biologic rhythms, which moderate xenobiotic metabolism and cellular drug response. The molecular clocks present in individual cells involve approximately fifteen clock genes interconnected in regulatory feedback loops. They are coordinated by the suprachiasmatic nuclei, a hypothalamic pacemaker, which also adjusts the circadian rhythms to environmental cycles. As a result, many mechanisms of diseases and drug effects are controlled by the circadian timing system. Thus, the tolerability of nearly 500 medications varies by up to fivefold according to circadian scheduling, both in experimental models and/or patients. Moreover, treatment itself disrupted, maintained, or improved the circadian timing system as a function of drug timing. Improved patient outcomes on circadian-based treatments (chronotherapy) have been demonstrated in randomized clinical trials, especially for cancer and inflammatory diseases. However, recent technological advances have highlighted large interpatient differences in circadian functions resulting in significant variability in chronotherapy response. Such findings advocate for the advancement of personalized chronotherapeutics through interdisciplinary systems approaches. Thus, the combination of mathematical, statistical, technological, experimental, and clinical expertise is now shaping the development of dedicated devices and diagnostic and delivery algorithms enabling treatment individualization. In particular, multiscale systems chronopharmacology approaches currently combine mathematical modeling based on cellular and whole-body physiology to preclinical and clinical investigations toward the design of patient-tailored chronotherapies. We review recent systems research works aiming to the individualization of disease treatment, with emphasis on both cancer management and circadian timing system–resetting strategies for improving chronic disease control and patient outcomes.
Collapse
Affiliation(s)
- Annabelle Ballesta
- Warwick Medical School (A.B., P.F.I., R.D., F.A.L.) and Warwick Mathematics Institute (A.B., D.A.R.), University of Warwick, Coventry, United Kingdom; Warwick Systems Biology and Infectious Disease Epidemiological Research Centre, Senate House, Coventry, United Kingdom (A.B., P.F.I., R.D., D.A.R., F.A.L.); INSERM-Warwick European Associated Laboratory "Personalising Cancer Chronotherapy through Systems Medicine" (C2SysMed), Unité mixte de Recherche Scientifique 935, Centre National de Recherche Scientifique Campus, Villejuif, France (A.B., P.F.I., R.D., D.A.R., F.A.L.); and Queen Elisabeth Hospital Birmingham, University Hospitals Birmingham National Health Service Foundation Trust, Cancer Unit, Edgbaston Birmingham, United Kingdom (P.F.I., F.A.L.)
| | - Pasquale F Innominato
- Warwick Medical School (A.B., P.F.I., R.D., F.A.L.) and Warwick Mathematics Institute (A.B., D.A.R.), University of Warwick, Coventry, United Kingdom; Warwick Systems Biology and Infectious Disease Epidemiological Research Centre, Senate House, Coventry, United Kingdom (A.B., P.F.I., R.D., D.A.R., F.A.L.); INSERM-Warwick European Associated Laboratory "Personalising Cancer Chronotherapy through Systems Medicine" (C2SysMed), Unité mixte de Recherche Scientifique 935, Centre National de Recherche Scientifique Campus, Villejuif, France (A.B., P.F.I., R.D., D.A.R., F.A.L.); and Queen Elisabeth Hospital Birmingham, University Hospitals Birmingham National Health Service Foundation Trust, Cancer Unit, Edgbaston Birmingham, United Kingdom (P.F.I., F.A.L.)
| | - Robert Dallmann
- Warwick Medical School (A.B., P.F.I., R.D., F.A.L.) and Warwick Mathematics Institute (A.B., D.A.R.), University of Warwick, Coventry, United Kingdom; Warwick Systems Biology and Infectious Disease Epidemiological Research Centre, Senate House, Coventry, United Kingdom (A.B., P.F.I., R.D., D.A.R., F.A.L.); INSERM-Warwick European Associated Laboratory "Personalising Cancer Chronotherapy through Systems Medicine" (C2SysMed), Unité mixte de Recherche Scientifique 935, Centre National de Recherche Scientifique Campus, Villejuif, France (A.B., P.F.I., R.D., D.A.R., F.A.L.); and Queen Elisabeth Hospital Birmingham, University Hospitals Birmingham National Health Service Foundation Trust, Cancer Unit, Edgbaston Birmingham, United Kingdom (P.F.I., F.A.L.)
| | - David A Rand
- Warwick Medical School (A.B., P.F.I., R.D., F.A.L.) and Warwick Mathematics Institute (A.B., D.A.R.), University of Warwick, Coventry, United Kingdom; Warwick Systems Biology and Infectious Disease Epidemiological Research Centre, Senate House, Coventry, United Kingdom (A.B., P.F.I., R.D., D.A.R., F.A.L.); INSERM-Warwick European Associated Laboratory "Personalising Cancer Chronotherapy through Systems Medicine" (C2SysMed), Unité mixte de Recherche Scientifique 935, Centre National de Recherche Scientifique Campus, Villejuif, France (A.B., P.F.I., R.D., D.A.R., F.A.L.); and Queen Elisabeth Hospital Birmingham, University Hospitals Birmingham National Health Service Foundation Trust, Cancer Unit, Edgbaston Birmingham, United Kingdom (P.F.I., F.A.L.)
| | - Francis A Lévi
- Warwick Medical School (A.B., P.F.I., R.D., F.A.L.) and Warwick Mathematics Institute (A.B., D.A.R.), University of Warwick, Coventry, United Kingdom; Warwick Systems Biology and Infectious Disease Epidemiological Research Centre, Senate House, Coventry, United Kingdom (A.B., P.F.I., R.D., D.A.R., F.A.L.); INSERM-Warwick European Associated Laboratory "Personalising Cancer Chronotherapy through Systems Medicine" (C2SysMed), Unité mixte de Recherche Scientifique 935, Centre National de Recherche Scientifique Campus, Villejuif, France (A.B., P.F.I., R.D., D.A.R., F.A.L.); and Queen Elisabeth Hospital Birmingham, University Hospitals Birmingham National Health Service Foundation Trust, Cancer Unit, Edgbaston Birmingham, United Kingdom (P.F.I., F.A.L.)
| |
Collapse
|
15
|
Mteyrek A, Filipski E, Guettier C, Oklejewicz M, van der Horst GTJ, Okyar A, Lévi F. Critical cholangiocarcinogenesis control by cryptochrome clock genes. Int J Cancer 2017; 140:2473-2483. [PMID: 28224616 DOI: 10.1002/ijc.30663] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/23/2017] [Accepted: 02/09/2017] [Indexed: 01/03/2023]
Abstract
A coordinated network of molecular circadian clocks in individual cells generates 24-hr rhythms in liver metabolism and proliferation. Circadian disruption through chronic jet lag or Per2 clock gene mutation was shown to accelerate hepatocarcinoma development in mice. As divergent effects were reported for clock genes Per and Cry regarding xenobiotic toxicity, we questioned the role of Cry1 and Cry2 in liver carcinogenesis. Male WT and Cry1-/- Cry2-/- mice (C57Bl/6 background) were chronically exposed to diethylnitrosamine (DEN) at ZT11. Rest-activity and body temperature rhythms were monitored using an implanted radiotransmitter. Serum aspartate and alanine aminotransferases (AST and ALT) were determined on four occasions during the progression stage. After 7 months, serum alkaline phosphatases (ALP) were determined, and livers were sampled for microscopic tumor nodule counting and histopathology. Five months after initiation of DEN treatment, we found that Cry1-/- Cry2-/- mice developed severe liver dysplasia, as evident from the increased AST, ALT and ALP levels, as compared to WT mice. DEN exposure induced primary liver cancers in nearly fivefold as many Cry1-/- Cry2-/- mice as compared to WT mice (p = 0.01). Microscopic study revealed no difference in the average number of hepatocarcinomas and a nearly eightfold increase in the average number of cholangiocarcinomas in Cry1-/- Cry2-/- mice, as compared to WT mice. This study validated the hypothesis that molecular circadian clock disruption dramatically increased chemically induced liver carcinogenesis. In addition, the pronounced shift toward cholangiocarcinoma in DEN exposed Cry1-/- Cry2-/- mice revealed a critical role of the Cry clock genes in bile duct carcinogenesis.
Collapse
Affiliation(s)
- Ali Mteyrek
- INSERM and Paris Sud university, UMRS 935, Team "Cancer Chronotherapy and Postoperative Liver", Campus CNRS, Villejuif, F-94807, France
| | - Elisabeth Filipski
- INSERM and Paris Sud university, UMRS 935, Team "Cancer Chronotherapy and Postoperative Liver", Campus CNRS, Villejuif, F-94807, France
| | - Catherine Guettier
- Department of Medical Oncology and Laboratory of Anatomy and Pathological Cytology, Hôpital Paul Brousse, Assistance Publique-Hopitaux de Paris, Villejuif, F-94800, France
| | - Malgorzata Oklejewicz
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Alper Okyar
- Department of Pharmacology, Istanbul University Faculty of Pharmacy, Beyazit, Istanbul, TR-34116, Turkey
| | - Francis Lévi
- INSERM and Paris Sud university, UMRS 935, Team "Cancer Chronotherapy and Postoperative Liver", Campus CNRS, Villejuif, F-94807, France.,Department of Medical Oncology and Laboratory of Anatomy and Pathological Cytology, Hôpital Paul Brousse, Assistance Publique-Hopitaux de Paris, Villejuif, F-94800, France.,Warwick Medical School, Cancer Chronotherapy Unit, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
16
|
Dibner C, Sadowski SM, Triponez F, Philippe J. The search for preoperative biomarkers for thyroid carcinoma: application of the thyroid circadian clock properties. Biomark Med 2017; 11:285-293. [DOI: 10.2217/bmm-2016-0316] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Accumulating evidence suggests that alterations in the molecular clocks underlying the circadian time-keeping system might be connected to changes in cell cycle, resulting in oncogenic transformation. The hypothalamic–pituitary–thyroid axis is driven by a circadian clock at several levels, with an endocrine feedback loop regulating thyroid-stimulating hormone. Changes in the expression levels of circadian and cell cycle markers may correlate with clinic-pathological characteristics in differentiated follicular thyroid carcinomas. Here we summarize recent advances in exploring complex regulation of the thyroid gland transcriptome and function by the circadian oscillator. We particularly focus on clinical implications of the parallel assessment of the circadian clock, cell-cycle and cell functionality markers in human thyroid tissue, which might help improving preoperative diagnostics of thyroid malignancies.
Collapse
Affiliation(s)
- Charna Dibner
- Division of Endocrinology, Diabetes, Hypertension & Nutrition, Department of Medical Specialties, University Hospitals of Geneva, Geneva, Switzerland
- Department of Cell Physiology & Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Frederic Triponez
- Thoracic & Endocrine Surgery, University Hospitals of Geneva, Geneva, Switzerland
| | - Jacques Philippe
- Department of Cell Physiology & Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
17
|
Abstract
This review summarizes various mathematical models of cell-autonomous mammalian circadian clock. We present the basics necessary for understanding of the cell-autonomous mammalian circadian oscillator, modern experimental data essential for its reconstruction and some special problems related to the validation of mathematical circadian oscillator models. This work compares existing mathematical models of circadian oscillator and the results of the computational studies of the oscillating systems. Finally, we discuss applications of the mathematical models of mammalian circadian oscillator for solving specific problems in circadian rhythm biology.
Collapse
|
18
|
Gnocchi D, Bruscalupi G. Circadian Rhythms and Hormonal Homeostasis: Pathophysiological Implications. BIOLOGY 2017; 6:biology6010010. [PMID: 28165421 PMCID: PMC5372003 DOI: 10.3390/biology6010010] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 01/10/2017] [Accepted: 01/23/2017] [Indexed: 02/07/2023]
Abstract
Over recent years, a deeper comprehension of the molecular mechanisms that control biological clocks and circadian rhythms has been achieved. In fact, many studies have contributed to unravelling the importance of the molecular clock for the regulation of our physiology, including hormonal and metabolic homeostasis. Here we will review the structure, organisation and molecular machinery that make our circadian clock work, and its relevance for the proper functioning of physiological processes. We will also describe the interconnections between circadian rhythms and endocrine homeostasis, as well as the underlying consequences that circadian dysregulations might have in the development of several pathologic affections. Finally, we will discuss how a better knowledge of such relationships might prove helpful in designing new therapeutic approaches for endocrine and metabolic diseases.
Collapse
Affiliation(s)
- Davide Gnocchi
- Department of Laboratory Medicine, Division of Clinical Chemistry, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm 14186, Sweden.
| | - Giovannella Bruscalupi
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome 00185, Italy.
| |
Collapse
|
19
|
Affiliation(s)
- Linda D. Siracusa
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail: (LDS); (KMB)
| | - Karen M. Bussard
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail: (LDS); (KMB)
| |
Collapse
|
20
|
Savolainen H, Meerlo P, Elsinga PH, Windhorst AD, Dierckx RA, Colabufo NA, van Waarde A, Luurtsema G. P-glycoprotein Function in the Rodent Brain Displays a Daily Rhythm, a Quantitative In Vivo PET Study. AAPS JOURNAL 2016; 18:1524-1531. [DOI: 10.1208/s12248-016-9973-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/08/2016] [Indexed: 12/21/2022]
|
21
|
Brown SA. Circadian Metabolism: From Mechanisms to Metabolomics and Medicine. Trends Endocrinol Metab 2016; 27:415-426. [PMID: 27113082 DOI: 10.1016/j.tem.2016.03.015] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 03/22/2016] [Accepted: 03/25/2016] [Indexed: 12/28/2022]
Abstract
The circadian clock directs nearly all aspects of diurnal physiology, including metabolism. Current research identifies several major axes by which it exerts these effects, including systemic signals as well as direct control of cellular processes by local clocks. This redundant network can transmit metabolic and timing information bidirectionally for optimal synchrony of metabolic processes. Recent advances in cellular profiling and metabolomics technologies have yielded unprecedented insights into the mechanisms behind this control. They have also helped to illuminate individual variation in these mechanisms that could prove important in personalized therapy for metabolic disease. Finally, these technologies have provided platforms with which to screen for the first potential drugs affecting clock-modulated metabolic function.
Collapse
Affiliation(s)
- Steven A Brown
- Chronobiology and Sleep Research Group, Institute of Pharmacology and Toxicology, University of Zürich, 190 Winterthurerstrasse, 8057 Zürich, Switzerland.
| |
Collapse
|
22
|
Mechanisms of tumor cell resistance to the current targeted-therapy agents. Tumour Biol 2016; 37:10021-39. [PMID: 27155851 DOI: 10.1007/s13277-016-5059-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/01/2016] [Indexed: 12/25/2022] Open
|
23
|
Post-transcriptional control of the mammalian circadian clock: implications for health and disease. Pflugers Arch 2016; 468:983-91. [PMID: 27108448 PMCID: PMC4893061 DOI: 10.1007/s00424-016-1820-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/30/2016] [Accepted: 04/04/2016] [Indexed: 12/11/2022]
Abstract
Many aspects of human physiology and behavior display rhythmicity with a period of approximately 24 h. Rhythmic changes are controlled by an endogenous time keeper, the circadian clock, and include sleep-wake cycles, physical and mental performance capability, blood pressure, and body temperature. Consequently, many diseases, such as metabolic, sleep, autoimmune and mental disorders and cancer, are connected to the circadian rhythm. The development of therapies that take circadian biology into account is thus a promising strategy to improve treatments of diverse disorders, ranging from allergic syndromes to cancer. Circadian alteration of body functions and behavior are, at the molecular level, controlled and mediated by widespread changes in gene expression that happen in anticipation of predictably changing requirements during the day. At the core of the molecular clockwork is a well-studied transcription-translation negative feedback loop. However, evidence is emerging that additional post-transcriptional, RNA-based mechanisms are required to maintain proper clock function. Here, we will discuss recent work implicating regulated mRNA stability, translation and alternative splicing in the control of the mammalian circadian clock, and its role in health and disease.
Collapse
|
24
|
Ortiz-Tudela E, Innominato PF, Rol MA, Lévi F, Madrid JA. Relevance of internal time and circadian robustness for cancer patients. BMC Cancer 2016; 16:285. [PMID: 27102330 PMCID: PMC4839139 DOI: 10.1186/s12885-016-2319-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 04/15/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Adequate circadian timing of cancer treatment schedules (chronotherapy) can enhance tolerance and efficacy several-fold in experimental and clinical situations. However, the optimal timing varies according to sex, genetic background and lifestyle. Here, we compute the individual phase of the Circadian Timing System to decipher the internal timing of each patient and find the optimal treatment timing. METHODS Twenty-four patients (11 male; 13 female), aged 36 to 77 years, with advanced or metastatic gastro-intestinal cancer were recruited. Inner wrist surface Temperature, arm Activity and Position (TAP) were recorded every 10 min for 12 days, divided into three 4-day spans before, during and after a course of a set chronotherapy schedule. Pertinent indexes, I < O and a new biomarker, DI (degree of temporal internal order maintenance), were computed for each patient and period. RESULTS Three circadian rhythms and the TAP rhythm grew less stable and more fragmented in response to treatment. Furthermore, large inter- and intra-individual changes were found for T, A, P and TAP patterns, with phase differences of up to 12 hours among patients. A moderate perturbation of temporal internal order was observed, but the administration of fixed chronomodulated chemotherapy partially resynchronized temperature and activity rhythms by the end of the study. CONCLUSIONS The integrated variable TAP, together with the asynchrony among rhythms revealed by the new biomarker DI, would help in the personalization of cancer chronotherapy, taking into account individual circadian phase markers.
Collapse
Affiliation(s)
- Elisabet Ortiz-Tudela
- />Chronobiology Laboratory, Department of Physiology, University of Murcia, IMIB-Arrixaca, Murcia, Spain
- />INSERM, UMRS 776 « Biological Rhythms and Cancers », Villejuif, France
- />Warwick Medical School, Cancer Chronotherapy Unit, Coventry, UK
| | - Pasquale F. Innominato
- />INSERM, UMRS 776 « Biological Rhythms and Cancers », Villejuif, France
- />APHP, Chronotherapy Unit, Department of Oncology, Paul Brousse Hospital, Villejuif, France
| | - Maria Angeles Rol
- />Chronobiology Laboratory, Department of Physiology, University of Murcia, IMIB-Arrixaca, Murcia, Spain
- />Chronobiology Laboratory, Department of Physiology, Faculty of Biology, University of Murcia, Campus de Espinardo, Espinardo, Murcia, Zip Code 30100 Spain
| | - Francis Lévi
- />INSERM, UMRS 776 « Biological Rhythms and Cancers », Villejuif, France
- />APHP, Chronotherapy Unit, Department of Oncology, Paul Brousse Hospital, Villejuif, France
- />Warwick Medical School, Cancer Chronotherapy Unit, Coventry, UK
| | - Juan Antonio Madrid
- />Chronobiology Laboratory, Department of Physiology, University of Murcia, IMIB-Arrixaca, Murcia, Spain
| |
Collapse
|
25
|
Dallmann R, Okyar A, Lévi F. Dosing-Time Makes the Poison: Circadian Regulation and Pharmacotherapy. Trends Mol Med 2016; 22:430-445. [PMID: 27066876 DOI: 10.1016/j.molmed.2016.03.004] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 03/17/2016] [Indexed: 12/14/2022]
Abstract
Daily rhythms in physiology significantly modulate drug pharmacokinetics and pharmacodynamics according to the time-of-day, a finding that has led to the concept of chronopharmacology. The importance of biological clocks for xenobiotic metabolism has gained increased attention with the discovery of the molecular circadian clockwork. Mechanistic understanding of the cell-autonomous molecular circadian oscillator and the circadian timing system as a whole has opened new conceptual and methodological lines of investigation to understand first, the clock's impact on a specific drug's daily variations or the effects/side effects of environmental substances, and second, how clock-controlled pathways are coordinated within a given tissue or organism. Today, there is an increased understanding of the circadian modulation of drug effects. Moreover, several molecular strategies are being developed to treat disease-dependent and drug-induced clock disruptions in humans.
Collapse
Affiliation(s)
- Robert Dallmann
- Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK; Warwick Systems Biology Centre, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | - Alper Okyar
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Beyazit-Istanbul, Turkey
| | - Francis Lévi
- Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK; Warwick Systems Biology Centre, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| |
Collapse
|
26
|
Dumitru M, Mohammad-Djafari A, Sain SB. Precise periodic components estimation for chronobiological signals through Bayesian Inference with sparsity enforcing prior. EURASIP JOURNAL ON BIOINFORMATICS & SYSTEMS BIOLOGY 2016; 2016:3. [PMID: 26834783 PMCID: PMC4720710 DOI: 10.1186/s13637-015-0033-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 12/07/2015] [Indexed: 11/10/2022]
Abstract
The toxicity and efficacy of more than 30 anticancer agents present very high variations, depending on the dosing time. Therefore, the biologists studying the circadian rhythm require a very precise method for estimating the periodic component (PC) vector of chronobiological signals. Moreover, in recent developments, not only the dominant period or the PC vector present a crucial interest but also their stability or variability. In cancer treatment experiments, the recorded signals corresponding to different phases of treatment are short, from 7 days for the synchronization segment to 2 or 3 days for the after-treatment segment. When studying the stability of the dominant period, we have to consider very short length signals relative to the prior knowledge of the dominant period, placed in the circadian domain. The classical approaches, based on Fourier transform (FT) methods are inefficient (i.e., lack of precision) considering the particularities of the data (i.e., the short length). Another particularity of the signals considered in such experiments is the level of noise: such signals are very noisy and establishing the periodic components that are associated with the biological phenomena and distinguishing them from the ones associated with the noise are difficult tasks. In this paper, we propose a new method for the estimation of the PC vector of biomedical signals, using the biological prior informations and considering a model that accounts for the noise. The experiments developed in cancer treatment context are recording signals expressing a limited number of periods. This is a prior information that can be translated as the sparsity of the PC vector. The proposed method considers the PC vector estimation as an Inverse Problem (IP) using the general Bayesian inference in order to infer the unknown of our model, i.e. the PC vector but also the hyperparameters (i.e the variances). The sparsity prior information is modeled using a sparsity enforcing prior law. In this paper, we propose a Student's t distribution, viewed as the marginal distribution of a bivariate normal-inverse gamma distribution. We build a general infinite Gaussian scale mixture (IGSM) hierarchical model where we assign prior distributions also for the hyperparameters. The expression of the joint posterior law of the unknown PC vector and hyperparameters is obtained via Bayes rule, and then, the unknowns are estimated via joint maximum a posteriori (JMAP) or posterior mean (PM). For the PM estimator, the expression of the posterior distribution is approximated by a separable one, via variational Bayesian approximation (VBA), using the Kullback-Leibler (KL) divergence. For the PM estimation, two possibilities are considered: an approximation with a partially separable distribution and an approximation with a fully separable one. Both resulting algorithms corresponding to the PM estimation and the one corresponding to the JMAP estimation are iterative algorithms. The algorithms are presented in detail and are compared with the ones corresponding to the Gaussian model. We examine the convergency of the algorithms and give simulation results to compare their performances. Finally, we show simulation results on synthetic and real data in cancer treatment applications. The real data considered in this paper examines the rest-activity patterns of KI/KI Per2::luc mouse, aged 10 weeks, singly housed in RealTime Biolumicorder (RT-BIO).
Collapse
Affiliation(s)
- Mircea Dumitru
- Laboratoire des signaux et systèmes (L2S), UMR 8506 CNRS-CentraleSupélec-Univ. Paris-Sud, CentraleSupélec, Plateau de Moulon, Gif-sur-Yvette, 91192 France ; Rythmes Biologiques et Cancers (RBC), UMR 776 INSERM-Univ. Paris-Sud, Campus CNRS, Villejuif, 94801 France
| | - Ali Mohammad-Djafari
- Laboratoire des signaux et systèmes (L2S), UMR 8506 CNRS-CentraleSupélec-Univ. Paris-Sud, CentraleSupélec, Plateau de Moulon, Gif-sur-Yvette, 91192 France
| | - Simona Baghai Sain
- Laboratoire des signaux et systèmes (L2S), UMR 8506 CNRS-CentraleSupélec-Univ. Paris-Sud, CentraleSupélec, Plateau de Moulon, Gif-sur-Yvette, 91192 France ; Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10126 Italy
| |
Collapse
|
27
|
Abstract
SIGNIFICANCE The redox code is a set of principles that defines the positioning of the nicotinamide adenine dinucleotide (NAD, NADP) and thiol/disulfide and other redox systems as well as the thiol redox proteome in space and time in biological systems. The code is richly elaborated in an oxygen-dependent life, where activation/deactivation cycles involving O₂ and H₂O₂ contribute to spatiotemporal organization for differentiation, development, and adaptation to the environment. Disruption of this organizational structure during oxidative stress represents a fundamental mechanism in system failure and disease. RECENT ADVANCES Methodology in assessing components of the redox code under physiological conditions has progressed, permitting insight into spatiotemporal organization and allowing for identification of redox partners in redox proteomics and redox metabolomics. CRITICAL ISSUES Complexity of redox networks and redox regulation is being revealed step by step, yet much still needs to be learned. FUTURE DIRECTIONS Detailed knowledge of the molecular patterns generated from the principles of the redox code under defined physiological or pathological conditions in cells and organs will contribute to understanding the redox component in health and disease. Ultimately, there will be a scientific basis to a modern redox medicine.
Collapse
Affiliation(s)
- Dean P. Jones
- Department of Medicine, Emory University, Atlanta, Georgia
| | - Helmut Sies
- Institute for Biochemistry and Molecular Biology I, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Leibniz Research Institute for Environmental Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
28
|
Golombek DA, Pandi-Perumal SR, Brown GM, Cardinali DP. Some implications of melatonin use in chronopharmacology of insomnia. Eur J Pharmacol 2015; 762:42-8. [DOI: 10.1016/j.ejphar.2015.05.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 04/10/2015] [Accepted: 05/11/2015] [Indexed: 12/20/2022]
|
29
|
Dulong S, Ballesta A, Okyar A, Lévi F. Identification of Circadian Determinants of Cancer Chronotherapy through In Vitro Chronopharmacology and Mathematical Modeling. Mol Cancer Ther 2015; 14:2154-64. [PMID: 26141947 DOI: 10.1158/1535-7163.mct-15-0129] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 06/23/2015] [Indexed: 11/16/2022]
Abstract
Cancer chronotherapy aims at enhancing tolerability and efficacy of anticancer drugs through their delivery according to circadian clocks. However, mouse and patient data show that lifestyle, sex, genetics, drugs, and cancer can modify both host circadian clocks and metabolism pathways dynamics, and thus the optimal timing of drug administration. The mathematical modeling of chronopharmacology could indeed help moderate optimal timing according to patient-specific determinants. Here, we combine in vitro and in silico methods, in order to characterize the critical molecular pathways that drive the chronopharmacology of irinotecan, a topoisomerase I inhibitor with complex metabolism and known activity against colorectal cancer. Large transcription rhythms moderated drug bioactivation, detoxification, transport, and target in synchronized colorectal cancer cell cultures. These molecular rhythms translated into statistically significant changes in pharmacokinetics and pharmacodynamics according to in vitro circadian drug timing. The top-up of the multiple coordinated chronopharmacology pathways resulted in a four-fold difference in irinotecan-induced apoptosis according to drug timing. Irinotecan cytotoxicity was directly linked to clock gene BMAL1 expression: The least apoptosis resulted from drug exposure near BMAL1 mRNA nadir (P < 0.001), whereas clock silencing through siBMAL1 exposure ablated all the chronopharmacology mechanisms. Mathematical modeling highlighted circadian bioactivation and detoxification as the most critical determinants of irinotecan chronopharmacology. In vitro-in silico systems chronopharmacology is a new powerful methodology for identifying the main mechanisms at work in order to optimize circadian drug delivery.
Collapse
Affiliation(s)
- Sandrine Dulong
- INSERM, UMR-SO776 "Rythmes biologiques et cancers," CNRS Campus, Villejuif, France. Université Paris-Sud, Orsay, France
| | - Annabelle Ballesta
- Warwick Systems Biology Centre, Coventry, United Kingdom. Cancer Chronotherapy Unit, Warwick Medical School, Coventry, United Kingdom
| | - Alper Okyar
- INSERM, UMR-SO776 "Rythmes biologiques et cancers," CNRS Campus, Villejuif, France. Université Paris-Sud, Orsay, France. Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey
| | - Francis Lévi
- INSERM, UMR-SO776 "Rythmes biologiques et cancers," CNRS Campus, Villejuif, France. Université Paris-Sud, Orsay, France. Warwick Systems Biology Centre, Coventry, United Kingdom. Cancer Chronotherapy Unit, Warwick Medical School, Coventry, United Kingdom. Assistance Publique-Hôpitaux de Paris, Unité de Chronothérapie, Département d'oncologie médicale, Hôpital Paul Brousse, Villejuif, France.
| |
Collapse
|
30
|
Litvinenko GI, Shurlygina AV, Dergacheva TI, Mel'nikova EV, Trufakin VA. Chrono- and Immunocorrection of Inflammatory Disorders of Internal Reproductive Organs in Women of Reproductive Age. Bull Exp Biol Med 2015; 159:62-5. [PMID: 26033592 DOI: 10.1007/s10517-015-2890-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Indexed: 10/23/2022]
Abstract
We compared the effectiveness of immunomodulators used in the treatment of patients with chronic salpingitis and oophoritis with or without changes in succinate dehydrogenase (SDH) activity in blood lymphocytes at incubation with the drug. Diurnal variations in individual reaction of SDH in blood lymphocytes to thymalin or ridostin were revealed. In the groups of women receiving ridostin or thymalin during the reaction of lymphocyte SDH to it, improvement of clinical laboratory and immunological parameters was observed in the majority of the patients and no effect was found in a lesser group of patients than in the groups treated with drugs during the absence of lymphocyte SDH reaction thereto. The timing of the presence of SDH reaction to drugs in the immunocompetent cells makes it possible to set the optimal daily regime of their application and to select a drug that would be most effective in each particular case.
Collapse
Affiliation(s)
- G I Litvinenko
- Research Institute of Physiology and Fundamental Medicine, Novosibirsk, Russia,
| | | | | | | | | |
Collapse
|
31
|
Wallach T, Kramer A. Chemical chronobiology: Toward drugs manipulating time. FEBS Lett 2015; 589:1530-8. [DOI: 10.1016/j.febslet.2015.04.059] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 04/29/2015] [Accepted: 04/29/2015] [Indexed: 01/01/2023]
|
32
|
Abstract
Most living beings, including humans, must adapt to rhythmically occurring daily changes in their environment that are generated by the Earth's rotation. In the course of evolution, these organisms have acquired an internal circadian timing system that can anticipate environmental oscillations and thereby govern their rhythmic physiology in a proactive manner. In mammals, the circadian timing system coordinates virtually all physiological processes encompassing vigilance states, metabolism, endocrine functions and cardiovascular activity. Research performed during the past two decades has established that almost every cell in the body possesses its own circadian timekeeper. The resulting clock network is organized in a hierarchical manner. A master pacemaker, located in the suprachiasmatic nucleus (SCN) of the hypothalamus, is synchronized every day to the photoperiod. In turn, the SCN determines the phase of the cellular clocks in peripheral organs through a wide variety of signalling pathways dependent on feeding cycles, body temperature rhythms, oscillating bloodborne signals and, in some organs, inputs of the peripheral nervous system. A major purpose of circadian clocks in peripheral tissues is the temporal orchestration of key metabolic processes, including food processing (metabolism and xenobiotic detoxification). Here, we review some recent findings regarding the molecular and cellular composition of the circadian timing system and discuss its implications for the temporal coordination of metabolism in health and disease. We focus primarily on metabolic disorders such as obesity and type 2 diabetes, although circadian misalignments (shiftwork or 'social jet lag') have also been associated with the aetiology of human malignancies.
Collapse
Affiliation(s)
- C Dibner
- Department of Endocrinology, Diabetes, Nutrition and Hypertension, University Hospital of Geneva, Geneva, Switzerland
| | | |
Collapse
|
33
|
Abstract
Circadian rhythms are of crucial importance for cellular and physiological functions of the brain and body. Chronobiology has a prominent role in rheumatoid arthritis (RA), with major symptoms such as joint pain and stiffness being most pronounced in the morning, possibly mediated by circadian rhythms of cytokine and hormone levels. Chronobiological principles imply that tailoring the timing of treatments to the circadian rhythm of individual patients (chronotherapy) could optimize results. Trials of NSAID or methotrexate chronotherapy for patients with RA suggest such an approach can improve outcomes and reduce adverse effects. The most compelling evidence for RA chronotherapy, however, is that coordinating the timing of glucocorticoid therapy to coincide with the nocturnal increase in blood IL-6 levels results in reduced morning stiffness and pain compared with the same glucocorticoid dose taken in the morning. Aside from optimizing relief of the core symptoms of RA, chronotherapy might also relieve important comorbid conditions such as depression and sleep disturbances. Surprisingly, chronobiology is not mentioned in official guidelines for conducting RA drug registration trials. Given the imperative to achieve the best value with approved drugs and health budgets, the time is ripe to translate the 'circadian concept' in rheumatology from bench to bedside.
Collapse
|
34
|
Baumann A, Feilhauer K, Bischoff SC, Froy O, Lorentz A. IgE-dependent activation of human mast cells and fMLP-mediated activation of human eosinophils is controlled by the circadian clock. Mol Immunol 2014; 64:76-81. [PMID: 25466613 DOI: 10.1016/j.molimm.2014.10.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/29/2014] [Accepted: 10/29/2014] [Indexed: 12/20/2022]
Abstract
Symptoms of allergic attacks frequently exhibit diurnal variations. Accordingly, we could recently demonstrate that mast cells and eosinophils - known as major effector cells of allergic diseases - showed an intact circadian clock. Here, we analyzed the role of the circadian clock in the functionality of mast cells and eosinophils. Human intestinal mast cells (hiMC) were isolated from intestinal mucosa; human eosinophils were isolated from peripheral blood. HiMC and eosinophils were synchronized by dexamethasone before stimulation every 4h around the circadian cycle by FcɛRI crosslinking or fMLP, respectively. Signaling molecule activation was examined using Western blot, mRNA expression by real-time RT-PCR, and mediator release by multiplex analysis. CXCL8 and CCL2 were expressed and released in a circadian manner by both hiMC and eosinophils in response to activation. Moreover, phosphorylation of ERK1/2, known to be involved in activation of hiMC and eosinophils, showed circadian rhythms in both cell types. Interestingly, all clock genes hPer1, hPer2, hCry1, hBmal1, and hClock were expressed in a similar circadian pattern in activated and unstimulated cells indicating that the local clock controls hiMC and eosinophils and subsequently allergic reactions but not vice versa.
Collapse
Affiliation(s)
- Anja Baumann
- Department of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | | | - Stephan C Bischoff
- Department of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Oren Froy
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Axel Lorentz
- Department of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany.
| |
Collapse
|
35
|
Selen A, Dickinson PA, Müllertz A, Crison JR, Mistry HB, Cruañes MT, Martinez MN, Lennernäs H, Wigal TL, Swinney DC, Polli JE, Serajuddin AT, Cook JA, Dressman JB. The Biopharmaceutics Risk Assessment Roadmap for Optimizing Clinical Drug Product Performance. J Pharm Sci 2014; 103:3377-3397. [DOI: 10.1002/jps.24162] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 08/20/2014] [Accepted: 08/22/2014] [Indexed: 02/06/2023]
|
36
|
|
37
|
Comas M, Kuropatwinski KK, Wrobel M, Toshkov I, Antoch MP. Daily rhythms are retained both in spontaneously developed sarcomas and in xenografts grown in immunocompromised SCID mice. Chronobiol Int 2014; 31:901-10. [PMID: 24933324 PMCID: PMC4358746 DOI: 10.3109/07420528.2014.925469] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The circadian clock generates and regulates many daily physiological, metabolic and behavioral rhythms as well as acute responses to various types of stresses including those induced by anticancer treatment. It has been proposed that modulatory function of the clock may be used for improving the therapeutic efficacy of established anti-cancer treatments. In order to rationally exploit this mechanism, more information is needed to fully characterize the functional status of the molecular clock in tumors of different cellular origin; however, the data describing tumor clocks are still inconsistent. Here we tested the status of clock in two models of tumors derived from connective tissue: sarcomas spontaneously developed in p53-deficient mice and human fibrosarcoma cells grown as xenografts in immunocompromised severe combined immunodeficient (SCID) mice. We show that both types of tumors retain a functional clock, which is synchronized in phase with normal tissues. We also show that spontaneously developed tumors are not only oscillating in the context of an organism where they receive hormonal and metabolic signals but continue oscillating ex vivo in tissue explants demonstrating that tumors have functional clocks capable of timing all their functions. We also provide evidence that similar to liver, tumors can be synchronized by food availability independent of the central pacemaker in the suprachiasmatic nuclei (SCN). These data provide the basis for the design of anticancer therapies that take into account the circadian metabolic and physiological patterns of both the tumor and normal tissues.
Collapse
Affiliation(s)
- Maria Comas
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Karen K. Kuropatwinski
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | | | - Marina P. Antoch
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| |
Collapse
|
38
|
Nanocarrier mediated delivery of siRNA/miRNA in combination with chemotherapeutic agents for cancer therapy: current progress and advances. J Control Release 2014; 194:238-56. [PMID: 25204288 DOI: 10.1016/j.jconrel.2014.09.001] [Citation(s) in RCA: 267] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/29/2014] [Accepted: 09/01/2014] [Indexed: 12/21/2022]
Abstract
Chemotherapeutic agents have certain limitations when it comes to treating cancer, the most important being severe side effects along with multidrug resistance developed against them. Tumor cells exhibit drug resistance due to activation of various cellular level processes viz. activation of drug efflux pumps, anti-apoptotic defense mechanisms, etc. Currently, RNA interference (RNAi) based therapeutic approaches are under vibrant scrutinization to seek cancer cure. Especially small interfering RNA (siRNA) and micro RNA (miRNA), are able to knock down the carcinogenic genes by targeting the mRNA expression, which underlies the uniqueness of this therapeutic approach. Recent research focus in the regime of cancer therapy involves the engagement of targeted delivery of siRNA/miRNA in combinations with other therapeutic agents (such as gene, DNA or chemotherapeutic drug) for targeting permeability glycoprotein (P-gp), multidrug resistant protein 1 (MRP-1), B-cell lymphoma (BCL-2) and other targets that are mainly responsible for resistance in cancer therapy. RNAi-chemotherapeutic drug combinations have also been found to be effective against different molecular targets as well and can increase the sensitization of cancer cells to therapy several folds. However, due to stability issues associated with siRNA/miRNA suitable protective carrier is needed and nanotechnology based approaches have been widely explored to overcome these drawbacks. Furthermore, it has been univocally advocated that the co-delivery of siRNA/miRNA with other chemodrugs significantly enhances their capability to overcome cancer resistance compared to naked counterparts. The objective of this article is to review recent nanocarrier based approaches adopted for the delivery of siRNA/miRNA combinations with other anticancer agents (siRNA/miRNA/pDNA/chemodrugs) to treat cancer.
Collapse
|
39
|
Innominato PF, Roche VP, Palesh OG, Ulusakarya A, Spiegel D, Lévi FA. The circadian timing system in clinical oncology. Ann Med 2014; 46:191-207. [PMID: 24915535 DOI: 10.3109/07853890.2014.916990] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The circadian timing system (CTS) controls several critical molecular pathways for cancer processes and treatment effects over the 24 hours, including drug metabolism, cell cycle, apoptosis, and DNA damage repair mechanisms. This results in the circadian time dependency of whole-body and cellular pharmacokinetics and pharmacodynamics of anticancer agents. However, CTS robustness and phase varies among cancer patients, based on circadian monitoring of rest- activity, body temperature, sleep, and/or hormonal secretion rhythms. Circadian disruption has been further found in up to 50% of patients with metastatic cancer. Such disruption was associated with poor outcomes, including fatigue, anorexia, sleep disorders, and short progression-free and overall survival. Novel, minimally invasive devices have enabled continuous CTS assessment in non-hospitalized cancer patients. They revealed up to 12-hour differences in individual circadian phase. Taken together, the data support the personalization of chronotherapy. This treatment method aims at the adjustment of cancer treatment delivery according to circadian rhythms, using programmable-in-time pumps or novel release formulations, in order to increase both efficacy and tolerability. A fixed oxaliplatin, 5-fluorouracil and leucovorin chronotherapy protocol prolonged median overall survival in men with metastatic colorectal cancer by 3.3 months as compared to conventional delivery, according to a meta-analysis (P=0.009). Further analyses revealed the need for the prevention of circadian disruption or the restoration of robust circadian function in patients on chronotherapy, in order to further optimize treatment effects. The strengthening of external synchronizers could meet such a goal, through programmed exercise, meal timing, light exposure, improved social support, sleep scheduling, and the properly timed administration of drugs that target circadian clocks. Chrono-rehabilitation warrants clinical testing for improving quality of life and survival in cancer patients.
Collapse
Affiliation(s)
- Pasquale F Innominato
- INSERM, UMRS 776 'Biological Rhythms and Cancers', Campus CNRS , 7 rue Guy Môquet, 94801 Villejuif Cedex , France
| | | | | | | | | | | |
Collapse
|
40
|
Silver R, Kriegsfeld LJ. Circadian rhythms have broad implications for understanding brain and behavior. Eur J Neurosci 2014; 39:1866-80. [PMID: 24799154 DOI: 10.1111/ejn.12593] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/14/2014] [Accepted: 03/19/2014] [Indexed: 12/28/2022]
Abstract
Circadian rhythms are generated by an endogenously organized timing system that drives daily rhythms in behavior, physiology and metabolism. In mammals, the suprachiasmatic nucleus (SCN) of the hypothalamus is the locus of a master circadian clock. The SCN is synchronized to environmental changes in the light:dark cycle by direct, monosynaptic innervation via the retino-hypothalamic tract. In turn, the SCN coordinates the rhythmic activities of innumerable subordinate clocks in virtually all bodily tissues and organs. The core molecular clockwork is composed of a transcriptional/post-translational feedback loop in which clock genes and their protein products periodically suppress their own transcription. This primary loop connects to downstream output genes by additional, interlocked transcriptional feedback loops to create tissue-specific 'circadian transcriptomes'. Signals from peripheral tissues inform the SCN of the internal state of the organism and the brain's master clock is modified accordingly. A consequence of this hierarchical, multilevel feedback system is that there are ubiquitous effects of circadian timing on genetic and metabolic responses throughout the body. This overview examines landmark studies in the history of the study of circadian timing system, and highlights our current understanding of the operation of circadian clocks with a focus on topics of interest to the neuroscience community.
Collapse
Affiliation(s)
- Rae Silver
- Department of Psychology, Barnard College, Columbia University, New York, NY, USA; Department of Psychology, Columbia University, Mail Code 5501, 1190 Amsterdam Avenue, New York, NY, 10027, USA; Department of Pathology and Cell Biology, Columbia University Health Sciences, New York, NY, USA
| | | |
Collapse
|
41
|
Tahara Y, Shibata S. Chrono-biology, chrono-pharmacology, and chrono-nutrition. J Pharmacol Sci 2014; 124:320-35. [PMID: 24572815 DOI: 10.1254/jphs.13r06cr] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The circadian clock system in mammals drives many physiological processes including the daily rhythms of sleep-wake behavior, hormonal secretion, and metabolism. This system responds to daily environmental changes, such as the light-dark cycle, food intake, and drug administration. In this review, we focus on the central and peripheral circadian clock systems in response to drugs, food, and nutrition. We also discuss the adaptation and anticipation mechanisms of our body with regard to clock system regulation of various kinetic and dynamic pathways, including absorption, distribution, metabolism, and excretion of drugs and nutrients. "Chrono-pharmacology" and "chrono-nutrition" are likely to become important research fields in chrono-biological studies.
Collapse
Affiliation(s)
- Yu Tahara
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Japan
| | | |
Collapse
|
42
|
Roche VP, Mohamad-Djafari A, Innominato PF, Karaboué A, Gorbach A, Lévi FA. Thoracic surface temperature rhythms as circadian biomarkers for cancer chronotherapy. Chronobiol Int 2014; 31:409-20. [PMID: 24397341 DOI: 10.3109/07420528.2013.864301] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The disruption of the temperature circadian rhythm has been associated with cancer progression, while its amplification resulted in cancer inhibition in experimental tumor models. The current study investigated the relevance of skin surface temperature rhythms as biomarkers of the Circadian Timing System (CTS) in order to optimize chronotherapy timing in individual cancer patients. Baseline skin surface temperature at four sites and wrist accelerations were measured every minute for 4 days in 16 patients with metastatic gastro-intestinal cancer before chronotherapy administration. Temperature and rest-activity were recorded, respectively, with wireless skin surface temperature patches (Respironics, Phillips) and an actigraph (Ambulatory Monitoring). Both variables were further monitored in 10 of these patients during and after a 4-day course of a fixed chronotherapy protocol. Collected at baseline, during and after therapy longitudinal data sets were processed using Fast Fourier Transform Cosinor and Linear Discriminant Analyses methods. A circadian rhythm was statistically validated with a period of 24 h (p < 0.05) for 49/61 temperature time series (80.3%), and 15/16 rest-activity patterns (93.7%) at baseline. However, individual circadian amplitudes varied from 0.04 °C to 2.86 °C for skin surface temperature (median, 0.72 °C), and from 16.6 to 146.1 acc/min for rest-activity (median, 88.9 acc/min). Thirty-nine pairs of baseline temperature and rest-activity time series (75%) were correlated (r > |0.7|; p < 0.05). Individual circadian acrophases at baseline were scattered from 15:18 to 6:05 for skin surface temperature, and from 12:19 to 15:18 for rest-activity, with respective median values of 01:10 (25-75% quartiles, 22:35-3:07) and 14:12 (13:14-14:31). The circadian patterns in skin surface temperature and rest-activity persisted or were amplified during and after fixed chronotherapy delivery for 5/10 patients. In contrast, transient or sustained disruption of these biomarkers was found for the five other patients, as indicated by the lack of any statistically significant dominant period in the circadian range. No consistent correlation (r < |0.7|, p ≥ 0.05) was found between paired rest-activity and temperature time series during fixed chronotherapy delivery. In conclusion, large inter-patient differences in circadian amplitudes and acrophases of skin surface temperature were demonstrated for the first time in cancer patients, despite rather similar rest-activity acrophases. The patient-dependent coupling between both CTS biomarkers, and its possible alteration on a fixed chronotherapy protocol, support the concept of personalized cancer chronotherapy.
Collapse
|
43
|
Li XM, Mohammad-Djafari A, Dumitru M, Dulong S, Filipski E, Siffroi-Fernandez S, Mteyrek A, Scaglione F, Guettier C, Delaunay F, Lévi F. A circadian clock transcription model for the personalization of cancer chronotherapy. Cancer Res 2013; 73:7176-88. [PMID: 24154875 DOI: 10.1158/0008-5472.can-13-1528] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Circadian timing of anticancer medications has improved treatment tolerability and efficacy several fold, yet with intersubject variability. Using three C57BL/6-based mouse strains of both sexes, we identified three chronotoxicity classes with distinct circadian toxicity patterns of irinotecan, a topoisomerase I inhibitor active against colorectal cancer. Liver and colon circadian 24-hour expression patterns of clock genes Rev-erbα and Bmal1 best discriminated these chronotoxicity classes, among 27 transcriptional 24-hour time series, according to sparse linear discriminant analysis. An 8-hour phase advance was found both for Rev-erbα and Bmal1 mRNA expressions and for irinotecan chronotoxicity in clock-altered Per2(m/m) mice. The application of a maximum-a-posteriori Bayesian inference method identified a linear model based on Rev-erbα and Bmal1 circadian expressions that accurately predicted for optimal irinotecan timing. The assessment of the Rev-erbα and Bmal1 regulatory transcription loop in the molecular clock could critically improve the tolerability of chemotherapy through a mathematical model-based determination of host-specific optimal timing.
Collapse
MESH Headings
- ARNTL Transcription Factors/genetics
- Animals
- Camptothecin/administration & dosage
- Camptothecin/analogs & derivatives
- Chronotherapy/methods
- Circadian Clocks/genetics
- Colonic Neoplasms/drug therapy
- Colonic Neoplasms/genetics
- Colonic Neoplasms/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- Irinotecan
- Liver Neoplasms, Experimental/drug therapy
- Liver Neoplasms, Experimental/genetics
- Liver Neoplasms, Experimental/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Inbred DBA
- Models, Biological
- Nuclear Receptor Subfamily 1, Group D, Member 1/genetics
- Period Circadian Proteins/biosynthesis
- Period Circadian Proteins/genetics
- Period Circadian Proteins/metabolism
- Precision Medicine/methods
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Topoisomerase I Inhibitors/administration & dosage
Collapse
Affiliation(s)
- Xiao-Mei Li
- Authors' Affiliations: INSERM UMRS 776 «Rythmes biologiques et cancers», Assistance Publique-Hôpitaux de Paris, Laboratoire d'Anatomie et Cytologie Pathologiques, Assistance Publique-Hôpitaux de Paris, Unité de Chronothérapie, Département d'Oncologie Médicale, Hôpital Paul Brousse, Villejuif; Université Paris-Sud, Orsay; Laboratoire des Signaux et Systèmes, UMR8506 CNRS-SUPELEC-UNIV PARIS-SUD, Gif-sur-Yvette; University de Nice-Sophia-Antipolis, Institute de Biologie Valrose, CNRS UMR 7277, INSERM 1091, Nice, France; and Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Ortiz-Tudela E, Iurisci I, Beau J, Karaboue A, Moreau T, Rol MA, Madrid JA, Lévi F, Innominato PF. The circadian rest-activity rhythm, a potential safety pharmacology endpoint of cancer chemotherapy. Int J Cancer 2013; 134:2717-25. [PMID: 24510611 DOI: 10.1002/ijc.28587] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 10/17/2013] [Accepted: 10/23/2013] [Indexed: 02/03/2023]
Abstract
The robustness of the circadian timing system (CTS) was correlated to quality of life and predicted for improved survival in cancer patients. However, chemotherapy disrupted the CTS according to dose and circadian timing in mice. A continuous and repeated measures longitudinal design was implemented here to characterize CTS dynamics in patients receiving a fixed circadian-based chemotherapy protocol. The rest-activity rhythm of 49 patients with advanced cancer was monitored using a wrist actigraph for 13 days split into four consecutive spans of 3-4 days each, i.e., before, during, right after and late after a fixed chronotherapy course. The relative amount of activity in bed vs. out of bed (I<O, main endpoint), the autocorrelation coefficient r24, the relative 24-hr amplitude (Amp), interdaily stability (IS) and intradaily variability (IV) were compared according to study span. Circadian disruption (I<O ≤ 97.5%) resulted from the administration of the fixed chronotherapy protocols, with all five rest-activity rhythm parameters being worsened in the whole group of patients (p < 0.05). Mean parameter values subsequently recovered to near baseline values. The occurrence of circadian disruption on chemotherapy was associated with a higher risk of clinically relevant fatigue (p = 0.028) or body weight loss (p = 0.05). Four CTS dynamic patterns characterized treatment response including no change (9.5% of the patients); improvement (14.3%); alteration and complete recovery (31%) or sustained deterioration (45%), possibly due to inadequate chronotherapy dosing and/or timing. Improved clinical tolerability could result from the minimization of circadian disruption through the personalization of chronotherapy delivery.
Collapse
Affiliation(s)
- Elisabet Ortiz-Tudela
- Department of Physiology Chronobiology Laboratory, University of Murcia, Murcia, Spain; INSERM, UMRS776, Biological Rhythms and Cancers, Villejuif, France
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Vandamme D, Minke BA, Fitzmaurice W, Kholodenko BN, Kolch W. Systems biology-embedded target validation: improving efficacy in drug discovery. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2013; 6:1-11. [PMID: 24214316 DOI: 10.1002/wsbm.1253] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/24/2013] [Accepted: 10/11/2013] [Indexed: 12/31/2022]
Abstract
The pharmaceutical industry is faced with a range of challenges with the ever-escalating costs of drug development and a drying out of drug pipelines. By harnessing advances in -omics technologies and moving away from the standard, reductionist model of drug discovery, there is significant potential to reduce costs and improve efficacy. Embedding systems biology approaches in drug discovery, which seek to investigate underlying molecular mechanisms of potential drug targets in a network context, will reduce attrition rates by earlier target validation and the introduction of novel targets into the currently stagnant market. Systems biology approaches also have the potential to assist in the design of multidrug treatments and repositioning of existing drugs, while stratifying patients to give a greater personalization of medical treatment.
Collapse
Affiliation(s)
- Drieke Vandamme
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | | | | | | | | |
Collapse
|
46
|
Pharmacological modulators of the circadian clock as potential therapeutic drugs: focus on genotoxic/anticancer therapy. Handb Exp Pharmacol 2013:289-309. [PMID: 23604484 DOI: 10.1007/978-3-642-25950-0_12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The circadian clock is an evolutionary conserved intrinsic timekeeping mechanism that controls daily variations in multiple biological processes. One important process that is modulated by the circadian clock is an organism's response to genotoxic stress, such as that induced by anticancer drug and radiation treatments. Numerous observations made in animal models have convincingly demonstrated that drug-induced toxicity displays prominent daily variations; therefore, undesirable side effects could be significantly reduced by administration of drugs at specific times when they are better tolerated. In some cases, these critical times of the day coincide with increased sensitivity of tumor cells allowing for a greater therapeutic index. Despite encouraging results of chronomodulated therapies, our knowledge of molecular mechanisms underlying these observations remains sketchy. Here we review recent progress in deciphering mechanistic links between circadian and stress response pathways with a focus on how these findings could be applied to anticancer clinical practice. We discuss the potential for using high-throughput screens to identify small molecules that can modulate basic parameters of the entire circadian machinery as well as functional activity of its individual components. We also describe the discovery of several small molecules that can pharmacologically modulate clock and that have a potential to be developed into therapeutic drugs. We believe that translational applications of clock-targeting pharmaceuticals are twofold: they may be developed into drugs to treat circadian-related disorders or used in combination with existing therapeutic strategies to improve therapeutic index of a given genotoxic treatment via the intrinsic clock mechanism.
Collapse
|
47
|
Abstract
Epigenetic control, which includes DNA methylation and histone modifications, leads to chromatin remodeling and regulated gene expression. Remodeling of chromatin constitutes a critical interface of transducing signals, such as light or nutrient availability, and how these are interpreted by the cell to generate permissive or silenced states for transcription. CLOCK-BMAL1-mediated activation of clock-controlled genes (CCGs) is coupled to circadian changes in histone modification at their promoters. Several chromatin modifiers, such as the deacetylases SIRT1 and HDAC3 or methyltransferase MLL1, have been shown to be recruited to the promoters of the CCGs in a circadian manner. Interestingly, the central element of the core clock machinery, the transcription factor CLOCK, also possesses histone acetyltransferase activity. Rhythmic expression of the CCGs is abolished in the absence of these chromatin modifiers. Here we will discuss the evidence demonstrating that chromatin remodeling is at the crossroads of circadian rhythms and regulation of metabolism and cellular proliferation.
Collapse
|
48
|
O'Neill JS, Maywood ES, Hastings MH. Cellular mechanisms of circadian pacemaking: beyond transcriptional loops. Handb Exp Pharmacol 2013:67-103. [PMID: 23604476 DOI: 10.1007/978-3-642-25950-0_4] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Circadian clocks drive the daily rhythms in our physiology and behaviour that adapt us to the 24-h solar and social worlds. Because they impinge upon every facet of metabolism, their acute or chronic disruption compromises performance (both physical and mental) and systemic health, respectively. Equally, the presence of such rhythms has significant implications for pharmacological dynamics and efficacy, because the fate of a drug and the state of its therapeutic target will vary as a function of time of day. Improved understanding of the cellular and molecular biology of circadian clocks therefore offers novel approaches for therapeutic development, for both clock-related and other conditions. At the cellular level, circadian clocks are pivoted around a transcriptional/post-translational delayed feedback loop (TTFL) in which the activation of Period and Cryptochrome genes is negatively regulated by their cognate protein products. Synchrony between these, literally countless, cellular clocks across the organism is maintained by the principal circadian pacemaker, the suprachiasmatic nucleus (SCN) of the hypothalamus. Notwithstanding the success of the TTFL model, a diverse range of experimental studies has shown that it is insufficient to account for all properties of cellular pacemaking. Most strikingly, circadian cycles of metabolic status can continue in human red blood cells, devoid of nuclei and thus incompetent to sustain a TTFL. Recent interest has therefore focused on the role of oscillatory cytosolic mechanisms as partners to the TTFL. In particular, cAMP- and Ca²⁺-dependent signalling are important components of the clock, whilst timekeeping activity is also sensitive to a series of highly conserved kinases and phosphatases. This has led to the view that the 'proto-clock' may have been a cytosolic, metabolic oscillation onto which evolution has bolted TTFLs to provide robustness and amplify circadian outputs in the form of rhythmic gene expression. This evolutionary ascent of the clock has culminated in the SCN, a true pacemaker to the innumerable clock cells distributed across the body. On the basis of findings from our own and other laboratories, we propose a model of the SCN pacemaker that synthesises the themes of TTFLs, intracellular signalling, metabolic flux and interneuronal coupling that can account for its unique circadian properties and pre-eminence.
Collapse
Affiliation(s)
- John S O'Neill
- Department of Clinical Neurosciences, University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, UK.
| | | | | |
Collapse
|
49
|
Bordyugov G, Westermark PO, Korenčič A, Bernard S, Herzel H. Mathematical modeling in chronobiology. Handb Exp Pharmacol 2013:335-57. [PMID: 23604486 DOI: 10.1007/978-3-642-25950-0_14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Circadian clocks are autonomous oscillators entrained by external Zeitgebers such as light-dark and temperature cycles. On the cellular level, rhythms are generated by negative transcriptional feedback loops. In mammals, the suprachiasmatic nucleus (SCN) in the anterior part of the hypothalamus plays the role of the central circadian pacemaker. Coupling between individual neurons in the SCN leads to precise self-sustained oscillations even in the absence of external signals. These neuronal rhythms orchestrate the phasing of circadian oscillations in peripheral organs. Altogether, the mammalian circadian system can be regarded as a network of coupled oscillators. In order to understand the dynamic complexity of these rhythms, mathematical models successfully complement experimental investigations. Here we discuss basic ideas of modeling on three different levels (1) rhythm generation in single cells by delayed negative feedbacks, (2) synchronization of cells via external stimuli or cell-cell coupling, and (3) optimization of chronotherapy.
Collapse
Affiliation(s)
- G Bordyugov
- Institute for Theoretical Biology, Humboldt University, Invalidenstr. 43, 10115, Berlin, Germany.
| | | | | | | | | |
Collapse
|